摘" 要:動(dòng)力機(jī)械作為艦船心臟,其安全穩(wěn)定運(yùn)行對航行安全影響極大,而船舶在航行時(shí)受到的牽連運(yùn)動(dòng)會(huì)對船用旋轉(zhuǎn)機(jī)械系統(tǒng)的振動(dòng)產(chǎn)生重要影響,因此研究垂蕩作用下的船用旋轉(zhuǎn)機(jī)械的動(dòng)力學(xué)特性及其振動(dòng)控制具有重要的理論及工程意義。為了研究船用旋轉(zhuǎn)機(jī)械耦合氣囊浮筏系統(tǒng)在垂蕩運(yùn)動(dòng)以及噪聲激勵(lì)共同作用下的非線性隨機(jī)振動(dòng)特性,首先,將氣囊?;癁槿畏蔷€性彈簧和線性阻尼器,旋轉(zhuǎn)機(jī)械和浮筏之間簡化為線性彈簧和線性阻尼器;然后,引入了高斯白噪聲作為隨機(jī)激勵(lì),建立了系統(tǒng)在垂蕩運(yùn)動(dòng)下的隨機(jī)動(dòng)力學(xué)模型。最后,采用數(shù)值分析方法分析了該系統(tǒng)的隨機(jī)振動(dòng)特性,并與確定性系統(tǒng)的仿真結(jié)果進(jìn)行了比較。結(jié)果表明:當(dāng)轉(zhuǎn)子轉(zhuǎn)速較低時(shí),隨機(jī)系統(tǒng)和確定性系統(tǒng)的振幅相差較小,但隨著轉(zhuǎn)速的增加,二者振動(dòng)幅值相差逐漸增大;當(dāng)轉(zhuǎn)子處于高轉(zhuǎn)速時(shí),旋轉(zhuǎn)機(jī)械與浮筏的質(zhì)量比對系統(tǒng)振幅的影響較大;除此之外,噪聲激勵(lì)對隨機(jī)系統(tǒng)動(dòng)力學(xué)特性的影響也隨著轉(zhuǎn)子轉(zhuǎn)速的升高而不斷增大。
研究成果為垂蕩運(yùn)動(dòng)下船用旋轉(zhuǎn)機(jī)械系統(tǒng)的隨機(jī)振動(dòng)設(shè)計(jì)、動(dòng)力學(xué)分析提供了理論依據(jù)和分析方法。
關(guān)鍵詞:垂蕩運(yùn)動(dòng);船用旋轉(zhuǎn)機(jī)械;氣囊;高斯白噪聲;隨機(jī)振動(dòng)
中圖分類號:O 322
文獻(xiàn)標(biāo)志碼:A
文章編號:1672-9315(2024)06-1218-10
DOI:10.13800/j.cnki.xakjdxxb.2024.0619開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
收稿日期:
2024-03-15
基金項(xiàng)目:
國家自然科學(xué)基金項(xiàng)目(11972282)
通信作者:
李明,男,江蘇蘇州人,教授,博士生導(dǎo)師,E-mail:limxust@xust.edu.cn
Random vibration characteristics of marine rotating
machinery systems under heave motion
ZHU Leilei,LI Ming
(College of" Sciences,Xi’an University of Science and Technology,Xi’an 710054,China)
Abstract:As the heart of ships,the safe and stable operation of power machinery has a great impact on navigation safety.
The implicated motion during navigation can have a significant impact on the vibration of marine rotating machinery systems.Therefore,studying the dynamic characteristics and vibration control of marine rotating machinery under heave motion
is of great significance.This paper mainly discussed the nonlinear random vibration characteristics of a marine rotating machinery coupled airbag floating raft system under the combined action of heave motion and noise excitation.The airbag was modeled as a cubic nonlinear spring and a linear damper,and two linear springs and a linear damper were used to connect the rotating machinery and the floating raft.Then,
Gaussian White Noise was introduced as a random excitation,and a stochastic dynamic model of the system under heave motion was established.Finally,the random vibration characteristics of the system were analyzed using numerical analysis methods and compared with the simulation results of deterministic systems.
The results show that:When the rotor speed is low,the amplitude difference between the random system and the deterministic system is small,but as the speed increases,the difference in vibration amplitude between the two increases;When the rotor is at high speed,the mass ratio of rotating machinery to floating raft has a greater impact on the amplitude of the system; In addition,the impact of noise excitation on the dynamic characteristics of stochastic systems also increases with the increase of rotor speed.The research results provide theoretical basis and analysis methods for the random vibration design and dynamic analysis of ship rotating mechanical systems in heave motion.
Key words:heave motion;harine rotating machinery;airbag;Gaussian White Noise;random vibration
0" 引 "言
大型船舶的動(dòng)力設(shè)備和傳動(dòng)系統(tǒng)的強(qiáng)烈振動(dòng)會(huì)造成重要部件的損壞和基礎(chǔ)零部件的磨損等。例如,某型潛艇曾發(fā)生柴油發(fā)電機(jī)組不對中及超常振動(dòng)引起的聯(lián)軸器損壞情況[1]。另外,超常的振動(dòng)引起的噪聲也非常不利于艦船尤其是水下潛艇的隱身和安全。因此研究垂蕩運(yùn)動(dòng)下船用旋轉(zhuǎn)機(jī)械的振動(dòng)對于艦船的安全航行具有重要意義。
船舶在航行過程中會(huì)經(jīng)歷各種不同類型的振動(dòng),包括周期性振動(dòng)和隨機(jī)振動(dòng)。隨機(jī)振動(dòng)是指振動(dòng)幅度和頻率難以準(zhǔn)確預(yù)測的情況,這種振動(dòng)可能會(huì)對船舶的安全性產(chǎn)生負(fù)面影響,所以有必要研究船舶在海上行駛時(shí)的隨機(jī)振動(dòng)特性[2-6]。王海芳等建立了錐閥閥芯的兩種工作狀態(tài)的振動(dòng)可靠性功能函數(shù),基于此可靠性功能函數(shù),應(yīng)用蒙特卡洛法對液壓閥閥芯振動(dòng)時(shí)的失效概率與變異系數(shù)進(jìn)行估算,并分析了估算的過程[7];邢堯等將Gibbs采樣與子集模擬法相結(jié)合,并應(yīng)用于衛(wèi)星碰撞概率計(jì)算中,通過選取合適的中間失效事件,將碰撞概率轉(zhuǎn)換為一系列較大的中間失效事件條件概率的乘積,同時(shí)使用Gibbs抽樣方法生成失效域內(nèi)的樣本,降低計(jì)算所需樣本數(shù),并驗(yàn)證了子集模擬法的可行性和高效性[8];邵龍等提出了一種半定子環(huán)徑向永磁軸承替代托輪的離心制管機(jī)永磁懸浮支承系統(tǒng)方案,根據(jù)等效磁荷法建立懸浮力數(shù)學(xué)模型,采用蒙特卡洛法近似求解,簡化了懸浮力計(jì)算的數(shù)學(xué)推導(dǎo)和演算,并與有限元仿真比較,給出了誤差修正系數(shù)[9];
鄧飛躍等運(yùn)用Solidworks和ADAMS建立了軸箱軸承內(nèi)圈剝離故障動(dòng)力學(xué)模型,并與試驗(yàn)進(jìn)行對比,驗(yàn)證了模型的準(zhǔn)確性,結(jié)果顯示軸箱軸承故障側(cè)的滾子與內(nèi)圈接觸載荷大于非故障側(cè)與正常軸承,故障側(cè)保持架的振動(dòng)大于非故障側(cè)與正常軸承[10];
WU等主要分析了諧波和混合效應(yīng)下強(qiáng)非線性振蕩器的隨機(jī)平均和寬帶噪聲激勵(lì),采用有限差分法和連續(xù)超松弛法相結(jié)合來求解簡化的平均FPK方程,發(fā)現(xiàn)隨機(jī)跳躍本質(zhì)上是從一個(gè)可能的運(yùn)動(dòng)到另一種運(yùn)動(dòng)的轉(zhuǎn)變,反之亦然,并且它與雙峰聯(lián)合概率密度有關(guān)[11];
KOVACIC等研究了同時(shí)具有恒定和諧波激勵(lì)的非線性振蕩系統(tǒng)的主共振響應(yīng),其相應(yīng)的運(yùn)動(dòng)方程為不存在線性項(xiàng)的非線性Duffing方程,并且系統(tǒng)具有增強(qiáng)的非線性性質(zhì)[12];WEIQIU等則給出了Duffing振子在窄帶高斯隨機(jī)激勵(lì)下的位移、速度和振幅的概率密度以及穩(wěn)態(tài)響應(yīng)中位移和速度的聯(lián)合概率密度,在此基礎(chǔ)上,進(jìn)一步研究了系統(tǒng)的隨機(jī)跳變和分岔現(xiàn)象[13]。
船舶隔振元件對船舶的安全性至關(guān)重要。首先,船舶在海上航行會(huì)受到風(fēng)和浪的影響,船體中的設(shè)備振動(dòng)可能會(huì)受到疲勞并最終損壞;其次,船舶上過大的振動(dòng)會(huì)對船員和乘客的安全構(gòu)成威脅,隔振元件則可以減小振動(dòng)[14-16]。而作為一種性能優(yōu)良的隔振元件,氣囊主要是利用空氣壓縮的非線性剛度以及阻尼特性來隔離振動(dòng)和緩沖。除此之外,氣囊隔振器也因其具有非線性、剛度可變、穩(wěn)定性高以及隔振性能好而被應(yīng)用于船舶制造業(yè)中,因此有關(guān)氣囊浮筏的性能研究也逐漸增多
[17-20〗。
付團(tuán)偉等運(yùn)用有限元方法建立多點(diǎn)彈性支承船舶軸系的力學(xué)模型,并將該方法應(yīng)用到船舶軸系的校中計(jì)算中。通過實(shí)例分析表明,在多點(diǎn)彈性支承下,螺旋槳軸承支承點(diǎn)的位置到螺旋槳的距離略大于單點(diǎn)剛性支承,且在螺旋槳軸承后端點(diǎn)處的支反力最大[21〗;
NIU等提出了一個(gè)浮筏系統(tǒng)的主動(dòng)-被動(dòng)聯(lián)合管理模型,推導(dǎo)了復(fù)雜平板浮筏隔離系統(tǒng)中各種多單元子系統(tǒng)和干擾源的輸入矩陣表達(dá)式,實(shí)現(xiàn)了隔離主動(dòng)和被動(dòng)控制的綜合數(shù)學(xué)描述[22];肖程詩等以船用式柴油風(fēng)力發(fā)電設(shè)備為主要研究對象,通過比較氣囊式隔振器與橡膠式隔振器的優(yōu)點(diǎn),給出4個(gè)浮筏隔振器方案,并運(yùn)用ANSYS有限元軟件,對這4個(gè)方案進(jìn)行了模擬與解析,并通過振級落差法對各方案的隔振特性進(jìn)行了評價(jià)[23]。
作為旋轉(zhuǎn)機(jī)械的傳動(dòng)核心,船用旋轉(zhuǎn)機(jī)械扮演著至關(guān)重要的角色,目前針對轉(zhuǎn)子-軸承耦合氣囊-浮筏系統(tǒng)也有著廣泛應(yīng)用和研究
[24-26]。例如,謝旋主要研究了橫搖運(yùn)動(dòng)是如何影響到氣囊-浮筏耦合的船舶轉(zhuǎn)子系統(tǒng),并構(gòu)建了一個(gè)包含橫搖和非線性油膜力的動(dòng)態(tài)模型,特別強(qiáng)調(diào)了轉(zhuǎn)子速度和橫搖幅度變動(dòng)對于該系統(tǒng)動(dòng)力特性產(chǎn)生的影響[27];而王軍偉通過應(yīng)用短軸承原理來創(chuàng)建這個(gè)系統(tǒng)的數(shù)學(xué)模型,然后利用數(shù)值技術(shù)去解析其動(dòng)力學(xué)的表現(xiàn),探索了轉(zhuǎn)子速度、橫蕩幅度和頻率的變化是如何影響著系統(tǒng)非線性動(dòng)力特性[28];除此之外,杜曉蕾等使用多尺度的方法探討了垂蕩刺激下的旋轉(zhuǎn)機(jī)器-氣囊隔振系統(tǒng)中的非線性振動(dòng)機(jī)制及其振動(dòng)特點(diǎn),揭示了這些系統(tǒng)參數(shù)之間存在的內(nèi)在關(guān)系,這有助于為其動(dòng)力學(xué)的設(shè)計(jì)和參數(shù)優(yōu)化提供理論支持[29]。但是相對于傳統(tǒng)的船用旋轉(zhuǎn)機(jī)械系統(tǒng)動(dòng)力學(xué)問題,牽連運(yùn)動(dòng)下船用旋轉(zhuǎn)機(jī)械系統(tǒng)隨機(jī)動(dòng)力學(xué)的研究工作相對較少,而這方面的研究對于提高艦船的穩(wěn)定性以及安全性具有重要意義。
1" 垂蕩作用下系統(tǒng)的運(yùn)動(dòng)方程
圖1所示為船舶垂蕩運(yùn)動(dòng)下旋轉(zhuǎn)機(jī)械耦合氣囊浮筏系統(tǒng)的結(jié)構(gòu)模型,其中轉(zhuǎn)子與浮筏之間用2個(gè)線性彈簧和一個(gè)線性阻尼器進(jìn)行連接,氣囊被?;癁榉蔷€性彈簧和線性阻尼器。設(shè)轉(zhuǎn)子系統(tǒng)質(zhì)量為m1,浮筏的質(zhì)量為m2,質(zhì)量不均的轉(zhuǎn)子偏心質(zhì)量為me,ω為轉(zhuǎn)子角速度,e為轉(zhuǎn)子的偏心距,x1為轉(zhuǎn)子的向上運(yùn)動(dòng)位移,x2為浮筏的向上運(yùn)動(dòng)位移,f1為轉(zhuǎn)子與浮筏之間油膜力阻尼器的阻尼系數(shù),f2為氣囊浮筏系統(tǒng)的阻尼器阻尼系數(shù),由垂蕩引起的運(yùn)動(dòng)為x0。
氣囊剛度具有非線性的特性,文中引
入具有3次非線性的彈性力來替代氣囊彈性力[30-33]。
根據(jù)牛頓第二運(yùn)動(dòng)定律可得
m11+m10
=-k1(x1-x2)-f1(1-2)
+
meeω2sinωt+m1g
m22+m20
=-(k2x2+εk2x32)-f22
-
k1(x2-x1)-f1(2-1)+m2g
(1)
為了使問題具有更為廣泛的應(yīng)用性,對方程進(jìn)行了無量綱化處理,使問題變得較為簡單,無量綱化參數(shù)見表1。
文中引入特征長度c來進(jìn)行垂蕩激勵(lì)下船用旋轉(zhuǎn)機(jī)械系統(tǒng)的運(yùn)動(dòng)微分方程無量綱化處理,在處理的過程中,規(guī)定:
=dx/dt
,X′=dX/dτ,X0′=dX0/dτ,代入方程(1)中可得
mem
eω2sinτ+g-cω2
0″=cω2
1″+
k1(X1c-X2c)m1
+
f1(cωX1′-cωX2′)
m1
g+cω20″=cω2
X2″+
k2cX2+εc3k3X32
m2+f2m2cωX2′
+
k1m2
(cX2-cX1)+
f1m2(cωX2′-cωX1′)
(2)
經(jīng)處理可得
X1″+
1(X1-X2)
Ω02
+1(X1′-
X2′)=hαsinτ+
1Ω02
-
0″
1Ω02
-0″
=X2″+
2X2+ε3X32
Ω02
+2X2′
+
1
ζΩ02
(X2-X1)
+
1
ζ(X2′-X1′)
(3)
由于船體發(fā)生垂蕩運(yùn)動(dòng),假設(shè):
x0=A0sinωzt
,則
0=
x0c=
A0csinωzt
=
A0csin
ωtη
=
A0csin
τη
(4)
0″=-
A0cη2sin
τη
=-η2
sin
τη
(5)
無量綱化后的運(yùn)動(dòng)微分方程為
hαsinτ+
1Ω02
+
η2
sin
τη
=
X1″+
1(X1-X2)
Ω02
+1(X1′-X2′)
1Ω02
+
η2
sin
τη
=
X2″+
2X2-ε3X32
Ω02
+2X2′
+k1ζ
Ω02(X2-X1)
+
1ζ
(X2′-X1′)
(6)
但一般來說,實(shí)際工程上α與
相對于
η2
是小量,所以令α=εα0,
2=εμ2,
1=εμ1。為了簡單化問題,文中令
ω12=
1
Ω02
,
ω22=
2
Ω02
,
Ft=
1
η2
,
b=
3
Ω02
。最后得到系統(tǒng)的無量綱方程
εhα0sinτ+
1Ω02
+Ftsin
τη
=
X1″+ω12(X1-X2)
+εμ1(X1′-X2′)
1Ω02
+Ftsin
τη
=
X2″+ω22X2+εbX23+εμ2X2′
+
ω12
ζ(X2-X1)+
εμ1ζ
(X2′-X1′)
(7)
2" 隨機(jī)系統(tǒng)動(dòng)力學(xué)模型及響應(yīng)分析
高斯白噪聲是隨機(jī)激勵(lì)一種主要的表現(xiàn)形式,且其具有很多優(yōu)良的性質(zhì),可以極大地簡化計(jì)算過程,它通常定義為Wiener過程的形式導(dǎo)數(shù)如下
W(t)
=dξ(t)
dt
,t≥0
(8)
式中" ξ(t)為Wiener過程;W(t)為高斯白噪聲。因此隨機(jī)激勵(lì)建模為高斯白噪聲激勵(lì)的形式,其標(biāo)準(zhǔn)化的運(yùn)動(dòng)方程為
εhα0sinτ+
1Ω02
+Ftsin
τη
+W(t)=
X1″+ω12(X1-X2)
+εμ1(X1′-X2′)
1Ω02
+Ftsin
τη
=
X2″+ω22X2+εbX23+εμ2X2′
+
ω12
ζ(X2-X1)+
εμ1ζ
(X2′-X1′)
(9)
W(t)是零均值相關(guān)高斯白噪聲,其相關(guān)函數(shù)為
E[wi(t)]=0
E[wi(t)wj(t+τ)]=
σ2(τ),i≠j
0,i=j
(10)
式中" σ為隨機(jī)噪聲激勵(lì)的強(qiáng)度。
考慮到氣囊隔振器具有非線性的特性,所以采用龍格庫塔法對式(9)進(jìn)行數(shù)值求解并與確定性系統(tǒng)的響應(yīng)進(jìn)行了比較。
旋轉(zhuǎn)機(jī)械耦合氣囊浮筏系統(tǒng)的無量綱取值為:ε=0.01、α0=0.1、h=0.1、
ζ=100、A=1 200、1=10、2=20、
3=100、μ1=0.5、μ2=0.03。其中,轉(zhuǎn)子轉(zhuǎn)速和質(zhì)量比是實(shí)際工程中最為重要的參數(shù),因此主要研究了轉(zhuǎn)子轉(zhuǎn)速和質(zhì)量比對于系統(tǒng)動(dòng)力學(xué)特性的影響。
2.1
轉(zhuǎn)子轉(zhuǎn)速變化對垂蕩作用下系統(tǒng)動(dòng)力學(xué)特性的影響
圖2展示了當(dāng)轉(zhuǎn)子轉(zhuǎn)速為0.5時(shí),確定性系統(tǒng)與隨機(jī)系統(tǒng)的動(dòng)力學(xué)響應(yīng)對比。從圖2(a)可以看出,此時(shí)隨機(jī)系統(tǒng)的振動(dòng)位移大于確定性系統(tǒng)的振動(dòng)位移,且隨機(jī)系統(tǒng)的時(shí)域響應(yīng)表現(xiàn)為多頻特性,其對應(yīng)的頻譜圖則呈現(xiàn)為一條連續(xù)譜;在圖2(c)和圖2(d)中,可明顯看到隨機(jī)系統(tǒng)的振動(dòng)速度大于確定性系統(tǒng)的振動(dòng)速度;此外,確定性系統(tǒng)的龐加萊截面為一系列的點(diǎn)圍成一個(gè)近似“橢圓”的形狀,其頻譜圖中只存在垂蕩運(yùn)動(dòng)的分頻f0和工頻f,且垂蕩分頻f0遠(yuǎn)大于工頻f。由此可見,確定性系統(tǒng)受垂蕩慣性力和不平衡慣性力的共同影響,其運(yùn)動(dòng)表現(xiàn)為準(zhǔn)周期振動(dòng)。
圖3為轉(zhuǎn)子轉(zhuǎn)速為1.5時(shí),確定性系統(tǒng)和隨機(jī)系統(tǒng)的動(dòng)力學(xué)響應(yīng)對比。從圖3(a)和圖3(b)中可以看出,此時(shí)確定性系統(tǒng)和隨機(jī)系統(tǒng)的振動(dòng)位移相差較轉(zhuǎn)子轉(zhuǎn)速為0.5時(shí)明顯增大,初步說明,隨著轉(zhuǎn)子轉(zhuǎn)速的增加,兩系統(tǒng)的振動(dòng)幅值越來越大;圖3(c)和圖3(d)中,同樣能明顯看出隨機(jī)系統(tǒng)和確定性系統(tǒng)之間的振動(dòng)速度也越來越大;確定性系統(tǒng)的龐加萊截面則是由一系列的點(diǎn)圍成一個(gè)近似“橢圓”和“圓柱”的形狀,它的頻譜響應(yīng)中不僅存在垂蕩運(yùn)動(dòng)產(chǎn)生的分頻f0以及工頻f。除此之外,存在組合頻率6(f+f0)且組合頻率占主要成分,說明此時(shí)確定性系統(tǒng)的運(yùn)動(dòng)狀態(tài)開始由準(zhǔn)周期狀態(tài)向混沌狀態(tài)轉(zhuǎn)變;隨機(jī)系統(tǒng)的時(shí)域響應(yīng)
仍表現(xiàn)出多頻特性,其對應(yīng)的頻譜圖為一條連續(xù)譜。
圖4為轉(zhuǎn)子轉(zhuǎn)速為3.8時(shí),確定性系統(tǒng)和隨機(jī)系統(tǒng)的動(dòng)力學(xué)響應(yīng)對比,隨著轉(zhuǎn)子轉(zhuǎn)速的繼續(xù)升高,兩系統(tǒng)之間的振幅進(jìn)一步增大,隨機(jī)系統(tǒng)的時(shí)域響應(yīng)中位移隨時(shí)間變化沒有規(guī)律且峰值變化波動(dòng)很大,對應(yīng)頻譜圖是連續(xù)譜;確定性系統(tǒng)的轉(zhuǎn)子頻域響應(yīng)中不僅存在垂蕩分頻f0以及工頻f,除此之外還存在組合頻率2.5(f+f0),且垂蕩運(yùn)動(dòng)的分頻和工頻占主要成分,浮筏頻域響應(yīng)中組合頻率2.5(f+f0)和垂蕩分頻占比大,工頻f次之,同時(shí)存在組合頻率7(f+f0)。由此可見,系統(tǒng)受不平衡慣性力的影響也隨轉(zhuǎn)子轉(zhuǎn)速的升高而變大,此時(shí)確定性系統(tǒng)處于混沌運(yùn)動(dòng)狀態(tài)。
2.2" 質(zhì)量比對系統(tǒng)振動(dòng)幅值的影響
圖5給出了不同轉(zhuǎn)子轉(zhuǎn)速下系統(tǒng)振動(dòng)幅值隨系統(tǒng)質(zhì)量比的變化曲線。從圖5中可以看出,不同轉(zhuǎn)子轉(zhuǎn)速下,質(zhì)量比對系統(tǒng)動(dòng)力學(xué)響應(yīng)的影響是不一樣的。無論是轉(zhuǎn)子還是浮筏,在低轉(zhuǎn)速時(shí),質(zhì)量比的變化對系統(tǒng)的影響較小,隨著轉(zhuǎn)子轉(zhuǎn)速的不斷升高,質(zhì)量比的變化對振幅的影響也越來越明顯。此外,還發(fā)現(xiàn)由于高斯白噪聲激勵(lì)的存在,在處于高轉(zhuǎn)速時(shí)系統(tǒng)的振動(dòng)幅值隨質(zhì)量比變化有較大波動(dòng),隨機(jī)激勵(lì)對系統(tǒng)的影響隨著轉(zhuǎn)子轉(zhuǎn)速的不斷升高而增大。
3" 結(jié)" 論
1)垂蕩作用下的旋轉(zhuǎn)機(jī)械耦合氣囊隔振系統(tǒng),當(dāng)系統(tǒng)轉(zhuǎn)子處于低轉(zhuǎn)速時(shí),隨機(jī)系統(tǒng)與確定性系統(tǒng)的振動(dòng)幅值差異相對較小,但是隨著轉(zhuǎn)子速度的增加,兩系統(tǒng)之間的幅值相差也不斷地增大。
2)在低轉(zhuǎn)速時(shí),質(zhì)量比對系統(tǒng)的振動(dòng)幅值的影響較小,隨著轉(zhuǎn)子轉(zhuǎn)速的增大,質(zhì)量比對振動(dòng)幅值的影響也越來越大;此外,轉(zhuǎn)子轉(zhuǎn)速越高,噪聲激勵(lì)對隨機(jī)系統(tǒng)的影響越大。
參考文獻(xiàn)(References):
[1]" 韓利昆,朱旭聰,趙剛棟.某潛艇柴油發(fā)電機(jī)組聯(lián)軸器斷裂原因分析[J].中國修船,2009,22(2):19-21.
HAN Likun,ZHU Xucong,ZHAO Gangdong.Analysis to shaft coupling broken in diesel engine power set of submarine[J].China Shiprepair,2009,22(2):19-21.
[2]蘇帥帥.隨機(jī)載荷作用下某動(dòng)車車體振動(dòng)疲勞性能分析[D].大連:大連交通大學(xué),2022.
SU Shuaishuai.Fatigue performance analysis of a bullet train body with random load[D].Dalian:Dalian Jiaotong University,2022.
[3]余志武,談遂,毛建鋒.基于車橋耦合隨機(jī)振動(dòng)的橋梁動(dòng)力安全性分析[J].鐵道工程學(xué)報(bào),2016,33(9):55-61,112.
YU Zhiwu,TAN Sui,MAO Jianfeng.Safety analysis of the bridge dynamic performance based on train-bridge coupling random vibration[J].Journal of Railway Engineering Society,2016,33(9):55-61,112.
[4]王曉偉,徐映霞.CMG中角接觸球軸承在隨機(jī)振動(dòng)下的安全性分析[J].空間控制技術(shù)與應(yīng)用,2009,35(2):29-34.
WANG Xiaowei,XU Yingxia.Safety analysis of angular contact ball bearing in CMG under random vibration[J].Aerospace Control and Application,2009,35(2):29-34.
[5]李佳萌,陳少華,康謙澤.基于神經(jīng)網(wǎng)絡(luò)和隨機(jī)森林的船舶橫搖預(yù)測[J].艦船科學(xué)技術(shù),2022,44(9):75-78.
LI Jiameng,CHEN Shaohua,KANG Qianze.Research on ship roll prediction based on neural network and random forest[J].Ship Science and Technology,2022,44(9):75-78.
[6]吳浩,高志亮,蘇焱.規(guī)則和隨機(jī)橫浪中破損船舶運(yùn)動(dòng)響應(yīng)研究[J].武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),2020,44(3):500-505.
WU Hao,GAO Zhiliang,SU Yan.Research on the motion response of damaged ships in regular and random beam seas[J].Journal of Wuhan University of Technology(Transportation Science amp; Engineering),2020,44(3):500-505.
[7]王海芳,任明,王晨煒,等.單向閥閥芯的振動(dòng)可靠性分析[J].中國工程機(jī)械學(xué)報(bào),2019,17(1):85-89,94.
WANG Haifang,REN Ming,WANG Chenwei.et al.Vibration reliability analysis of the check valve spool[J].Chinese Journal of Construction Machinery,2019,17(1):85-89,94.
[8]邢堯,余紅英,樊永生.基于子集模擬法的衛(wèi)星碰撞風(fēng)險(xiǎn)評估研究[J].中北大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,44(5):544-549.
XING Yao,YU Hongying,F(xiàn)AN Yongsheng.Research on satellite collision risk assessment based on subset simulation method[J].Journal of North University of China(Natural Science Edition),2023,44(5):544-549.
[9]邵龍,徐曼曼,王向東,等.離心制管機(jī)永磁軸承磁力計(jì)算與拼接永磁體形狀分析[J].軸承,2024(1):56-61.
SHAO Long,XU Manman,WANG Xiangdong,et al.Magnetic force calculation and spliced permanent magnet shape analysis of permanent magnet bearings for centrifugal pipe-making machine[J].Bearing,2024(1):56-61.
[10]
鄧飛躍,王紅力,高瑞洋,等.輪軌激勵(lì)條件下軸箱軸承內(nèi)圈故障振動(dòng)特性分析[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,43(6):561-570.
DENG Feiyue,WANG Hongli,GAO Ruiyang,et al.Vibration characteristics analysis of the inner race fault of axlebox bearing under wheel-rail excitation[J].Journal of Hebei University(Natural Science Edition),2023,43(6):561-570.
[11]WU Y J,ZHU W Q.Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide band noise excitations[J].Journal of Vibration amp; Acoustics,2008,130(5):3077-3100.
[12]KOVACIC I,MICHAEL J,BRENNAN,et al.On the re-sonance response of an asymmetric Duffing oscillator[J].International Journal of Non-Linear Mechanics,2008,43(9):858-867.
[13]WEIQIU Z,QITAI W,MINQING L.Stochastic jump and bifurcation of a duffing oscillator under narrow-band excitation[J].Acta Mechanica Sinica,1994,10(1):73-81.
[14]楊杰,朱如鵬,陳蔚芳,等.船用雙層殼體齒輪箱柔性動(dòng)力學(xué)建模及隔振性能分析研究[J].船舶力學(xué),2024,28(2):309-318.
YANG Jie,ZHU Rupeng,CHEN Weifang,et al.Flexible dynamic modeling and vibration isolation performance of marine double-layer gearbox casings[J].Journal of Ship Mechanics,2024,28(2):309-318.
[15]李步云,帥長庚,馬建國.低頻非線性浮筏隔振裝置設(shè)計(jì)及特性研究[J].振動(dòng)與沖擊,2024,43(3):86-92.
LI Buyun,SHUAI Changgeng,MA Jianguo.Design and characteristics of low-frequency nonlinear floating raft vibration isolation device[J].Journal of Vibration and Shock,2024,43(3):86-92.
[16]王小莉,彭肖陽,劉湘楠,等.防振橡膠材料疲勞壽命可靠性分布模型研究[J].機(jī)械強(qiáng)度,2022,44(6):1335-1342.
WANG Xiaoli,PENG Xiaoyang,LIU Xiangnan,et al.Study on reliability distribution models of fatigue life of anti-vibration rubber materials[J].Journal of Mechanical Strength,2022,44(6):1335-1342.
[17]吳金波,張松魁.氣囊支撐浮筏隔振系統(tǒng)姿態(tài)控制研究[J].艦船科學(xué)技術(shù),2016,38(17):49-53.
WU Jinbo,ZHANG Songkui.Research on attitude control of floating raft vibration-isolation system with air spring[J].Ship Science and Technology,2016,38(17):49-53.
[18]張樹楨.柔性浮筏隔振系統(tǒng)的建模與動(dòng)力學(xué)特性研究[D].南京:南京航空航天大學(xué),2015.
ZHANG Shuzhen.Modeling and dynamic property research on flexible floating raft isolation system[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
[19]秦文政,施亮.減小筏架變形的浮筏氣囊系統(tǒng)設(shè)計(jì)[J].艦船科學(xué)技術(shù),2021,43(5):41-45.
QIN Wenzheng,SHI Liang.Design of raft air spring system to reduce the deformation of raft[J].Ship Science and Technology,2021,43(5):41-45.
[20]LI X,ZHANG J.Stability analysis of floating raft system under multiexcitation condition[J].Journal of Vibroengineering,2020,22(2):267
-279.
[21]付團(tuán)偉,李明.多點(diǎn)彈性支承下船用螺旋槳軸承的受力與變形分析[J].西安科技大學(xué)學(xué)報(bào),2011,31(1):112-116.
FU Tuanwei,LI Ming.Force and deformation of ship’s propeller bearing on multi-points elastic support[J].Journal of Xi’an University of Science and Technology,2011,31(1):112-116.
[22]NIU J C,SONG K J,LIM C W.On active vibration isolation of floating raft system[J].Journal of Sound and Vibration,2004(1):391-406.
[23]肖程詩,吳紹維,王俊,等.大型船用柴油發(fā)電機(jī)組浮筏隔振系統(tǒng)設(shè)計(jì)與優(yōu)化[J].噪聲與振動(dòng)控制,2022,42(3):25-64.
XIAO Chengshi,WU Shaowei,WANG Jun,et al.Design and optimization of floating raft vibration isolation systems for large marine diesel generator sets[J].Noise and Vibration Control,2022,42(3):25-64.
[24]趙興乾,帥長庚,徐偉,等.船舶艉部整體隔振系統(tǒng)中軸承載荷增量研究[J].工程力學(xué),2019,36(S1):311-315.
ZHAO Xingqian,SHUAI Changgeng,XU Wei,et al.Research on bearings load-increment in integrated vibration isolation system of ship stern[J].Engineering Mecha-nics,2019,36(S1):311-315.
[25]李慧,吳健,何濤,等.平臺柴油機(jī)集成減振隔聲裝置的設(shè)計(jì)與試驗(yàn)[J].艦船科學(xué)技術(shù),2020,42(13):109-113.
LI Hui,WU Jian,HE Tao,et al.Design and experimental research on integrated vibration and noise isolation system of platform diesel[J].Ship Science and Technology,2020,42(13):109-113.
[26]ZHAO W,LI M,XIAO L.Nonlinear dynamic behaviors of a marine rotor-bearing system coupled with air bag and floating-raft[J].Shock and Vibration,2015,2015:1-18.
[27]謝旋,李明,王軍偉.橫搖作用下氣囊浮筏耦合船用轉(zhuǎn)子系統(tǒng)的非線性動(dòng)力學(xué)特性[J].船舶力學(xué),2022,26(8):1207-1217.
XIE Xuan,LI Ming,WANG Junwei.Nonlinear dynamic behavior of marine rotor system coupled with air bag-floating raft under ship rolling motion[J].Journal of Ship Mechanics,2022,26(8):1207-1217.
[28]王軍偉,李明,謝旋,等.船體橫蕩運(yùn)動(dòng)對轉(zhuǎn)子浮筏氣囊耦合系統(tǒng)非線性動(dòng)力學(xué)特性的影響[J].潤滑與密封,2022,47(12):83-90.
WANG Junwei,LI Ming,XIE Xuan,et al.Nonlinear dynamics effects of ship rotor-floating raft airbag system under sway motion[J].Lubrication Engineering,2022,47(12):83-90.
[29]杜曉蕾,李明.垂蕩激勵(lì)下船用旋轉(zhuǎn)機(jī)械-氣囊隔振系統(tǒng)的非線性振動(dòng)機(jī)理[J].振動(dòng)工程學(xué)報(bào),2021,34(4):782-789.
DU Xiaolei,LI Ming.Nonlinear vibration mechanism of marine rotating machinery airbag isolation system under heave excitation[J].Journal of Vibration Engineering,2021,34(4):782-789.
[30]徐正龍.船舶主機(jī)隔離系統(tǒng)抗沖擊特性優(yōu)化研究[D].哈爾濱:哈爾濱工程大學(xué),2024.
XU Zhenglong.Study on optimization of anti-impact characteristics of marine main engine isolation system[D].Harbin:Harbin Engineering University,2024.
[31]YU H,SUN X,XU J,et al.Transition sets analysis b-ased parametrical design of nonlinear metal rubber isolator[J].International Journal of Non-Linear Mechanics,2017,96:93-105.
[32]張彬,任志英,白鴻柏,等.空心圓柱形金屬橡膠非成型向阻尼特性理論研究及參數(shù)識別[J].振動(dòng)與沖擊,2021,40(4):243-249.
ZHANG Bin,REN Zhiying,BAI Hongbai,et al.Experimental modeling and parameter identification of non-forming damping characteristics of metal rubber[J].Journal of Vibration and Shock,2021,40(4):243-249.
[33]羅勇,羅建文,韋永恒,等.基于非線性彈簧剛度擬合的車用材料摩擦特性測試方法研究[J].重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)),2020,34(12):59-64.
LUO Yong,LUO Jianwen,WEI Yongheng,et al.Research on test method of friction characteristics of vehicle materials based on nonlinear spring stiffness fitting[J].Journal of Chongqing University of Technology(Natural Science),2020,34(12):59-64.
(責(zé)任編輯:高佳)