李儒 李澤慧 鄭明和 鐘良軍 丁佩惠
收稿日期:2023-06-12;修回日期:2023-09-01。
基金項(xiàng)目:浙江省口腔疾病臨床醫(yī)學(xué)研究中心項(xiàng)目(2022-KFKT-08)。
作者簡介:李儒,碩士研究生。
* 通信作者:李澤慧,副主任醫(yī)師,主要從事口腔內(nèi)科學(xué)方面的研究。E-mail: lizehui1123@126.com。
摘 要:光生物調(diào)節(jié)療法作為口腔黏膜病治療的輔助手段發(fā)展迅速,它通過細(xì)胞吸收光子能量,產(chǎn)生光化學(xué)效應(yīng),從而調(diào)節(jié)各種各樣的生物過程來達(dá)到治療目的。本文就減少炎癥、加速組織愈合、緩解疼痛以及光生物調(diào)節(jié)的雙向劑量作用4個(gè)方面進(jìn)行綜述,并深入探討了其作用機(jī)制,以便為臨床醫(yī)師應(yīng)用光生物調(diào)節(jié)療法治療口腔黏膜病提供更好的臨床決策和依據(jù)。
關(guān)鍵詞:光生物調(diào)節(jié);治療;口腔黏膜病;發(fā)色團(tuán);雙相劑量反應(yīng)
中圖分類號(hào):R781.5? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:ADOI:10.3969/j.issn.1007-7146.2023.05.003
Mechanism of Photobiomodulation Therapy in the Treatment of Oral Mucosal Diseases
LI Ru1, 2, LI Zehui1, 2*, ZHENG Minghe1, 2, ZHONG Liangjun1, 2, DING Peihui3
(1. Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China; 2. School of Stomatology, Hangzhou Normal University, Hangzhou 310015, China; 3. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China)
Abstract: Photobiomodulation (PBM) as an adjunct method for the treatment of oral mucosal diseases has developed rapidly. It is through the absorption of photon energy by cells, produce photochemical effects, and thus regulate a variety of biological processes to achieve therapeutic purposes. In this paper, the four aspects of reducing inflammation, accelerating tissue healing, relieving pain and bidirectional dose of PBM are reviewed, and the mechanism of their action is deeply discussed in order to provide clinicians with better clinical decision and basis for the treatment of oral mucosal diseases with PBM therapy.
Key words: photobiomodulation; treatment; oral mucosal disease; chromophore; biphasic dose response
(Acta Laser Biology Sinica, 2023, 32(5): 403-413)
口腔黏膜病是口腔某一部位黏膜的正常色澤、外形、完整性與功能等發(fā)生改變的一類疾病。其病變種類繁多,多數(shù)疾病病因不明,并可組合成復(fù)雜多樣的口腔損害,包括感染、白色和紅色病變、潰瘍、水皰大皰性疾病等[1]。
口腔黏膜病的治療以局部治療為主,如口腔扁平苔蘚(oral lichen planus,OLP)、復(fù)發(fā)性阿弗它潰瘍(recurrent aphthous ulcer,RAU)等的標(biāo)準(zhǔn)治療方案是局部應(yīng)用類固醇和非甾體抗炎藥,以及增強(qiáng)上皮再生的藥物等[2-4]。傳統(tǒng)治療手段往往難以避開糖皮質(zhì)激素類藥物,這些藥物在短期、適量使用的情況下是相對(duì)安全的,但是,如果患者免疫力低下或者長期、超量使用,則可能誘發(fā)新的口腔疾患,如各種類型的口腔念珠菌病(oral candidiasis)[5]。
光生物調(diào)節(jié)(photobiomodulation,PBM)療法,又稱低水平激光療法(low level laser therapy,LLLT)[6]。它可以對(duì)不同細(xì)胞類型的細(xì)胞產(chǎn)生生物刺激作用,例如,增加細(xì)胞遷移和增殖,促進(jìn)生長因子的表達(dá),激活細(xì)胞的增殖等[7-10]。作為一種較新的治療手段,PBM逐漸在口腔臨床中開展應(yīng)用,已成為多種口腔黏膜疾病的有效治療方法,包括口腔感染性疾?。ò捳睿?、潰瘍性疾?。?1]、扁平苔蘚[12]、黏膜下纖維性變[13]等。與傳統(tǒng)方法相比,其具有很大優(yōu)勢(shì),可以作為傳統(tǒng)藥物的替代品,且不涉及疼痛及副作用[14]。圖1簡單描述了PBM的細(xì)胞機(jī)制。
PBM的細(xì)胞和分子改變機(jī)制尚處于快速發(fā)展和有待進(jìn)一步闡明的階段。探尋PBM如何調(diào)節(jié)細(xì)胞增殖和遷移,以及與口腔黏膜愈合相關(guān)的生長因子和蛋白的表達(dá),有助于評(píng)價(jià)療效和支撐PBM在口腔黏膜病中的應(yīng)用[11]。本綜述旨在通過對(duì)過往文獻(xiàn)進(jìn)行匯總探究,期待能為廣大臨床醫(yī)師及研究者提供工作指導(dǎo)和研究思路。
1 PBM與發(fā)色團(tuán)
1.1 響應(yīng)PBM的主要發(fā)色團(tuán)
PBM的效應(yīng)依賴于光對(duì)生物系統(tǒng)的影響。光生物學(xué)第一定律指出,光的光子必須被位于組織內(nèi)的某些分子(稱為發(fā)色團(tuán))吸收,才能產(chǎn)生生物學(xué)效應(yīng)[16],隨后下游細(xì)胞內(nèi)的反應(yīng)由光信號(hào)轉(zhuǎn)導(dǎo)和放大驅(qū)動(dòng),介導(dǎo)細(xì)胞內(nèi)ATP、ROS和一氧化氮(nitric oxide,NO)的濃度變化。
Passarella等[17]最先提出負(fù)責(zé)PBM有益作用的主要發(fā)色團(tuán)位于線粒體內(nèi)。光子通過激活線粒體和其他發(fā)色團(tuán)中的細(xì)胞色素c氧化酶(cytochrome c oxidase,CCO)來刺激細(xì)胞內(nèi)的化學(xué)變化。這些發(fā)色團(tuán)充當(dāng)光感受器,觸發(fā)神經(jīng)保護(hù)反應(yīng),改善新陳代謝,增加血液流動(dòng),促進(jìn)神經(jīng)再生,減少炎癥和氧化應(yīng)激[18]。
吸收NIR光譜范圍內(nèi)光的主要發(fā)色團(tuán)是血紅蛋白、肌紅蛋白、黑色素和線粒體CCO[19],其中CCO最受關(guān)注。Karu等[20-21]首先提出PBM效應(yīng)的作用譜與CCO的吸收譜相匹配,Wong-Riley等[22]證實(shí)了這一觀察結(jié)果。CCO位于線粒體呼吸鏈的第四單元,是一種具有13個(gè)獨(dú)立蛋白質(zhì)亞單位的復(fù)雜分子,包含2個(gè)不同的銅中心CuA和CuB以及2個(gè)血紅素中心(血紅素a和血紅素a3),每個(gè)金屬中心以氧化或還原的狀態(tài)存在,具有不同的吸收光譜。CCO可以很好地吸收NIR區(qū)(高達(dá)950 nm)的光[23],利用還原細(xì)胞色素c的電子將4個(gè)質(zhì)子轉(zhuǎn)移到分子氧,形成2個(gè)水分子,由此形成的質(zhì)子梯度來驅(qū)動(dòng)ATP合成酶的活性[16]。而ATP驅(qū)動(dòng)許多生物化學(xué)過程,如蛋白質(zhì)合成、信號(hào)通路激活等,即使是很小的增加也能提高生物利用度,為細(xì)胞代謝功能提供動(dòng)力[1]。環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)和Ca2+是人體內(nèi)2種主要的第二信使,ATP能激活cAMP,并與Ca2+泵活性有關(guān),而Ca2+調(diào)節(jié)大多數(shù)人體生理活動(dòng),如肌肉收縮、血液凝固、神經(jīng)信號(hào)傳遞、基因表達(dá)[24]。
1.2 響應(yīng)PBM的其他發(fā)色團(tuán)
負(fù)責(zé)PBM的其他發(fā)色團(tuán)可能還包括:1)光門控離子通道和視蛋白。2)黃素和黃蛋白。與CCO和線粒體相比,視蛋白、光門控離子通道、黃素和隱蛋白(它們可能在多種細(xì)胞類型中廣泛表達(dá))支持PBM效應(yīng)的證據(jù)仍不夠充分,且它們很可能是對(duì)應(yīng)藍(lán)色和綠色光譜區(qū)域。3)超出CCO所吸收的波長之外觀察到的光生物效應(yīng)可能由水分子作為發(fā)色團(tuán)負(fù)責(zé),其機(jī)制涉及到結(jié)構(gòu)水層(也稱為界面水)[25]或水團(tuán)[26]對(duì)紅外光的選擇性吸收,并可能影響蛋白質(zhì)[27]構(gòu)象、門控通道的打開、細(xì)胞內(nèi)鈣水平的調(diào)節(jié)[28]、ATP合酶的運(yùn)轉(zhuǎn)速度[29]等。需要進(jìn)一步的研究來探索它們?cè)诳寡?、組織愈合和再生中的作用[30]。
2 PBM與炎癥調(diào)控
炎癥過程通常伴隨著基因表達(dá)和信號(hào)傳導(dǎo)的失衡,以及促炎細(xì)胞因子的釋放,例如,腫瘤壞死因子-α(tumor necrosis factor,TNF-α)、ROS、氮類物質(zhì)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)和白細(xì)胞介素-6(interleukin-6,IL-6)[31]等。Bjordal等[32]的研究表明,PBM有類似于非甾體類抗炎藥的作用;Fekrazad等[33]的研究表明,PBM可以減輕黏膜炎的嚴(yán)重程度。
2.1? PBM通過CCO影響NO
一個(gè)相對(duì)低能量的光子可以踢出結(jié)合在線粒體中并競爭性阻擋氧氣的NO,允許呼吸過程快速發(fā)生[34],同時(shí)氧氣消耗量增加并增加ATP的生成[35]。
Huang等[36]認(rèn)為,CCO對(duì)光的吸收導(dǎo)致呼吸鏈電子轉(zhuǎn)移速率的增加,從而增加ATP產(chǎn)生速率,并假設(shè)CCO具有2種酶活性:將NO2轉(zhuǎn)化為NO和將O2還原為H2O。一方面,隨著CCO活性的增加,NO的生成也增加[37](NO可以通過與O2競爭性地結(jié)合CCO而抑制呼吸,降低呼吸鏈中的電子轉(zhuǎn)移率[36]);另一方面,PBM可能導(dǎo)致NO和CCO解離,從而為機(jī)體提供游離NO[36],這是一種由光增強(qiáng)的積極效果。最終的結(jié)論是:PBM促進(jìn)了與CCO結(jié)合的NO產(chǎn)量的增加,并解離CCO和NO,更多的游離NO被釋放出來。而游離NO可以增強(qiáng)下游效應(yīng),如全身血壓、缺氧信號(hào)、應(yīng)激反應(yīng)途徑、宿主微生物相互作用、免疫信號(hào)和凋亡等[1]。
2.2 ROS在PBM中的信號(hào)通路作用
ROS在體內(nèi)穩(wěn)態(tài)平衡和細(xì)胞信號(hào)傳遞中起著關(guān)鍵作用,在從線粒體到細(xì)胞核的細(xì)胞信號(hào)通路中發(fā)揮重要作用,可以調(diào)節(jié)細(xì)胞周期進(jìn)程、蛋白質(zhì)合成、核酸合成和相關(guān)酶激活[1]。研究表明,線粒體中吸收的紅光/NIR光可產(chǎn)生適量的ROS[38]。
經(jīng)典的觀點(diǎn)認(rèn)為,線粒體膜電位(mitochondrial transmembrane potential,MMP)的增加會(huì)導(dǎo)致ROS增加[39],而PBM能增加MMP。炎癥和代謝性疾病,與線粒體ROS產(chǎn)生紊亂有關(guān)[40]。功能失調(diào)的線粒體會(huì)產(chǎn)生更多ROS,這個(gè)過程的特點(diǎn)是一個(gè)被稱為“ROS誘導(dǎo)的ROS釋放(ROS-induced ROS release,RIRR)”的自放大反饋回路[41]。細(xì)胞在暴露于過度或長期氧化應(yīng)激等條件下,ROS的增加可能達(dá)到閾值水平,從而觸發(fā)線粒體通道的開放,如線粒體通透性轉(zhuǎn)換孔或線粒體內(nèi)膜陰離子通道,這些通道的激活反過來導(dǎo)致MMP增加,并通過呼吸鏈增加ROS生成[42]。當(dāng)足夠多的ROS產(chǎn)生后,其可能會(huì)作為“第二信使”激活鄰近線粒體中的RIRR,從而充當(dāng)另一個(gè)破壞性反饋回路,增加細(xì)胞損傷[43]。
當(dāng)PBM刺激正常健康細(xì)胞的CCO活性時(shí),其MMP會(huì)高于正常基線水平,導(dǎo)致ROS的生成短暫而適度的增加[44],ROS產(chǎn)量短暫增加后,因抗炎標(biāo)志物的釋放、炎癥介質(zhì)和中性粒細(xì)胞浸潤減少,炎癥會(huì)減輕[1];當(dāng)PBM被應(yīng)用到已經(jīng)受到氧化應(yīng)激損傷的細(xì)胞時(shí),PBM能使其MMP和ATP恢復(fù)至基線附近,減少ROS的生成[16]。最新的研究表明:NIR光與CCO相互作用,瞬時(shí)減弱CCO活性,減弱線粒體膜電位超極化,從而減少ROS的產(chǎn)生;而高水平的ROS可以促進(jìn)環(huán)氧化酶-2(cyclooxygenase-2,COX-2)的表達(dá),從而促進(jìn)細(xì)胞產(chǎn)生更多的前列腺素E2(prostaglandin-E2,PG-E2)和白細(xì)胞介素-8(interleukin-8,IL-8)[45-46]。而口腔黏膜炎癥主要是由過量ROS的形成和NF-κB的激活引起的[1],因此,PBM可以通過抑制細(xì)胞內(nèi)ROS的水平來抑制炎癥[47]。
NF-κB是一種轉(zhuǎn)錄因子,其通路是細(xì)胞內(nèi)氧化應(yīng)激后激活的主要信號(hào)通路[48],可調(diào)節(jié)多種炎癥細(xì)胞因子,包括TNF-α、白細(xì)胞介素-1(interleukin-1,IL-1)、IL-6和IL-8[49]。Chen等[44]認(rèn)為,細(xì)胞中NF-κB的激活與ROS水平有關(guān),ROS水平的增高會(huì)激活NF-κB,即PBM可以通過減少過多的ROS來對(duì)抗NF-κB的激活。
3 PBM與組織修復(fù)
PBM激活各種細(xì)胞因子,促進(jìn)免疫細(xì)胞遷移到感染部位[50],產(chǎn)生適應(yīng)性免疫來對(duì)抗傷口愈合過程中存在的病原體[1],調(diào)節(jié)細(xì)胞(促進(jìn)增殖和細(xì)胞遷移),促進(jìn)抗凋亡蛋白和膠原等的合成,從而加速傷口愈合,減少疼痛、腫脹和炎癥[44]。
3.1 PBM調(diào)節(jié)各種細(xì)胞因子
口腔黏膜炎癥會(huì)激活T細(xì)胞和招募巨噬細(xì)胞,從而導(dǎo)致促炎細(xì)胞因子和轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)水平升高。TGF-β可以通過激活前膠原蛋白基因、上調(diào)前膠原蛋白酶以及賴氨基氧化酶的活性來顯著增加膠原蛋白含量[51]。
有2種細(xì)胞因子在傷口愈合中起著重要作用[1]。IL-6在損傷反應(yīng)中起著核心作用,它是一種具有功能多效性的細(xì)胞因子,在宿主防御中起重要作用。當(dāng)感染或組織損傷發(fā)生時(shí),單核細(xì)胞和巨噬細(xì)胞迅速產(chǎn)生IL-6,并通過激活免疫、血液和急性期反應(yīng),幫助清除感染因子和修復(fù)受損組織。一旦應(yīng)激消失,IL-6的合成就會(huì)終止,但不受控制的過量或持續(xù)的IL-6產(chǎn)生在各種炎癥性疾病中起著負(fù)面作用[52]。白細(xì)胞介素-10(interleukin-10,IL-10)是一種抗炎細(xì)胞因子,可以抑制促炎細(xì)胞因子的產(chǎn)生以及巨噬細(xì)胞和中性粒細(xì)胞的浸潤[53],調(diào)節(jié)Th1/Th2平衡(Th1免疫反應(yīng)是促炎反應(yīng),Th2免疫反應(yīng)是抗炎反應(yīng))并抑制T淋巴細(xì)胞增殖[54]。
在OLP患者中,體內(nèi)會(huì)產(chǎn)生高水平的IL-6并加劇局部炎癥反應(yīng)和不適[55]。血清和唾液中的高水平IL-10可能與防御反應(yīng)有關(guān),防止免疫細(xì)胞造成過多的組織損傷[56-57]。在炎癥性疾病的試驗(yàn)?zāi)P椭?,PBM能夠降低過量IL-6的水平,從而有助于炎癥消退并促進(jìn)組織修復(fù)[30-58]。在合適的輻射能量下,PBM能顯著降低大鼠口內(nèi)潰瘍組織中促炎性IL-6的表達(dá),還能提高TGF-β和基質(zhì)金屬蛋白酶-2(matrix metalloproteinase-2,MMP-2)的表達(dá)[59]。
在口腔黏膜下纖維化等疾病中,活化的炎性細(xì)胞產(chǎn)生細(xì)胞因子(如IL-6)并促進(jìn)生成纖維化的生長因子,導(dǎo)致膠原合成增加,膠原降解減少[13]。PBM可以降低頰黏膜下病變中纖維化標(biāo)志基因α-平滑肌肌動(dòng)蛋白和結(jié)締組織生長因子的蛋白表達(dá)[60],還能在體外通過cAMP信號(hào)抑制檳榔堿介導(dǎo)的纖維化標(biāo)記基因的表達(dá)[61],抑制成纖維細(xì)胞-肌成纖維細(xì)胞轉(zhuǎn)變[62]。
PBM可以增加血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的生成,幫助血管生成、改善微循環(huán),誘導(dǎo)中性粒細(xì)胞浸潤和減少COX-2表達(dá),從而促進(jìn)傷口愈合[63]。生長因子如堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)有助于調(diào)節(jié)成纖維細(xì)胞增殖和遷移,轉(zhuǎn)化生長因子-α(transforming growth factor-α,TGF-α)可誘導(dǎo)成纖維細(xì)胞合成膠原,而PBM可以激活這些因子的產(chǎn)生[1]。Gupta等[64]通過大鼠試驗(yàn)證明,PBM組大鼠創(chuàng)面愈合更快,其TNF-α和NF-κB表達(dá)減少,炎癥減少,VEGF及成纖維細(xì)胞生長因子-1(fibroblast growth factor-1,F(xiàn)GF-1)等表達(dá)上調(diào)。
3.2 成纖維細(xì)胞主導(dǎo)的增殖修復(fù)作用
成纖維細(xì)胞的激活在PBM誘導(dǎo)的組織修復(fù)中起著主要作用,其增殖、分化和遷移以及最終刺激上皮細(xì)胞的生物活性被認(rèn)為是口腔黏膜愈合過程中的關(guān)鍵因素[65]。PBM能增強(qiáng)成纖維細(xì)胞的增殖、成熟和運(yùn)動(dòng)能力,并增加bFGF的產(chǎn)生[66-67],在合適的波長和劑量方案下,其能誘導(dǎo)成纖維細(xì)胞增殖和增加膠原蛋白的合成[1]。
大多數(shù)體外試驗(yàn)結(jié)果顯示,PBM處理后成纖維細(xì)胞增殖增加,包括大鼠成纖維細(xì)胞[68]、大鼠肌成纖維細(xì)胞[67]、小鼠胚胎成纖維細(xì)胞[69]、雞胚成纖維細(xì)胞[70]、人成纖維細(xì)胞[69]、人牙齦成纖維細(xì)胞[71-72]等,其增殖均不同程度增加。
成纖維細(xì)胞能和角質(zhì)形成細(xì)胞相互串?dāng)_,促進(jìn)角質(zhì)形成細(xì)胞的遷移和增殖[73]。此外,淋巴細(xì)胞被PBM激活并更快地增殖,巨噬細(xì)胞作為吞噬細(xì)胞的能力也得到增強(qiáng)[15],從而促進(jìn)組織修復(fù)。
3.3 PBM的長期修復(fù)效應(yīng)
許多次級(jí)介質(zhì)(ROS、NO、cAMP)能夠激活轉(zhuǎn)錄因子和信號(hào)通路,轉(zhuǎn)錄因子的激活可以解釋為什么相對(duì)短暫的光照可以產(chǎn)生持久的效果[16]。PBM促進(jìn)氧代謝產(chǎn)生的ROS可以激活轉(zhuǎn)錄因子,促使各種刺激和保護(hù)基因的上調(diào)[15]。當(dāng)ROS數(shù)量增加時(shí),細(xì)胞發(fā)出信號(hào)招募抗氧化分子。這些信號(hào)通路的激活上調(diào)了轉(zhuǎn)錄因子的基因表達(dá)[1]。此外,NO也可以刺激血管擴(kuò)張,并間接調(diào)節(jié)許多基因的轉(zhuǎn)錄[37]。
另外,干細(xì)胞數(shù)量及活性的增加也能說明PBM短期治療可以產(chǎn)生長期效益,PBM對(duì)干細(xì)胞有正向作用,其可以增強(qiáng)干細(xì)胞的生物活性,例如,細(xì)胞遷移、增殖、存活和整體細(xì)胞生態(tài)位[74-75]。PBM還能顯著增加干細(xì)胞的初始數(shù)量[76],并增強(qiáng)干細(xì)胞分化[77]。在一項(xiàng)臨床研究中發(fā)現(xiàn),PBM可能通過抗氧化、促進(jìn)再生等機(jī)制,在相當(dāng)長的時(shí)期內(nèi)緩解口腔疼痛不適[如灼口綜合征(burning mouth syndrome,BMS)、口腔醫(yī)源性神經(jīng)病變],還證明了PBM具有持久的、神經(jīng)再生的有益作用[78]。另一項(xiàng)研究也表明,PBM治療后,OLP的癥狀改善且其療效至少持續(xù)了3個(gè)月[79]。
4 PBM與疼痛緩解
PBM對(duì)疼痛總體有積極的治療效果[80],可以降低疼痛評(píng)分[81]。其緩解疼痛的機(jī)制可能是通過對(duì)神經(jīng)元及疼痛介質(zhì)的調(diào)節(jié),影響炎癥因子的生成,促進(jìn)局部血液循環(huán)及組織愈合再生等,有效減輕即時(shí)疼痛和遠(yuǎn)期疼痛。
4.1 PBM對(duì)神經(jīng)的調(diào)節(jié)
光子能夠穿透表層神經(jīng)元來調(diào)節(jié)疼痛[82]。首先,PBM通過其對(duì)Na+/K+泵的作用改變病損周圍神經(jīng)元的神經(jīng)傳導(dǎo)和興奮性[83]。此外,其還可以對(duì)瞬時(shí)受體電位陽離子通道亞家族成員1和神經(jīng)生長因子信號(hào)阻滯劑造成影響,減少它們的表達(dá)(阻斷炎性熱痛覺),從而有效減少有害刺激[84]。通過引起膜通透性的可逆變化,PBM進(jìn)一步刺激細(xì)胞活性和增殖,同時(shí)降低C和Aδ神經(jīng)纖維活性[15-85],抑制傳入疼痛纖維[86]。NIR和紅外波長還可降低軀體感覺電位的幅度,減少脊髓神經(jīng)元中的P物質(zhì),從而產(chǎn)生鎮(zhèn)痛作用[87]。
4.2 PBM與阿片肽
PBM在β-內(nèi)啡肽和腦啡肽的產(chǎn)生以及降低緩激肽和組胺水平方面起著關(guān)鍵作用,有助于鎮(zhèn)痛和緩解疼痛[88-89],減弱P物質(zhì)釋放以及緩激肽、組胺和PG-E2的分泌,并抑制傳入疼痛纖維[86]。1993年,Honmura等[90]研究發(fā)現(xiàn),半導(dǎo)體激光照射能消除炎癥性痛覺,且其鎮(zhèn)痛作用至少部分是由內(nèi)源性阿片釋放引起的(G蛋白偶聯(lián)受體家族的成員[91]之一阿片受體,被激活后可產(chǎn)生強(qiáng)烈的止痛效果),并可通過免疫系統(tǒng)細(xì)胞的遷移增加外周內(nèi)源性阿片類物質(zhì)的釋放。此外,PBM還可通過激活外周阿片受體,來減少痛覺[92]。
4.3 PBM與炎性介質(zhì)
促炎細(xì)胞因子,如TNF-α、IL-6、白細(xì)胞介素-12(interleukin-12,IL-12)、IL-1β、ROS是放大炎癥反應(yīng)和使初級(jí)傷害性神經(jīng)元敏感化的炎癥介質(zhì)[93-94],而白細(xì)胞介素-4(interleukin-4,IL-4)、IL-10和白細(xì)胞介素-13(interleukin-13,IL-13)是重要的抗炎細(xì)胞因子,限制炎癥反應(yīng)。在動(dòng)物模型中,PBM可顯著減少TNF-α和IL-1β的生成[95],增加組織IL-10的水平[92]。PG-E2是環(huán)氧化酶的產(chǎn)物,是已知的對(duì)炎性疼痛和痛覺過敏有顯著影響的脂質(zhì)介質(zhì)[96]。PBM可以下調(diào)PG-E2水平[97-98],其通過下調(diào)COX-2,從而下調(diào)PG-E2,減少痛敏效應(yīng)和炎癥反應(yīng)[82],減輕由前列腺素等細(xì)胞內(nèi)信號(hào)分子介導(dǎo)的炎癥相關(guān)疼痛[99]。此外,PBM還可以減少水腫和炎性細(xì)胞遷移[100]。
ROS和疼痛也有關(guān)聯(lián),異常的ROS引起的氧化應(yīng)激可導(dǎo)致慢性炎癥[101]。因此,過氧化氫酶和超氧化物歧化酶活性的增加也可能是PBM治療炎性疼痛的有效機(jī)制之一[92]。NO在疼痛中也起作用[102]。許多動(dòng)物研究表明,抑制NO合成可以顯著減輕炎癥性和神經(jīng)病理性疼痛[103-106],而PBM能以劑量依賴的方式降低NO的產(chǎn)生。
4.4 PBM的長期止痛效果
傷口愈合和組織再生可能是PBM治療疼痛的長期效果的主要作用方面。在細(xì)胞增殖和凋亡抑制中發(fā)揮作用的基因受PBM的調(diào)節(jié)[107]。有證據(jù)表明,PBM可以促進(jìn)內(nèi)皮細(xì)胞[108]、成纖維細(xì)胞[109-110]和角質(zhì)形成細(xì)胞[111]的增殖,還可以促進(jìn)膠原合成、刺激血管生成、增加血流量[112-113],并促進(jìn)神經(jīng)再生[114-115]。如在對(duì)BMS的治療中,其能影響微循環(huán),刺激血管生成蛋白的分泌,進(jìn)而影響微血管模式,減少因炎癥導(dǎo)致的血管擴(kuò)張,并減輕燒灼感[116]。
5 PBM的雙相作用
PBM對(duì)機(jī)體的益處,包括減少炎癥因子、抗炎、促進(jìn)血液循環(huán)、促進(jìn)細(xì)胞活化與增殖等。由于PBM的雙相劑量效應(yīng)以及不同細(xì)胞對(duì)PBM的反應(yīng)也有所不同,它的效用也并不總是有益的。但總的來講,絕大多數(shù)情況下,PBM益處遠(yuǎn)遠(yuǎn)大于其副作用。
5.1 雙相劑量效應(yīng)
PBM具有雙相劑量效應(yīng)的特點(diǎn)。雙相劑量效應(yīng)是指:如果所施加的光沒有足夠的輻照度或照射時(shí)間太短,則沒有反應(yīng);如果輻照度太高或照射時(shí)間太長,則響應(yīng)可能被抑制[117-119]。即PBM的“劑量”有一個(gè)最優(yōu)值,通常用能量密度(J/cm2)來定義[120-121]。當(dāng)PBM的劑量增加時(shí),在某個(gè)值就會(huì)達(dá)到最大反應(yīng),如果劑量增加到超過這個(gè)最大值,反應(yīng)就會(huì)減弱甚至消失,而在非常高的劑量下還會(huì)產(chǎn)生負(fù)面或抑制作用[30]。Courtois等[1]的結(jié)論是:為了使生物過程發(fā)生,細(xì)胞必須接受一個(gè)雙相劑量,低水平激光在刺激和修復(fù)組織方面比高水平的光有更好的效果。如在體外創(chuàng)面愈合模型中,使用650 nm波長、10 J/cm2的高劑量輻照,細(xì)胞遷移和增殖均出現(xiàn)了減少現(xiàn)象[122]。既往研究表明,具有更明顯臨床效果的參數(shù)在1~10 J/cm2的能量密度范圍內(nèi)[14],如在RAU中,指南建議每次使用應(yīng)低于10 J/cm2[123]。Albrektson等[124]和Jijin等[125]分別使用6.3 J/cm2 和6 J/cm2 能量密度的激光,即有效改善RAU的癥狀;Cafaro[126]等的研究表明,980 nm、4 J/cm2的PBM即可有效減輕OLP疼痛并減少損傷;在一項(xiàng)隨機(jī)對(duì)照試驗(yàn)研究中,以4.5 J/cm2或3 J/cm2治療復(fù)發(fā)性唇皰疹,取得了很好的療效[127]。
5.2? 細(xì)胞的保護(hù)作用
PBM能保護(hù)細(xì)胞(通常是神經(jīng)元細(xì)胞)免受有毒物質(zhì)的攻擊,并能保護(hù)因毒素治療(如化療藥物)而有死亡風(fēng)險(xiǎn)的細(xì)胞[1]。例如,電壓依賴性鈉通道阻滯劑(如河豚毒素)通過阻止神經(jīng)元沖動(dòng)、減少ATP需求和下調(diào)CCO活性發(fā)揮毒性,而使用670 nm LED的PBM處理可以將CCO活性恢復(fù)到正常水平或甚至更高[128]。
5.3 PBM的促癌作用
大部分研究表明,PBM對(duì)癌細(xì)胞沒有負(fù)面影響,高劑量、低功率激光照射可以通過光滅活呼吸鏈氧化酶誘導(dǎo)癌細(xì)胞凋亡和抗腫瘤免疫反應(yīng)[129]。高照射劑量PBM還可以對(duì)惡性細(xì)胞產(chǎn)生抑制作用[130-132]。
少部分研究發(fā)現(xiàn),PBM可造成生物刺激,促進(jìn)惡性細(xì)胞增殖[1],并激活一系列參與腫瘤傳導(dǎo)的通路和介質(zhì)[133]。Sperandio等[134]認(rèn)為,PBM可以顯著影響與口腔癌進(jìn)展和侵襲相關(guān)的蛋白的表達(dá),并可能加快口腔癌的惡性病程。Henriques等[135]認(rèn)為,PBM可以影響細(xì)胞周期蛋白D1、β-連環(huán)蛋白、E-鈣黏蛋白和基質(zhì)金屬蛋白酶-9的表達(dá),促進(jìn)人舌鱗狀細(xì)胞癌細(xì)胞系細(xì)胞的增殖和侵襲。
因此,在靠近已知或可能存在腫瘤的區(qū)域時(shí),應(yīng)謹(jǐn)慎考慮使用PBM[136],因?yàn)橛休^低的利于惡性細(xì)胞的增殖、促進(jìn)惡性病變的發(fā)展的可能。
5.4 PBM誘導(dǎo)的細(xì)胞毒性及DNA損傷
PBM后的細(xì)胞可因產(chǎn)生ROS和NO而導(dǎo)致細(xì)胞毒性,即使在低濃度的情況下,ROS也可以通過脂質(zhì)過氧化、DNA鏈斷裂和蛋白質(zhì)破碎來破壞細(xì)胞成分[44]。
在PBM直接導(dǎo)致的健康細(xì)胞損傷方面,目前的文獻(xiàn)證據(jù)尚不充足。在DNA損傷方面,Khan等[137]的觀點(diǎn)是NIR激光可能不具有基因毒性或誘變性;Kujawa等[138]認(rèn)為只有在高(15.0 J/cm2)的輻射照射下才觀察到具有統(tǒng)計(jì)學(xué)意義的DNA損傷;另有研究表明,使用10 J/cm2和16 J/cm2的輻射照度可以損害細(xì)胞膜和DNA,使細(xì)胞活力和細(xì)胞增殖降低[139]。
5.5 PBM在炎癥中的雙向作用
一篇最新的回顧研究總結(jié)了PBM在抗炎試驗(yàn)中的雙相作用,發(fā)現(xiàn)細(xì)胞或組織的炎癥反應(yīng)符合雙相劑量效應(yīng):低劑量比高劑量更能抑制炎癥,低劑量可以降低TNF-α、IL-1β和IL-6等促炎因子的水平,增加抗炎因子如IL-10的水平,提高細(xì)胞存活率,抑制活性氧的生成,抑制M1巨噬細(xì)胞中炎癥因子的表達(dá)、下調(diào)轉(zhuǎn)錄因子NF-κB p65的表達(dá)和磷酸化來限制炎癥;而高輸出能量的PBM可能減少了炎癥細(xì)胞遷移,且對(duì)炎癥介質(zhì)(如IL-1β和IL-6)的調(diào)節(jié)作用弱于低劑量[140]。
6 總結(jié)與展望
口腔黏膜病常常給患者造成巨大痛苦,對(duì)患者的飲食、睡眠、工作等造成不良影響。目前局部治療的主流方案是局部用藥,但應(yīng)用局部藥物易被口內(nèi)外環(huán)境影響,且長期使用也有可能對(duì)全身造成不良影響。
隨著相應(yīng)機(jī)理的闡明,PBM也逐漸應(yīng)用到口腔領(lǐng)域。很多學(xué)者將其與傳統(tǒng)治療方法比較,展示了PBM療法應(yīng)用在口腔疾病治療中的巨大優(yōu)勢(shì)和潛力。目前,PBM的功效可能仍然是首先依靠發(fā)色團(tuán)來引發(fā),以線粒體為樞紐,并介導(dǎo)后續(xù)的各種信號(hào)通路及生化反應(yīng),產(chǎn)生一定的即時(shí)效應(yīng)和遠(yuǎn)期效應(yīng)。此外,PBM治療口腔黏膜疾病功效的顯現(xiàn)并非通過單一因素的影響,如PBM減輕OLP病變的體征和癥狀是通過促進(jìn)成纖維細(xì)胞增殖、分化和遷移、刺激上皮細(xì)胞的生物活性,調(diào)節(jié)口腔組織中細(xì)胞因子和免疫細(xì)胞的釋放,促進(jìn)微循環(huán),調(diào)節(jié)神經(jīng)傳遞和神經(jīng)再生等來控制口腔黏膜病損,恢復(fù)黏膜的健康代謝功能。
然而,目前支撐PBM治療口腔黏膜病的相關(guān)分子機(jī)制以及PBM局部應(yīng)用與全身關(guān)系方面的論述并不完善,這可能是由于PBM在細(xì)胞內(nèi)引發(fā)反應(yīng)產(chǎn)生的相關(guān)物質(zhì)難以檢測的原因。有關(guān)PBM的研究數(shù)據(jù)大多是在體外或通過動(dòng)物試驗(yàn)得到的,考慮到其極低的副作用,未來的發(fā)展趨勢(shì)可能會(huì)將研究重心從動(dòng)物試驗(yàn)轉(zhuǎn)移到臨床試驗(yàn)中去,或與臨床試驗(yàn)相結(jié)合,而不是單純對(duì)比臨床治療效果得出重復(fù)的“PBM治療某種疾病有效”或“與傳統(tǒng)方法相比PBM更優(yōu)”的結(jié)論。同時(shí),由于PBM的基本生化機(jī)制尚不完全明確,部分研究結(jié)果存在爭議,其使用難以標(biāo)準(zhǔn)化。未來的研究可繼續(xù)探索PBM的生理生化機(jī)制、更準(zhǔn)確的劑量參數(shù)等,并與其他已經(jīng)建立的臨床療法結(jié)合起來轉(zhuǎn)化為新的治療方法指導(dǎo)PBM的臨床應(yīng)用。
參考文獻(xiàn)(References):
[1] COURTOIS E, BOULEFTOUR W, GUY J B, et al. Mechanisms of photobiomodulation (PBM) focused on oral mucositis prevention and treatment: a scoping review[J]. BioMed Central Oral Health, 2021, 21(1): 220.
[2] MANFREDINI M G S, GIOVANI M, LIPPOLIS N, et al. Recurrent aphthous stomatitis: treatment and management[J]. Dermatol Pract Concept, 2021, 11(4): e2021099.
[3] SLEBIODA Z, DOROCKA-BOBKOWSKA B. Low-level laser therapy in the treatment of recurrent aphthous stomatitis and oral lichen planus: a literature review[J]. Postepy Dermatol Alergol, 2020, 37(4): 475-481.
[4] DIDONA D, CAPOSIENA CARO R D, SEQUEIRA SANTOS A M, et al. Therapeutic strategies for oral lichen planus: state of the art and new insights[J]. Frontiers of Medicine (Lausanne), 2022, 9: 997190.
[5] AKPAN A, MORGAN R. Oral candidiasis[J]. Postgraduate Medicine Journal, 2002, 78(922): 455-459.
[6] ANDERS J J, LANZAFAME R J, ARANY P R. Low-level light/laser therapy versus photobiomodulation therapy[J]. Photomed Laser Surgery, 2015, 33(4): 183-184.
[7] GAO X, XING D. Molecular mechanisms of cell proliferation induced by low power laser irradiation[J]. Journal of Biomedical Science, 2009, 16(1): 1-16.
[8] ALGHAMDI K M, KUMAR A, MOUSSA N A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells[J]. Lasers in Medical Science, 2012, 27(1): 237-249.
[9] BASSO F G, PANSANI T N, TURRIONI A P S, et al. In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts[J]. International Journal of Dentistry, 2012, 2012: 719452.
[10] BASSO F G, OLIVEIRA C F, KURACHI C, et al. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro[J]. Lasers in Medical Science, 2013, 28(2): 367-374.
[11] BASSO F G, SOARES D G, PANSANI T N, et al. Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge[J]. Lasers in Surgery and Medicine, 2016, 48(10): 1006-1014.
[12] HESSE J, SCHMALFUSS A, KVAAL S I. Photodynamic therapy of oral lichen planus[J]. Photochemical & Photobiological Sciences, 2020, 19(10): 1271-1279.
[13] HAQUE M, HARRIS M, MEGHJI S, et al. Immunolocalization of cytokines and growth factors in oral submucous fibrosis[J]. Cytokine, 1998, 10(9): 713-719.
[14] MERIGO E, ROCCA J P, PINHEIRO A L B, et al. Photobiomodulation therapy in oral medicine: a guide for the practitioner with focus on new possible protocols[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37(11): 669-680.
[15] CHUNG H, DAI T, SHARMA S K, et al. The nuts and bolts of low-level laser (light) therapy[J]. Annals of Biomedical Engineering, 2012, 40(2): 516-533.
[16] HAMBLIN M R. Mechanisms and mitochondrial redox signaling in photobiomodulation[J]. Photochemistry and Photobiology, 2018, 94(2): 199-212.
[17] PASSARELLA S, KARU T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 140: 344-358.
[18] DE FREITAS L F, HAMBLIN M R. Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 348-364.
[19] H?TTEMANN M, KADENBACH B, GROSSMAN L I. Mammalian subunit IV isoforms of cytochrome c oxidase[J]. Gene, 2001, 267(1): 111-123.
[20] KARU T I, PYATIBRAT L V, KOLYAKOV S F, et al. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2005, 81(2): 98-106.
[21] KARU T I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation[J]. IUBMB Life, 2010, 62(8): 607-610.
[22] WONG-RILEY M T, LIANG H L, EELLS J T, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase[J]. Journal of Biological Chemistry, 2005, 280(6): 4761-4771.
[23] MASON M G, NICHOLLS P, COOPER C E. Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: implications for non invasive in vivo monitoring of tissues[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014, 1837(11): 1882-1891.
[24] FARIVAR S, MALEKSHAHABI T, SHIARI R. Biological effects of low level laser therapy[J]. Journal of Lasers in Medical Sciences, 2014, 5(2): 58.
[25] HO M W. Illuminating water and life: Emilio Del Giudice[J]. Electromagnetic Biology and Medicine, 2015, 34(2): 113-122.
[26] INOUE S, KABAYA M. Biological activities caused by far-infrared radiation[J]. International Journal of Biometeorology, 1989, 33(3): 145-150.
[27] POLLACK G H, FIGUEROA X, ZHAO Q. Molecules, water, and radiant energy: new clues for the origin of life[J]. International Journal of Molecular Sciences, 2009, 10(4): 1419-1429.
[28] DAMODARAN S. Water at biological phase boundaries: its role in interfacial activation of enzymes and metabolic pathways[J]. Membrane Hydration, 2015, 71: 233-261.
[29] SOMMER A P, HADDAD M K, FECHT H J. Light effect on water viscosity: implication for ATP biosynthesis[J]. Scientific Reports, 2015, 5(1): 1-6.
[30] HAMBLIN M R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation[J]. AIMS Biophysics, 2017, 4(3): 337-361.
[31] HANISCH U K. Microglia as a source and target of cytokines[J]. Glia, 2002, 40(2): 140-155.
[32] BJORDAL J M, JOHNSON M I, IVERSEN V, et al. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials[J]. Photomedicine and Laser Therapy, 2006, 24(2): 158-168.
[33] FEKRAZAD R, CHINIFORUSH N. Oral mucositis prevention and management by therapeutic laser in head and neck cancers[J]. Journal of Lasers in Medical Sciences, 2014, 5(1): 1-7.
[34] PANNALA V R, CAMARA A K, DASH R K. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: catalytic mechanism and nitric oxide inhibition[J]. Journal of Applied Physiology, 2016, 121(5): 1196-1207.
[35] LANE N. Cell biology: power games[J]. Nature, 2006, 443(7114): 901-903.
[36] HUANG Y Y, SHARMA S K, CARROLL J, et al. Biphasic dose response in low level light therapy-an update[J]. Dose Response, 2011, 9(4): 602-618.
[37] POYTON R O, HENDRICKSON M. Molecular basis for photobiomodulation: light-induced nitric oxide synthesis by cytochrome c oxidase in low-level laser therapy [M]//HAMBLIN M R. Handbook of low-level laser therapy. New York: Jenny Stanford Publishing, 2016: 201-220.
[38] CHEN A C, ARANY P R, HUANG Y Y, et al. Low-level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts[J]. PLoS One, 2011, 6(7): e22453.
[39] SUSKI J M, LEBIEDZINSKA M, BONORA M, et al. Relation between mitochondrial membrane potential and ROS formation [J]. Methods in Molecular Biology, 2012, 810: 183-205.
[40] FORRESTER S J, KIKUCHI D S, HERNANDES M S, et al. Reactive oxygen species in metabolic and inflammatory signaling[J]. Circulation Research, 2018, 122(6): 877-902.
[41] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological Reviews, 2014, 94(3): 909-950.
[42] ZOROV D B, FILBURN C R, KLOTZ L O, et al. Reactive oxygen species (ROS-induced) ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes[J]. The Journal of Experimental Medicine, 2000, 192(7): 1001-1014.
[43] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial ROS-induced ROS release: an update and review[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757(5/6): 509-517.
[44] CHEN C H, HUANG Y Y, ARANY P R, et al. Role of reactive oxygen species in low level light therapy[C] // Mechanisms for Low-Light Therapy IV, San Jose, CA, USA. 2009, 7165: 9-19.
[45] STRUBAKOS C D, MALIK M, WIDER J M, et al. Non-invasive treatment with near-infrared light: a novel mechanisms-based strategy that evokes sustained reduction in brain injury after stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 2020, 40(4): 833-844.
[46] SANDERSON T H, WIDER J M, LEE I, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury[J]. Scientific Reports, 2018, 8(1): 1-12.
[47] CHEN Z, LIU X, QIN H, et al. The effect of 630 nm photobiomodulation on the anti-inflammatory effect of human gingival fibroblasts[J]. Photonics, 2021, 8(9): 360.
[48] RAI V. Role of reactive oxygen species in low-level laser therapy [M] //HAMBLIN M R. Handbook of Low-Level Laser Therapy. New York: Jenny Stanford Publishing. 2016: 177-200.
[49] BALDWIN A S. Series introduction: the transcription factor NF-κB and human disease[J]. The Journal of Clinical Investigation, 2001, 107(1): 3-6.
[50] RAMOS A L O, RAMOS F S, DE SOUSA M V P. Low-level laser (light) therapy for wound healing in animal models[M] //HAMBLIN M R. Handbook of low-level laser therapy. New York: Jenny Stanford Publishing, 2016, 18.
[51] LOKESH U, VEENA G, JANN A, et al. Application of lasers for oral submucus fibrosis: an experimental study[J]. Archives of CraniOrofacial Sciences (ACOFS), 2014, 1(6): 81-86.
[52] TANAKA T, NARAZAKI M, MASUDA K, et al. Regulation of IL-6 in immunity and diseases [J]. Advances in Experimental Medicine and Biology, 2016, 941: 79-88.
[53] SILVA G B L, SACONO N T, OTHON-LEITE A F, et al. Effect of low-level laser therapy on inflammatory mediator release during chemotherapy-induced oral mucositis: a randomized preliminary study[J]. Lasers in Medical Science, 2015, 30(1): 117-126.
[54] ABDEL-HAQ A, KUSNIERZ-CABALA B, DARCZUK D, et al. Interleukin-6 and neopterin levels in the serum and saliva of patients with lichen planus and oral lichen planus[J]. Journal of Oral Pathology & Medicine, 2014, 43(10): 734-739.
[55] MOZAFFARI H R, SHARIFI R, SADEGHI M. Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study[J]. Central European Journal of Immunology, 2018, 43(1): 103-108.
[56] COUPER K N, BLOUNT D G, RILEY E M. IL-10: the master regulator of immunity to infection[J]. The Journal of Immunology, 2008, 180(9): 5771-5777.
[57] DAN H, LIU W, WANG J, et al. Elevated IL-10 concentrations in serum and saliva from patients with oral lichen planus[J]. Quintessence International, 2011, 42(2): 157-163.
[58] DE BRITO SOUSA K, RODRIGUES M F S D, DE SOUZA SANTOS D, et al. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers[J]. Lasers in Medical Science, 2020, 35(2): 337-343.
[59] RYU H S, LIM N K, PADALHIN A R, et al. Improved healing and macrophage polarization in oral ulcers treated with photobiomodulation (PBM)[J]. Lasers in Surgery and Medicine, 2022, 54(4): 600-610.
[60] CHIANG M H, LEE K T, CHEN C H, et al. Photobiomodulation therapy inhibits oral submucous fibrosis in mice[J]. Journal of Oral Diseases, 2020, 26(7): 1474-1482.
[61] YEH M C, CHEN K K, CHIANG M H, et al. Low-power laser irradiation inhibits arecoline-induced fibrosis: an in vitro study[J]. International Journal of Oral Science, 2017, 9(1): 38-42.
[62] SASSOLI C, CHELLINI F, SQUECCO R, et al. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: new perspectives for tissue fibrosis treatment[J]. Lasers in Surgery and Medicine, 2016, 48(3): 318-332.
[63] LOPES N N F, PLAPLER H, CHAVANTES M C, et al. Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters: evaluation of two low-intensity laser protocols[J]. Supportive Care in Cancer, 2009, 17(11): 1409-1415.
[64] GUPTA A, KESHRI G K, YADAV A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds[J]. Journal of Biophotonics, 2015, 8(6): 489-501.
[65] NAJEEB S, KHURSHID Z, ZOHAIB S, et al. Management of recurrent aphthous ulcers using low-level lasers: a systematic review[J]. Medicina, 2016, 52(5): 263-268.
[66] HAWKINS D, ABRAHAMSE H. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts[J]. Photomedicine and Laser Therapy, 2005, 23(3): 251-259.
[67] MEDRADO A R, PUGLIESE L S, REIS S R A, et al. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts[J]. Lasers in Surgery and Medicine, 2003, 32(3): 239-244.
[68] DE OLIVEIRA GUIRRO E C, DE LIMA MONTEBELO M I, DE ALMEIDA BORTOT B, et al. Effect of laser (670 nm) on healing of wounds covered with occlusive dressing: a histologic and biomechanical analysis[J]. Photomedicine Laser Surgery, 2010, 28(5): 629-634.
[69] PEREIRA A N, EDUARDO C D P, MATSON E, et al. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2002, 31(4): 263-267.
[70] VINCK E M, CAGNIE B J, CORNELISSEN M J, et al. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation[J]. Lasers in Medical Science, 2003, 18(2): 95-99.
[71] KREISLER M, CHRISTOFFERS A B, AL-HAJ H, et al. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2002, 30(5): 365-369.
[72] ALMEIDA-LOPES L, RIGAU J, AMARO Z?NGARO R, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2001, 29(2): 179-184.
[73] DOMPE C, MONCRIEFF L, MATYS J, et al. Photobiomodulation-underlying mechanism and clinical applications[J]. Journal of Clinical Medicine, 2020, 9(6): 1724.
[74] GINANI F, SOARES D M, BARBOZA C A G. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review[J]. Lasers in Medical Science, 2015, 30(8): 2189-2194.
[75] ZAMANI A R N, SABERIANPOUR S, GERANMAYEH M H, et al. Modulatory effect of photobiomodulation on stem cell epigenetic memory: a highlight on differentiation capacity[J]. Lasers in Medical Science, 2020, 35(2): 299-306.
[76] BAYAT M, VIRDI A, REZAEI F, et al. Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells[J]. Progress in Biophysics and Molecular Biology, 2018, 133: 36-48.
[77] KOMAROVA S V, ATAULLAKHANOV F I, GLOBUS R K. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts[J]. American Journal of Physiology-Cell Physiology, 2000, 279(4): C1220-C1229.
[78] HANNA R, BENSADOUN R J, BEKEN S V, et al. Outpatient oral neuropathic pain management with photobiomodulation therapy: a prospective analgesic pharmacotherapy-paralleled feasibility trial[J]. Antioxidants (Basel), 2022, 11(3): 533.
[79] SALINAS-GILABERT C, GOMEZ GARCIA F, GALERA MOLERO F, et al. Photodynamic therapy, photobiomodulation and acetonide triamcinolone 0.1% in the treatment of oral lichen planus: a randomized clinical trial[J]. Pharmaceutics, 2022, 15(1): 30.
[80] ENWEMEKA C S, PARKER J C, DOWDY D S, et al. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study[J]. Photomedicine and Laser Therapy, 2004, 22(4): 323-329.
[81] KETZ A K, BYRNES K R, GRUNBERG N E, et al. Characterization of macrophage/microglial activation and effect of photobiomodulation in the spared nerve injury model of neuropathic pain[J]. Pain Medicine, 2017, 18(5): 932-946.
[82] ZHANG W W, WANG X Y, CHU Y X, et al. Light-emitting diode phototherapy: pain relief and underlying mechanisms[J]. Lasers in Medical Science, 2022, 37(5): 2343-2352.
[83] CHOW R, ARMATI P, LAAKSO E L, et al. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review[J]. Photomedicine and Laser Surgery, 2011, 29(6): 365-381.
[84] ZUPIN L, OTTAVIANI G, RUPEL K, et al. Analgesic effect of photobiomodulation therapy: an in vitro and in vivo study[J]. Journal of Biophotonics, 2019, 12(10): e201900043.
[85] COTLER H B, CHOW R T, HAMBLIN M R, et al. The use of low level laser therapy (LLLT) for musculoskeletal pain[J]. Med?rave Online Journal of Orthopedics & Rheumatology, 2015, 2(5): 00068.
[86] SAKURAI Y, YAMAGUCHI M, ABIKO Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts[J]. European Journal of Oral Sciences, 2000, 108(1): 29-34.
[87] CHOW R, ARMATI P, LAAKSO E L, et al. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review[J]. Photomedicine and Laser Surgery, 2011, 29(6): 365-381.
[88] G?L P, VIDINSK? B, TOPORCER T, et al. Histological assessment of the effect of laser irradiation on skin wound healing in rats[J]. Photomedicine and Laser Therapy, 2006, 24(4): 480-488.
[89] OZCELIK O, CENK HAYTAC M, KUNIN A, et al. Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study[J]. Journal of Clinical Periodontology, 2008, 35(3): 250-254.
[90] HONMURA A, ISHII A, YANASE M, et al. Analgesic effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageenin-induced inflammation[J]. Lasers in Surgery and Medicine, 1993, 13(4): 463-469.
[91] WALDHOER M, BARTLETT S E, WHISTLER J L. Opioid receptors[J]. Annual Review of Biochemistry, 2004, 73(1): 953-990.
[92] MARTINS D F, TURNES B L, CIDRAL-FILHO F J, et al. Light-emitting diode therapy reduces persistent inflammatory pain: role of interleukin 10 and antioxidant enzymes[J]. Neuroscience, 2016, 324: 485-495.
[93] VERRI W A, CUNHA T M, POOLE S, et al. Cytokine inhibitors and pain control[J]. Revista Brasileira de Reumatologia, 2007, 47(5): 341-353.
[94] SALVEMINI D, LITTLE J W, DOYLE T, et al. Roles of reactive oxygen and nitrogen species in pain[J]. Free Radical Biology and Medicine, 2011, 51(5): 951-966.
[95] PEREIRA F C, PARISI J R, MAGLIONI C B, et al. Antinociceptive effects of low-level laser therapy at 3 and 8 J/cm2 in a rat model of postoperative pain: possible role of endogenous opioids[J]. Lasers in Surgery and Medicine, 2017, 49(9): 844-851.
[96] KAWABATA A. Prostaglandin E2 and pain: an update[J]. Biological and Pharmaceutical Bulletin, 2011, 34(8): 1170-1173.
[97] CHIA Y Y, LIU C C, FENG G M, et al. The antinociceptive effect of light-emitting diode irradiation on incised wounds is correlated with changes in cyclooxygenase 2 activity, prostaglandin E2, and proinflammatory cytokines[J]. Pain Research and Management, 2017, 2017: 4792489.
[98] DE PAIVA CARVALHO R L, LEAL-JUNIOR E C P, PETRELLIS M C, et al. Effects of low-level laser therapy (LLLT) and diclofenac (topical and intramuscular) as single and combined therapy in experimental model of controlled muscle strain in rats[J]. Photochemistry and Photobiology, 2013, 89(2): 508-512.
[99] KULKARNI S, GEORGE R, LOVE R, et al. Effectiveness of photobiomodulation in reducing pain and producing dental analgesia: a systematic review[J]. Lasers in Medical Science, 2022, 37(7): 3011-3019.
[100] PIGATTO G R, SILVA C S, PARIZOTTO N A. Photobiomodulation therapy reduces acute pain and inflammation in mice[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 196: 111513.
[101] REUTER S, GUPTA S C, CHATURVEDI M M, et al. Oxidative stress, inflammation, and cancer: how are they linked?[J]. Free Radical Biology and Medicine, 2010, 49(11): 1603-1616.
[102] SPILLER F, FORMIGA R O, DA SILVA COIMBRA J F, et al. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain[J]. Nitric Oxide, 2019, 89: 32-40.
[103] SCHMIDTKO A, TEGEDER I, GEISSLINGER G. No no, no pain? the role of nitric oxide and cGMP in spinal pain processing[J]. Trends in Neurosciences, 2009, 32(6): 339-346.
[104] MORIYAMA Y, MORIYAMA E H, BLACKMORE K, et al. In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging[J]. Photochemistry and Photobiology, 2005, 81(6): 1351-1355.
[105] MORIYAMA Y, NGUYEN J, AKENS M, et al. In vivo effects of low level laser therapy on inducible nitric oxide synthase[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2009, 41(3): 227-231.
[106] GOMES L E A, DALMARCO E M, ANDR? E S. The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model[J]. Photomedicine and Laser Surgery, 2012, 30(11): 642-647.
[107] SONG S, ZHANG Y, FONG C C, et al. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light[J]. Journal of Investigative Dermatology, 2003, 120(5): 849-857.
[108] ROHRINGER S, HOLNTHONER W, CHAUDARY S, et al. The impact of wavelengths of LED light-therapy on endothelial cells[J]. Scientific Reports, 2017, 7(1): 10700.
[109] OPEL D R, HAGSTROM E, PACE A K, et al. Light-emitting diodes: a brief review and clinical experience[J]. The Journal of Clinical and Aesthetic Dermatology, 2015, 8(6): 36-44.
[110] VINCK E M, CAGNIE B J, CORNELISSEN M J, et al. Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level[J]. Photomedicine and Laser Therapy, 2005, 23(2): 167-171.
[111] MIN P K, GOO B L. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study[J]. Laser Therapy, 2013, 22(1): 43-49.
[112] SIKORA M, V?EV A, SIBER S, et al. The efficacy of low-level laser therapy in burning mouth syndrome: a pilot study[J]. Acta Clinica Croatica, 2018, 57(2): 312-315.
[113] BAROLET D. Light-emitting diodes (LEDs) in dermatology[J]. Seminars in Cutaneous Medicine and Surgery, 2008, 27(4): 227-238.
[114] DELLA SANTA G M L, FERREIRA M C, MACHADO T P G, et al. Effects of photobiomodulation therapy (LED 630 nm) on muscle and nerve histomorphometry after axonotmesis[J]. Photochemistry and Photobiology, 2021, 97(5): 1116-1122.
[115] MILORO M, HALKIAS L E, MALLERY S, et al. Low-level laser effect on neural regeneration in Gore-Tex tubes[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2002, 93(1): 27-34.
[116] SCARDINA G A, CASELLA S, BILELLO G, et al. Photobiomodulation therapy in the management of burning mouth syndrome: morphological variations in the capillary bed[J]. Dentistry Journal (Basel), 2020, 8(3): 99.
[117] CASTANO A P, DAI T, YAROSLAVSKY I, et al. Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2007, 39(6): 543-550.
[118] HAXSEN V, SCHIKORA D, SOMMER U, et al. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures[J]. Lasers in Medical Science, 2008, 23(4): 381-384.
[119] LANZAFAME R J, STADLER I, KURTZ A F, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model[J]. Lasers in Surgery and Medicine: the Official Journal of the American Society for Laser Medicine and Surgery, 2007, 39(6): 534-542.
[120] HUANG Y Y, CHEN A C H, CARROLL J D, et al. Biphasic dose response in low level light therapy[J]. Dose Response, 2009, 7(4): 358-383.
[121] HUANG Y Y, SHARMA S K, CARROLL J, et al. Biphasic dose response in low level light therapy: an update[J]. Dose Response, 2011, 9(4): 602-618.
[122] GAGNON D, GIBSON T W, SINGH A, et al. An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model[J]. BMC Veterinary Research, 2016, 12(1): 1-10.
[123] HAN M, FANG H, LI Q L, et al. Effectiveness of laser therapy in the management of recurrent aphthous stomatitis: a systematic review[J]. Scientifica (Cairo), 2016, 2016: 9062430.
[124] ALBREKTSON M, HEDSTROM L, BERGH H. Recurrent aphthous stomatitis and pain management with low-level laser therapy: a randomized controlled trial[J]. Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 2014, 117(5): 590-594.
[125] JIJIN M J, RAKARADDI M, PAI J, et al. Low-level laser therapy versus 5% amlexanox: a comparison of treatment effects in a cohort of patients with minor aphthous ulcers[J]. Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 2016, 121(3): 269-273.
[126] CAFARO A, ARDUINO P G, MASSOLINI G, et al. Clinical evaluation of the efficiency of low-level laser therapy for oral lichen planus: a prospective case series[J]. Lasers in Medical Science, 2014, 29(1): 185-90.
[127] DE CARVALHO R R, DE PAULA EDUARDO F, RAMALHO K M, et al. Effect of laser phototherapy on recurring herpes labialis prevention: an in vivo study[J]. Lasers in Medical Science, 2010, 25(3): 397-402.
[128] LIU Y Y, WONG-RILEY M T, LIU H L, et al. Increase in cytochrome oxidase activity in regenerating nerve fibers of hemitransected spinal cord in the rat[J]. Neuroreport, 2001, 12(15): 3239-3242.
[129] LU C, ZHOU F, WU S, et al. Phototherapy-induced antitumor immunity: long-term tumor suppression effects via photoinactivation of respiratory chain oxidase-triggered superoxide anion burst[J]. Antioxidants & Redox Signaling, 2016, 24(5): 249-262.
[130] FRIGO L, LUPPI J S, FAVERO G M, et al. The effect of low-level laser irradiation (In-Ga-Al-AsP-660 nm) on melanoma in vitro and in vivo[J]. BMC Cancer, 2009, 20(9): 1-8.
[131] SCHARTINGER V H, GALVAN O, RIECHELMANN H, et al. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy[J]. Support Care Cancer, 2012, 20(3): 523-529.
[132] MURAYAMA H, SADAKANE K, YAMANOHA B, et al. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro[J]. Lasers in Medical Science, 2012, 27(1): 87-93.
[133] ZECHA J A, RABER-DURLACHER J E, NAIR R G, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part2: mechanisms of action, dosimetric, and safety considerations[J]. Supportive Care in Cancer, 2016, 24(6): 2781-2792.
[134] SPERANDIO F F, GIUDICE F S, CORR?A L, et al. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway[J]. Journal of Biophotonics, 2013, 6(10): 839-847.
[135] HENRIQUES ? C G, GINANI F, OLIVEIRA R M, et al. Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells[J]. Lasers in Medical Science, 2014, 29(4): 1385-1395.
[136] KLAUSNER G, BENSADOUN R J, CHAMPION A, et al. State of art of photobiomodulation in the management of radiotherapy adverse events: indications and level of evidence[J]. Cancer Radiother, 2021, 25(6/7): 584-592.
[137] KHAN I, TANG E, ARANY P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress[J]. Scientific Reports, 2015, 5(1): 1-14.
[138] KUJAWA J, ZAVODNIK I B, LAPSHINA A, et al. Cell survival, DNA, and protein damage in B14 cells under low-intensity near-infrared (810 nm) laser irradiation[J]. Photomedicine and Laser Therapy, 2004, 22(6): 504-508.
[139] HAWKINS D H, ABRAHAMSE H. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation[J]. Lasers in Surgery and Medicine, 2006, 38(1): 74-83.
[140] NIE F, HAO S, JI Y, et al. Biphasic dose response in the anti-inflammation experiment of PBM[J]. Lasers in Medical Science, 2023, 38(1): 66.