摘" 要:平煤西部礦區(qū)煤層底部具有富水性強(qiáng)的灰?guī)r含水層,底板巖溶水突水風(fēng)險(xiǎn)增大,給礦井安全生產(chǎn)帶來(lái)了巨大隱患。為查明煤礦突水水源,需對(duì)礦井含水層水文地球化學(xué)特征進(jìn)行研究。以平煤五礦3組主要含水層巖芯樣品為研究對(duì)象,采用XRD和XRF對(duì)巖芯樣品中礦物成分及元素組成進(jìn)行測(cè)試,并結(jié)合淋濾試驗(yàn)與浸泡試驗(yàn),使用Piper三線圖對(duì)淋濾液、浸出液和原水樣中的化學(xué)成分及水化學(xué)類型進(jìn)行對(duì)比,確定其準(zhǔn)確性。結(jié)果表明:3種原水樣的陰離子均以HCO-3為主,陽(yáng)離子以Ca2+為主,均與原水樣毫克當(dāng)量百分比相一致;3組原水樣與淋濾液、浸出液的水化學(xué)類型主要為Ca-Mg-HCO3型,砂巖水和太灰水中檢測(cè)到少量Ca-Mg-Cl-SO4型,原水樣與試驗(yàn)?zāi)M結(jié)果的水化學(xué)特征高度吻合。研究結(jié)果不僅為理解各地質(zhì)時(shí)期水化學(xué)差異提供了有力證據(jù),也為后續(xù)的水-巖相互作用提供了試驗(yàn)驗(yàn)證,為涌水水源判別和礦井水資源利用奠定了基礎(chǔ)。
關(guān)健詞:地下水;水-巖相互作用;淋濾試驗(yàn);浸泡試驗(yàn);水化學(xué)特征;礦井突水
中圖分類號(hào):P 574
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2024)06-1154-11
DOI:10.13800/j.cnki.xakjdxxb.2024.0613開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
收稿日期:
2024-03-15
基金項(xiàng)目:
國(guó)家自然科學(xué)基金項(xiàng)目(42072319)
通信作者:
李昂,男,遼寧鞍山人,博士,副教授,E-mail:651238823@qq.com
Chemical characteristics of water-rock symbiotic groundwater
in western mining area of Pingdingshan Coal Mine
LI Ang1,LV" Wei1,JING Changsheng2,DING Xuesong3,LIU Junliang2,F(xiàn)ENG Biye1,F(xiàn)AN Liuyi1
(1.College of Architecture and Civil Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Pingdingshan Tian’an Coal Mining Co.,Ltd.,Pingdingshan 467000,China;
3.College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China)
Abstract:The bottom of the coal seam in" western mining area of Ping Coal has a strongly water-rich gray rock aquifer,and the risk of water inrush from karst water on the bottom plate increases,which poses a great hidden danger to the safe production of the mine.In order to identify the water source of coal mine water inrush,it is necessary to study the hydrogeochemical characteristics of mine aquifers.Taking the core samples of the three main aquifers of Ping Coal No.5 Mine as the research object,XRD and XRF were used to test the mineral composition and elemental composition of the core samples,and combined with the leaching test and soaking test,the chemical composition and hydrochemical type of the leachate,extract and the original water samples were comparatively analyzed by using the Piper’s trilinear diagram to determine their accuracy.The results indicate that the anions in the three types of original water samples are primarily composed of HCO-3,and the cations are mainly Ca2+,consistent with the percentage of milliequivalents in the original water samples.The hydrochemical types of the three sets of original water samples,along with the leachate and eluate,are predominantly of the Ca-Mg-HCO3 type.Additionally,a small amount of Ca-Mg-Cl-SO4 type is detected in the sandstone water and dolomitic water,closely aligning with the hydrochemical characteristics of the original water samples and the test simulation results.This study not only provides strong evidence for understanding the hydrochemical differences across geological periods but also offers experimental validation for subsequent water-rock interactions.Furthermore,it lays a foundation for the identification of water inrush sources and the utilization of mine water resources.
Key words:ground water;water-rock interaction;leaching test;soaking test;hydrochemical characteristics;mine water inrush
0" 引" 言
地下水是礦井水的主要來(lái)源之一,地下水分布廣泛且穩(wěn)定,水質(zhì)優(yōu)良,使用方便,是生活、工業(yè)及農(nóng)業(yè)用水的理想來(lái)源[1-4]。隨著綠色礦井理念的出現(xiàn)和發(fā)展,礦井水環(huán)境保護(hù)問(wèn)題受到廣泛關(guān)注[5-8]。礦井水害是威脅煤礦安全生產(chǎn)的五大災(zāi)害之一,中國(guó)煤礦水文地質(zhì)條件復(fù)雜多樣,隨著煤炭資源開(kāi)發(fā)愈發(fā)深入,礦井面臨的水害威脅日益嚴(yán)重[9-12]。隨著礦井開(kāi)采深度的增加,煤層底板的隔水層厚度越來(lái)越薄,煤層底部的水壓越來(lái)越高,增加了礦井突水的風(fēng)險(xiǎn)[13-15]。
國(guó)內(nèi)外許多學(xué)者在地下水水文地球化學(xué)特征研究取得了重大的研究成果,闡明了地下水的形成原因、分布規(guī)律及人類活動(dòng)對(duì)其影響,為地下水的合理利用與突水水源的判別奠定了堅(jiān)實(shí)的基礎(chǔ)[16-24]。王甜甜等采用XRD和XRF分析巖芯樣品中礦物成分及元素組成,以及室內(nèi)水-巖作用仿真模擬試驗(yàn),查明礦井水氟物質(zhì)來(lái)源與賦存載體,揭示巖石中氟釋放規(guī)律[25];蔣斌斌等通過(guò)浸泡試驗(yàn)、淋濾等試驗(yàn),探索煤礦地下水庫(kù)對(duì)礦井水的凈化規(guī)律,利用數(shù)值模擬獲取反應(yīng)過(guò)程中離子的選擇性吸附趨勢(shì),結(jié)合Piper三線圖、Gibbs模型和相關(guān)性分析等方法揭示水-巖耦合作用機(jī)理[26];RAO等利用地下水的主要離子與物化學(xué)參數(shù),對(duì)地下水化學(xué)特征和化學(xué)成分的控制因素進(jìn)行分析,并通過(guò)地下水化學(xué)模型證實(shí)方解石和CO2等物質(zhì)的水-巖相互作用[27];王甜甜、李雙慧等利用Piper三線圖、同位素綜合分析了地下的水化學(xué)特征和其控制因素,研究顯示,伊敏礦區(qū)不同類型水樣主要陰陽(yáng)離子為Na+和HCO-3,受巖石風(fēng)化和離子交替吸附作用控制[28-29];劉基等運(yùn)用Piper三線圖等方法研究榆神礦區(qū)地表水的水質(zhì)狀況,對(duì)地表水體中的主要離子來(lái)源和影響因子進(jìn)行了討論,揭示了人類活動(dòng)對(duì)地表水影響較小[30]。上述研究成果表明分析礦井水化學(xué)特征有助于查明煤礦突水水源。但多采用現(xiàn)場(chǎng)水樣分析地下水化學(xué)特征,然而現(xiàn)場(chǎng)條件復(fù)雜多變?nèi)永щy,因此若采用巖樣為研究對(duì)象,對(duì)地下水化學(xué)特征進(jìn)行研究,對(duì)突水水源的判別具有重要意義。
為此文中提出了一種新的方法,通過(guò)結(jié)合巖芯樣本和礦井水樣本的收集與分析,使用XRD和XRF技術(shù)分析礦物成分和元素組成,克服了傳統(tǒng)現(xiàn)場(chǎng)水樣分析在復(fù)雜多變的地下水環(huán)境中遇到的采樣困難。對(duì)相同地點(diǎn)的不同的鉆孔進(jìn)行取樣,并設(shè)置不同的對(duì)照試驗(yàn)組,確保結(jié)果的準(zhǔn)確性。通過(guò)淋濾試驗(yàn)與浸泡試驗(yàn),對(duì)主要含水層水-巖相互作用進(jìn)行室內(nèi)試驗(yàn),對(duì)比分析淋濾液、浸出液和原水樣中的化學(xué)成分及水化學(xué)類型。采用Pipers三線圖進(jìn)行分析,得出試驗(yàn)結(jié)果與現(xiàn)場(chǎng)數(shù)據(jù)的高度吻合,驗(yàn)證了模擬水-巖作用機(jī)制方面的有效性。該研究為平煤五礦突水水源判別常量離子庫(kù)的建立奠定理論基礎(chǔ)。
1" 試驗(yàn)材料及方法
1.1" 試驗(yàn)樣品
采集河南省平煤五礦的巖芯樣品和礦井水水樣,如圖1所示。該套巖芯自上而下包括二疊系砂巖、石炭系太原組灰?guī)r以及寒武系灰?guī)r。每個(gè)樣品取5 g,研磨成200目的粉末用于測(cè)試使用XRD和XRF對(duì)每組巖芯樣品進(jìn)行全巖礦物成分分析測(cè)試,XRD設(shè)備型號(hào)為日本理學(xué)RIGAKU Smartlab 9 kW,Co靶,掃描角度為5°~90°。XRF分析元素范圍為6O-92U,陽(yáng)極材料為銠靶,X射線熒光光譜儀工作電壓為40 kV,工作電流160 mA。測(cè)試過(guò)程如圖2所示,巖芯樣品的XRD測(cè)試結(jié)果和分析曲線如圖3所示,各元素含量見(jiàn)表1。
1.2" 淋濾試驗(yàn)設(shè)備及過(guò)程
淋濾試驗(yàn)裝置主要由分液式漏斗、層析柱、錐形瓶、鐵架臺(tái)及加熱燈組成,如圖4所示。層析柱選用直徑4 cm、高度40 cm的圓柱形玻璃管,為保證保證高純水均勻流入,用分液式漏斗控制進(jìn)水速度,在層析柱內(nèi)依次放入10層0.15 mm濾紙、一定厚度的脫脂棉和1層孔徑為300目的尼龍過(guò)濾網(wǎng),裝入200 g大于20目的試驗(yàn)樣品,為保證試驗(yàn)樣品不被帶出,在樣品上再鋪上一層脫脂棉。為提高淋濾樣品的風(fēng)化速率,并確保在下一個(gè)周期淋濾前淋濾材料徹底干燥,在層析柱旁安裝加熱燈裝置,照射范圍可完全覆蓋試驗(yàn)樣品高度,樣品表面溫度在40~55 ℃,其目的是提高淋濾材料的風(fēng)化速度,保證在下一次淋濾之前完全烘,同時(shí)貼近現(xiàn)場(chǎng)環(huán)境。
設(shè)計(jì)了3組淋濾試驗(yàn),每組包含3個(gè)對(duì)照試驗(yàn),分別取自不同巖芯。淋濾試驗(yàn)共淋濾了21 d,包括3個(gè)周循環(huán),每個(gè)周循環(huán)中含4個(gè)天循環(huán),在周循環(huán)內(nèi),首先對(duì)每個(gè)層析柱里的巖石顆粒用600 mL高純水進(jìn)行淋濾,并收集淋濾液,每天均需開(kāi)燈加熱8~10 h,維持淋濾樣品顆粒表面溫度在40~55 ℃,在每個(gè)層析柱下方放置容量為500 mL聚乙烯瓶收集淋濾液,用0.2 μm的濾膜對(duì)淋濾液分別過(guò)濾,過(guò)濾后測(cè)定pH、TDS及常規(guī)離子成分。
1.3" 浸泡試驗(yàn)
選用500 mL聚乙烯廣口瓶作為反應(yīng)容器,如圖5所示。
將過(guò)篩20目干燥后的50 g巖粉進(jìn)行分組,按照水-巖比10∶1的試驗(yàn)方案注入500 mL高純水并進(jìn)行密封,搖勻后放入溫度45 ℃的恒溫箱。設(shè)置5組浸泡試驗(yàn),并設(shè)置3組對(duì)照試驗(yàn),對(duì)每組不同時(shí)間節(jié)點(diǎn)取樣,分別為3,6,9,12,15,18,21 d,每隔8~10個(gè)小時(shí)對(duì)聚乙烯瓶進(jìn)行搖勻,加速水-巖作用,樣品共計(jì)45個(gè)。取樣后樣品瓶中液體經(jīng)過(guò)濾網(wǎng)過(guò)濾,對(duì)各樣品瓶中浸泡溶液進(jìn)行pH的測(cè)量和記錄,然后用注射器抽取上層清液,用0.20 μm水系濾頭過(guò)濾水樣至聚乙烯透明樣品瓶,封口膜密封后,貼上標(biāo)
簽,冷藏保存,進(jìn)行pH、TDS和常量離子成分的測(cè)試。
2" 試驗(yàn)結(jié)果分析
2.1" 淋濾試驗(yàn)結(jié)果
2.1.1" 淋濾液TDS和pH動(dòng)態(tài)變化規(guī)律
3個(gè)樣品淋濾液TDS及pH隨時(shí)間的變化如圖6所示。TDS的總體變化規(guī)律為先增大后下降,二疊系砂巖樣品TDS始終大于另2個(gè)樣品,且TDS值最大為63.55 mg/L,隨后逐漸降低,最終降至38.62 mg/L。石炭系太原組灰?guī)rTDS值最小,在第一次淋濾液中TDS達(dá)到32.84 mg/L,隨后增加達(dá)到35.02 mg/L,試驗(yàn)截止之前一直處于平緩減小,最后為22.59 mg/L。寒武系灰?guī)r樣品的TDS值始終大于石炭系太原組灰?guī)rTDS值,第一次到第3次淋濾液TDS值從33.37 mg/L增至43.26 mg/L,隨后TDS值持續(xù)減小,逐漸降至21.18 mg/L。二疊系砂巖,石炭系太原組灰?guī)r和寒武系灰?guī)rTDS值變化范圍分別為38.62~63.55 mg/L、22.59~35.02 mg/L和21.18~43.26 mg/L。在淋濾之前pH約為7.00,二疊系砂巖在第7次時(shí)pH達(dá)到最大值7.94,隨后pH值逐漸降低。二疊系砂巖和石炭系太原組灰?guī)r浸出液pH值在第8次時(shí)達(dá)到最大值,pH分別為7.61和7.61,淋濾液呈現(xiàn)弱堿性,在后續(xù)測(cè)試中淋濾液雖然有波動(dòng),但總體上仍處于降低的趨勢(shì)。
2.1.2" 淋濾液離子動(dòng)態(tài)變化規(guī)律
3種淋濾液中常規(guī)離子含量隨淋濾時(shí)間的變化如圖7所示。結(jié)合淋濾液中TDS的變化情況可看出,二疊系砂巖淋濾液中的常規(guī)離子濃度明顯高于2種灰?guī)r淋濾液;特征陰陽(yáng)離子為HCO-3和Na++K+,且2種離子濃度明顯高于其他常規(guī)離子濃度,二疊系砂巖淋濾液中陰離子濃度大小排序:HCO-3、Cl-、SO2-4,前6次淋濾液中陽(yáng)離子濃度順序:Na++K+、Ca2+、Mg2+,第7次直至試驗(yàn)結(jié)束陽(yáng)離子濃度為Na++K+gt;Ca2+gt;Mg2+,HCO-3濃度最高。在石炭系太原組灰?guī)r和寒武系灰?guī)r淋濾液中特征陰陽(yáng)離子分別為HCO-3和Ca2+。石炭系太原組灰?guī)r淋濾液陰離子濃度順序依次:HCO-3、
SO2-4、Cl-,陽(yáng)離子濃度順序?yàn)椋篊a2+、Na++K+、Mg2+。
HCO-3濃度最高,其次是SO2-4濃度。寒武系灰?guī)r淋濾液陽(yáng)離子濃度順序依次:Ca2+gt;Na++K+gt;Mg2+,陰離子濃度順序?yàn)椋篐CO-3gt;SO2-4gt;Cl-。HCO-3濃度最高,其次為Ca2+濃度,其余離子含量小于4 mg/L。
2.1.3" 淋濾液水化學(xué)類型
Piper三線圖中有2個(gè)三角形和1個(gè)菱形,左下角三角形的代表陽(yáng)離子的毫克當(dāng)量百分?jǐn)?shù),右下角三角形表示陰離子的毫克當(dāng)量百分?jǐn)?shù),在菱形中的交叉點(diǎn)處,代表水樣的水化學(xué)類型,不同區(qū)域的水樣具有不同的水化學(xué)類型。利用AqQa水化學(xué)分析軟件分別繪制淋濾液的Piper三線圖,如圖8所示。
從圖8(a)可以看出,二疊系砂巖樣品在前8次淋濾液中,水化學(xué)類型為Ca-Mg-Cl-SO4型,隨著淋濾次數(shù)不斷增加,Cl-+SO2-4在淋濾液中的占比越來(lái)越小,在第9次淋濾液中,水化學(xué)類型由Ca-Mg-Cl-SO4型轉(zhuǎn)變?yōu)镃a-Mg-HCO3型。從圖8(b)可以看出,石炭系太原組灰?guī)r在淋濾液中,Ca2+為特征陽(yáng)離子,Ca2+平均占比為85%,陰離子中以HCO-3為主,平均占比為65%,淋濾液水化學(xué)類型由Ca-Mg-Cl-SO4型轉(zhuǎn)變?yōu)镃a-Mg-HCO3型。從圖8(c)可以看出,寒武系灰?guī)r樣品淋濾液中,陽(yáng)離子Ca2+平均占比70%,而陰離子HCO-3平均占比為80%,淋濾液水化學(xué)類型為Ca-Mg-HCO3型。
2.2" 浸泡試驗(yàn)結(jié)果
2.2.1" 浸出液TDS和pH動(dòng)態(tài)變化規(guī)律
3個(gè)樣品浸出液TDS及pH隨時(shí)間的變化規(guī)律如圖9所示。浸泡液的TDS在試驗(yàn)初始階段保持增長(zhǎng)狀態(tài)。二疊系砂巖組和寒武系灰?guī)r組的浸泡液TDS值遠(yuǎn)大于石炭系太原組灰?guī)r,到第18 d時(shí)各組TDS值達(dá)到穩(wěn)定且小幅度上升狀態(tài)。石炭系太原組灰?guī)r組浸泡液的TDS最小,在第9 d增長(zhǎng)至230.30 mg/L,隨后進(jìn)入平穩(wěn)狀態(tài),數(shù)值沒(méi)有大幅度變動(dòng)。
2.2.2" 浸出液離子動(dòng)態(tài)變化規(guī)律
3種浸出液中陽(yáng)離子含量隨淋濾時(shí)間的變化如圖10所示。二疊系砂巖和寒武系灰?guī)r組浸出液中陽(yáng)離子Na++K+和Ca2+含量比較高,而二疊系砂
量隨Na++K+的迅速溶出而逐漸增加,最后呈現(xiàn)Ca2+含量大于Na++K+,表明巖鹽的溶出速率較快;石炭系太原組灰?guī)r中Na++K+的浸出量最小,為11.11 mg/L,始終低于Ca2+;寒武系灰?guī)r組浸出液中Na++K+含量最小,為3.32 mg/L,Ca2+的含量最大,為43.65 mg/L。Mg2+的浸出量3組變化情況是基本相似,增長(zhǎng)趨勢(shì)相對(duì)平穩(wěn),浸出量相對(duì)Na++K+、Ca2+是偏小,二疊系砂巖中的Mg2+浸出量低于12" mg/L,石炭系太原組灰?guī)r和寒武系灰?guī)r中Mg2+浸出量低于17.5 mg/L。
各含水浸出液中陰離子含量隨淋濾時(shí)間的變化,如圖11所示。陰離子含量以HCO-3為主,其次是SO2-4,Cl-最少。HCO-3是浸出液中常規(guī)離子含量最大的,其浸出量依次為:寒武系灰?guī)rgt;二疊系砂巖gt;石炭系太原組灰?guī)r。SO2-4浸出濃度排序?yàn)椋菏肯堤M灰?guī)rgt;寒武系灰?guī)rgt;二疊系砂巖。在石炭系太原組灰?guī)r浸出液中的HCO-3浸出量與SO
2-4呈現(xiàn)相反的情況,表明石炭系太原組的灰?guī)r體中含有大量的石膏硫酸鹽。浸出液中Cl-的濃度是最小,每一組的浸出量都小于3 mg/L。
2.2.3" 浸出液水化學(xué)類型
各含水層浸出液的Piper三線圖,如圖12所示。二疊系砂巖浸出液的水化學(xué)類型發(fā)生了改變,由Ca-Mg-Cl-SO4型轉(zhuǎn)變?yōu)镃a-Mg-HCO3型,但HCO-3依舊是浸出液的特征陰離子。石炭系太原組灰?guī)r和寒武系灰?guī)r浸出液水化學(xué)類型為Ca-Mg-HCO3型,但在浸出液Piper三線圖中陰陽(yáng)離子占比中有很大區(qū)別,在太原組灰?guī)r浸出液中Ca2+為特征陽(yáng)離子,在陽(yáng)離子中占比較高,而寒武系灰?guī)r中各個(gè)陽(yáng)離子占比相當(dāng),沒(méi)有比較突出的陽(yáng)離子。在陰離子中HCO-3在2組浸出液的毫克當(dāng)量百分?jǐn)?shù)不同,石炭系太原組灰?guī)r中HCO-3毫克當(dāng)量百分?jǐn)?shù)為70%,而寒武系灰?guī)r浸出液中HCO-3毫克當(dāng)量百分?jǐn)?shù)為80%。
2.3" 淋濾液、浸出液與原水樣水樣對(duì)比
將二疊系砂巖、寒武系灰?guī)r和石炭系太原組灰?guī)r的淋濾液和浸出液與實(shí)際水樣水化學(xué)類型對(duì)比分析,見(jiàn)表2。
太灰水水樣與其巖芯淋濾液及浸出液的水化學(xué)類型為Ca-Mg-HCO3型;太灰水水樣中HCO-3的毫克當(dāng)量百分?jǐn)?shù)為60%~90%,與浸出液、淋濾液中類似,根據(jù)前期XRD和XRF分析,可以推斷石炭系太原組灰?guī)r含水層中主要水-巖作用為方解石和白云石礦物溶解作用。
寒武系灰?guī)r巖芯所有淋濾液和浸出液的水化學(xué)類型為Ca-Mg-HCO3型,其中HCO-3和Ca2+是主要的陰陽(yáng)離子,2種離子對(duì)應(yīng)的毫克當(dāng)量百分比均大于60%,其他常量離子則小于40%。與原水樣毫克當(dāng)量百分比相一致,根據(jù)前期XRD和XRF分析,其主要的水-巖作用為方解石和白云石礦物的溶解反應(yīng),以及少量的石膏溶解。
二疊系砂巖淋濾液、浸出液水化學(xué)類型和實(shí)際水樣水化學(xué)類型一致,均以Ca-Mg-HCO3型為主,含有少量的Ca-Mg-C1-SO4型,其中HCO-3毫克當(dāng)量百分?jǐn)?shù)在60%以上,Ca2+在40%以上,與原水樣毫克當(dāng)量百分比相一致。根據(jù)前期XRD和XRF分析,其主要水-巖作用為方解石和白云石溶解,也觀察到了少量硫酸鹽(石膏)和鈉鹽的溶解現(xiàn)象。
在對(duì)照試驗(yàn)中,通過(guò)對(duì)比各試驗(yàn)組之間的結(jié)果,觀察到差異性較小。證明了結(jié)果的普適性與可靠性,且不受采樣巖性的影響。
3" 結(jié)" 論
1)3個(gè)主要含水層圍巖中含有碳酸鹽礦物,形成富含HCO-3的浸出液和淋濾液,淋濾液和浸出液中HCO-3毫克當(dāng)量百分?jǐn)?shù)在60%以上,Ca2+在40%以上,均與原水樣毫克當(dāng)量百分比一致。
2)結(jié)合全巖礦物成分分析測(cè)試,對(duì)巖芯定性和定量分析,砂巖水中的水-巖作用以方解石、白云石溶解為主,同時(shí)也觀察到了少量硫酸鹽(石膏)和鈉鹽的溶解現(xiàn)象。太灰水與寒灰水的主要水-巖作用是以方解石、白云石及少量的硫酸鹽(石膏)的溶解為主。
3)3個(gè)含水層與淋濾液、浸出液的水化學(xué)特征呈現(xiàn)出顯著的一致性。砂巖水、太灰水、寒灰水的水化學(xué)類型均以Ca-Mg-HCO3型為主,砂巖水和太灰水中檢測(cè)到少量Ca-Mg-Cl-SO4型,與試驗(yàn)?zāi)M結(jié)果的高度吻合,驗(yàn)證了模擬水-巖作用機(jī)制方面的有效性。
4)研究為水化學(xué)特征分析提供了新的方法,建立了平煤礦區(qū)主要含水層常量特征離子數(shù)據(jù)庫(kù),為識(shí)別礦井涌水源提供了理論基礎(chǔ)。
參考文獻(xiàn)(References):
[1]" 賈建稱,賈茜,桑向陽(yáng),等.我國(guó)煤礦地質(zhì)保障系統(tǒng)建設(shè)30年:回顧與展望[J].煤田地質(zhì)與勘探,2023,51(1):86-106.
JIA Jiancheng,JIA Qian,SANG Xiangyang,et al.Review and prospect of coal mine geological guarantee system in China during 30 years of construction[J].Coal Geology amp; Exploration,2023,51(1):86-106.[2]
賀飛,魯義強(qiáng),代恩虎,等.煤礦巖巷TBM適應(yīng)性與新技術(shù)發(fā)展[J].煤炭科學(xué)技術(shù),2023,51(S1):351-361.
HE Fei,LU Yiqiang,DAI Enhu,et al.Application of TBM in coal mine adaptability type selection analysis and new technology development[J].Coal Science and Technology,2023,51(S1):351-361.[3]
楊昊睿,寧樹(shù)正,丁戀,等.新時(shí)期我國(guó)煤炭產(chǎn)業(yè)現(xiàn)狀及對(duì)策研究[J].中國(guó)煤炭地質(zhì),2021,33(S1):44-48.
YANG Haorui,NING Shuzheng,DING Lian,et al.Chinese coal industry status quo in new period and countermeasures study[J].Coal Geology of China,2021,33(S1):44-48.[4]
康紅普,王國(guó)法,王雙明,等.煤炭行業(yè)高質(zhì)量發(fā)展研究[J].中國(guó)工程科學(xué),2021,23(5):130-138.
KANG Hongpu,WANG Guofa,WANG Shuangming,et al.High-Quality development of China’s coal industry[J].Engineering Science,2021,23(5):130-138.[5]
顧大釗,李井峰,曹志國(guó),等.我國(guó)煤礦礦井水保護(hù)利用發(fā)展戰(zhàn)略與工程科技[J].煤炭學(xué)報(bào),2021,46(10):3079-3089.
GU Dazhao,LI Jingfeng,CAO Zhiguo,et al.Technology and engineering development strategy of water protection and utilization of coal mine in China[J].Journal of China Coal Society,2021,46(10):3079-3089.[6]
師修昌.煤礦地下水庫(kù)研究進(jìn)展與展望[J].煤炭科學(xué)技術(shù),2022,50(10):216-225.
SHI Xiuchang.Research progress and prospect of undergroundmines in coal mines[J].Coal Science and Technology,2022,50(10):216-225.[7]李文婧,周凌峰,趙曉麗,等.黃河流域水環(huán)境問(wèn)題研究現(xiàn)狀、挑戰(zhàn)與展望[J].環(huán)境科學(xué)研究,2024,37" (1):32-41.
LI Wenjing,ZHOU Lingfeng,ZHAO Xiaoli,et,al.
Current status and challenges in diagnostic research on water environment problems in the Yellow River Basin
water environment problems in the Yellow River Basin[J].Research of Environmental Sciences,2024,37(1):32-41.[8]
虢清偉,陳思莉,黃大偉,等.跨國(guó)界河流水環(huán)境風(fēng)險(xiǎn)防控與應(yīng)急能力現(xiàn)狀分析及建議[J].環(huán)境工程學(xué)報(bào),2021,15(10):3189-3192.
GUO Qingwei,CHEN Sili,HUANG Dawei,et al.Status analysis and optimization suggestions on water environmental risk prevention and control and environmental emergency response capabilities of cross-border rivers[J].Chinese Journal of Environmental Engineering,2021,15(10):3189-3192.[9]
孫文潔,任順利,武強(qiáng),等.新常態(tài)下我國(guó)煤礦廢棄礦井水污染防治與資源化綜合利用[J].煤炭學(xué)報(bào),2022,47(6):2161-2169.
SUN Wenjie,REN Shunli,WU Qiang,et al.Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J].Journal of China Coal Society,2022,47(6):2161-2169.[10]
寇礫文,蔣曙光,王蘭云,等.離子液體處理煤礦酸性礦井水的新設(shè)想[J].煤礦安全,2012,43(1):34-37.
KOU Liwen,JIANG Shuguang,WANG Lanyun,et al.New assumption of treatment acid mine drainage by using ionic liquids[J].Safety in Coal Mines,2012,43(1):34-37.[11]
解馨馨,楊軍耀,陳軍鋒.露井聯(lián)采礦區(qū)煤—水—生態(tài)協(xié)調(diào)發(fā)展評(píng)價(jià)體系研究[J].礦業(yè)安全與環(huán)保,2022,49(6):135-140.
XIE Xinxin,YANG Junyao,CHEN Junfeng.Study on evaluation system of coal-water-ecology coordinated development model in open-pit combined mining area[J].
Mining Safety amp; Environmental Protection,2022,49(6):135-140.[12]
薛美平,張志軍,趙岳.呼吉爾特礦區(qū)礦井水回灌模擬的水化學(xué)演化研究[J].煤炭科學(xué)技術(shù),2023,51(S1):470-476.
XUE Meiping,ZHANG Zhijun,ZHAO Yue.Hydrochemical evolution of mine water injection in Hojirt Mining Area[J].Coal Science and Technology,2023,51(S1):470-476.[13]
呂玉廣,喬偉,胡發(fā)侖,等.煤層頂板水害風(fēng)險(xiǎn)保護(hù)系數(shù)法評(píng)價(jià)技術(shù)研究[J].煤炭科學(xué)技術(shù),2024,52(3):180-188.
LYU Yuguang,QIAO Wei,HU Falun,et al.Study on evaluation technology of coal seam roof water hazard risk with protection coefficient[J].Coal Science and Technology,2024,52(3):180-188.[14]施龍青,楊曉,徐東晶,等.基于灰色關(guān)聯(lián)模型的礦井突水水源分析方法[J].中國(guó)科技論文,2020,15(9):1026-1030.
SHI Longqing,YANG Xiao,XU Dongjing,et al.Discrimination on mine water inrush source by gray correlation analysis method[J].China Sciencepaper,2020,15(9):1026-1030.[15]
郭惟嘉,張士川,孫文斌,等.深部開(kāi)采底板突水災(zāi)變模式及試驗(yàn)應(yīng)用[J].煤炭學(xué)報(bào),2018,43(1):219-227.
GUO Weijia,ZHANG Shichuan,SUN Wenbin,et al.Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining[J].Journal of China Coal Society,2018,43(1):219-227.[16]
楊軍,閔鐵軍,劉斌慧,等.深部開(kāi)采災(zāi)害及防治研究進(jìn)展[J].科學(xué)技術(shù)與工程,2020,20(36):14767-14776.
YANG Jun,MIN Tiejun,LIU Binhui,et al.Research progress on disaster and prevention in deep mining[J].Science Technology and Engineering,2020,20(36):14767-14776.[17]
MAHAQI A,MOHEGHI M M,MEHIQI M,et al.Hydrogeochemical characteristics and groundwater quality assessment for drinking and irrigation purposes in the Mazari-Sharif city,North Afghanistan[J].Applied Water Science,2018,8(5):1-10.[18]
孫亞軍,趙先鳴,徐智敏,等.煤礦采空區(qū)水-巖作用模擬試驗(yàn)研究[J].煤田地質(zhì)與勘探,2023,51(1):237-246.
SUN Yajun,ZHAO Xianming,XU Zhimin,et al.Simulation test on water-rock interaction in coal mine goaf[J].Coal Geology amp; Exploration,2023,51(1):237-246.[19]
馮麗麗,張慶建,管嵩,等.X射線熒光光譜(XRF)法測(cè)定綠泥石中鎂、鋁、硅、磷、鉀、鈣、鈦、鐵元素含量[J].中國(guó)無(wú)機(jī)分析化學(xué),2024,14(3):312-317.
FENG Lili,ZHANG Qingjian,GUAN Song,et al.Determination of magnesium,aluminum,silicon,phosphorus,potassium,calcium,titanium and iron in chlorite by x-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2024,14(3):312-317.[20]
陳京鵬,閆燕,馮穎,等.黃河流域下游德州地區(qū)地下水水化學(xué)成因及生態(tài)環(huán)境影響[J].環(huán)境化學(xué),2023,42(1):125-137.
CHEN Jingpeng,YAN Yan,F(xiàn)ENG Ying,et al.Hydrochemical genesis and ecological environment influence of groundwater in Dezhou city at lower Yellow River Basin[J].Environmental Chemistry,2023,42(1):125-137.[21]
劉偉韜,李蓓蓓,杜衍輝,等.基于改進(jìn)的SSA-BP神經(jīng)網(wǎng)絡(luò)的礦井突水水源識(shí)別模型研究[J].工礦自動(dòng)化,2024,50(2):98-105,115.
LIU Weitao,LI Beibei,DU Yanhui,et al.Research on the recognition model of mine water inrush source based on improved SSA-BP neural network[J].Journal of Mine Automation,2024,50(2):98-105,115.
[22]
WANG Y,SHI L,WANG M,et al.Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area,China[J].Environmental Earth Sciences,2020,79(6):1-14.[23]
JIANG C,AN Y,ZHENG L,et al.Water source discrimination in a multiaquifer mine using a comprehensive stepwise discriminant method[J].Mine Water and the Environment,2021,40(2):442-455.[24]
肖樂(lè)樂(lè),胡嵩巖,牛超,等.彬長(zhǎng)礦區(qū)地下水化學(xué)特征及突(涌)水源判別[J].西安科技大學(xué)學(xué)報(bào),2022,42(4):724-732.
XIAO Lele,HU Songyan,NIU Chao,et al. Chemical characteristics of groundwater and identification of water inrush sources in Binchang mining area[J].Journal of Xi’an University of Science and Technology,2022,42(4):724-732.[25]
王甜甜,靳德武,薛建坤,等.蒙陜接壤區(qū)煤礦采空區(qū)水-巖系統(tǒng)中氟來(lái)源及釋放規(guī)律[J].煤田地質(zhì)與勘探,2023,51(2):252-262.
WANG Tiantian,JIN Dewu,XUE Jiankun,etal.Source and release law of fluorine in water-rock system of coal mine goaf in contiguous area of Shaanxi and Inner Mongolia[J].Coal Geology amp; Exploration,2023,51(2):252-262.[26]
蔣斌斌,李井峰,吳敏,等.煤礦地下水庫(kù)對(duì)礦井水凈化機(jī)理研究進(jìn)展[J].礦業(yè)科學(xué)學(xué)報(bào),2023,8(2):137-145.
JIANG Binbin,LI Jingfeng,WU Min,etal.Review on the purification mechanism of mine water by coal mine underground reservoir[J].Journal of Mining Science and Technology,2023,8(2):137-145.[27]
RAO N S,MARGHADE D,DINAKAR A,et al.Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district,Andhra Pradesh,India[J].Environmental Earth Sciences,2017,76(21):1-22.[28]
王甜甜,張雁,趙偉,等.伊敏礦區(qū)地下水水化學(xué)特征及其形成作用分析[J].環(huán)境化學(xué),2021,40(5):1480-1489.
WANG Tiantian,ZHANG Yan,ZHAO Wei,et al.Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area[J].Environmental Chemistry,2021,40(5):1480-1489.[29]
李雙慧,黃選明,朱宏軍,等.基于水化學(xué)和環(huán)境同位素的準(zhǔn)格爾煤田地下水循環(huán)特征[J].南水北調(diào)與水利科技(中英文),2021,19(3):561-571,589.
LI Shuanghui,HUANG Xuanming,ZHU Hongjun,et al.
Characteristics of groundwater circulation in the Jungar coalfield based on water chemistry and environmental isotopes[J].South-to-North Water Transfers and Water Science amp; Technology,2021,19(3):561-571,589.[30]
劉基,高敏,靳德武,等.榆神礦區(qū)地表水水化學(xué)特征及其影響因素分析[J].煤炭科學(xué)技術(shù),2020,48(7):354-361.
LIU Ji,GAO Min,JIN Dewu,et al.Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining Area[J].Coal Science and Technology,2020,48(7):354-361.
(責(zé)任編輯:劉潔)