摘要:【目的】探究速激肽受體3基因(TAC3R)單核苷酸多態(tài)性(SNP)位點與柯樂豬繁殖性能的關(guān)聯(lián)性,篩選出與繁殖性狀相關(guān)的遺傳標記,為加速柯樂豬的品種改良提供技術(shù)支撐。【方法】選取195頭2胎以上的健康經(jīng)產(chǎn)柯樂豬為研究對象,運用Sanger直接測序法鑒定TAC3R基因SNP位點,利用SHEsisPlus計算各SNP位點的群體遺傳參數(shù),并以SPSS 22.0中的一般線性模型(GLM)分析SNP位點基因型和雙倍型對柯樂豬5個繁殖指標的遺傳效應?!窘Y(jié)果】在柯樂豬TAC3R基因上共檢測到5個SNPs位點:g.117686266Tgt;C、g.117686381Agt;G、g.117686384Agt;G、g.117688503Tgt;C和g.117688518Tgt;C。g.117686381Agt;G位點與g.117686384Agt;G位點間完全連鎖,g.117688503Tgt;C位點與g.117686266Tgt;C、g.117686381Agt;G和g.117686384Agt;G位點間不存在連鎖關(guān)系,而其他各SNP位點間均存在強連鎖不平衡關(guān)系。5個SNPs位點聯(lián)合共檢測到5種單倍型和10種雙倍型,單倍型中以H5的頻率最高(0.433)、H2的頻率最低(0.059),雙倍型中以H3H5的頻率最高(0.221)、H1H4的頻率最低(0.031)。5個SNPs位點在柯樂豬群體中均呈中度多態(tài)性(0.25lt;PIClt;0.50),且其基因型分布均未偏離Hardy-Weinberg平衡(χ2-HWElt;5.991)。g.117688503Tgt;C位點顯著影響窩均產(chǎn)仔數(shù)和斷奶仔豬數(shù),TT基因型個體的窩均產(chǎn)仔數(shù)和斷奶仔豬數(shù)顯著高于CC基因型個體;g.117688518Tgt;C位點顯著影響斷奶仔豬數(shù),CC基因型個體顯著高于TT基因型個體。柯樂豬TAC3R基因SNP位點雙倍型與其繁殖性狀的關(guān)聯(lián)分析發(fā)現(xiàn),H2H4型為窩均產(chǎn)仔數(shù)、窩均產(chǎn)活仔數(shù)和窩斷奶仔豬數(shù)3個指標的最優(yōu)雙倍型,H1H3型為平均斷奶重指標的最優(yōu)雙倍型?!窘Y(jié)論】在柯樂豬TAC3R基因上檢測到5個SNPs位點,其中g(shù).117688503Tgt;C和g.117688518Tgt;C位點對柯樂豬的繁殖性能有顯著影響。TAC3R基因可作為柯樂豬繁殖性狀的候選基因,雙倍型H2H4可作為分子標記輔助選擇的參考。
關(guān)鍵詞:柯樂豬;TAC3R基因;SNP位點;繁殖性狀;關(guān)聯(lián)性
中圖分類號:S828.89文獻標志碼:A文章編號:2095-1191(2024)05-1502-08
Identification of TAC3R gene SNP site in Kele pigs and their effects on reproductive traits
ZENG Fu-qin,TAN Yuan-cheng,HUANG Wen,WANG Chun-yuan,XIANG Jin,WU Yan,MENG Bing-sheng,MENG Zhong-ming,WEI Ting,ZHANG Yi-yu*
(College of Animal Science,Guizhou University/Key Laboratory of Plateau Mountainous Animal Genetics,Breeding andReproduction,Ministry of Education/Key Laboratory of Animal Genetics,Breeding and Reproduction of GuizhouProvince/Xiang Pigs Research Institute of Guizhou University,Guiyang,Guizhou 550025,China)
Abstract:【Objective】This study aimed to explore the correlation between the single nucleotide polymorphism(SNP)sites of the tachykinin receptor 3 gene(TAC3R)and the reproductive performance of Kele pigs,and to screen outgenetic markers related to reproductive traits,so as to provide technical support for accelerating breed improvement of Kele pigs.【Method】A total of 195 healthy multiparous Kele pigs with more than 2 litters were selected as the researchsubjects.The Sanger direct sequencing was employed to identify SNP sites of the TAC3R gene,and the population genetic parameters of each SNP site were calculated by SHEsisPlus.Subsequently,the genetic effects of SNP site genotypes or haplotypes on 5 reproductive traits of Kele pigs were analyzed using the general linear model(GLM)in SPSS 22.0.【Re-sult】Five SNPs sites were detected in the TAC3R gene of Kele pigs:g.117686266 Tgt;C,g.117686381 Agt;G,g.117686384 Agt;G,g.117688503 Tgt;C,and g.117688518 Tgt;C.Among these sites,g.117686381 Agt;G and g.117686384 Agt;G showed complete linkage,while g.117688503Tgt;C showed no linkage with the g.117686266Tgt;C,g.117686381Agt;G,and g.117686384Agt;G.However,strong linkage disequilibrium was observed among the other SNP sites.A total of 5 haplo-types and 10 diplotypes were detected in the 5 SNPs sites.Among the haplotypes,the frequency of H5 was the highest(0.433),the frequency of H2 was the lowest(0.059).For diplotypes,H3H5 had the highest frequency(0.221)and H1H4 had the lowest frequency(0.031).All the 5 SNPs sites exhibited moderate polymorphism(0.25lt;PIClt;0.50)in the Kele pig population,and their genotypic distributions did not deviate from Hardy-Weinberg equilibrium(χ2-HWElt;5.991).The g.117688503Tgt;C site significantly influenced the average litter size and weaned piglet number,with the TT genotype exhibiting significantly higher values for both traits compared to CC genotype.The g.117688518Tgt;C site significantly in-fluenced weaned piglet number,with CC genotype individuals showing significantly higher numbers than TT genotype in-dividuals.The correlation analysis of the SNP site diplotypes of TAC3R gene and reproductive traits in Kele pigs revealedthat the H2H4 type was the optimal for average litter size,average live litter size,and weaned piglet number,while the H1H3 type was the optimal for average weaning weight.【Conclusion】Five SNPs sites are detected on the TAC3R gene of Kele pigs,among which the g.117688503 Tgt;C and g.117688518 Tgt;C sites have significant effects on the reproductive performance of Kele pigs.TAC3R gene can be considered a candidate gene for reproductive traits of Kele pigs,and the haplotype H2H4 can serve as a reference for molecular marker-assisted selection.
Key words:Kele pigs;TAC3R gene;SNP site;reproductive traits;correlation
Foundation items:National Key Research and Development Program of China(2022YFD1100308);Guizhou Scien-ce and Technology Plan Project(GKHPTRC〔2021〕5630);Construction of Pig Industry Technology System in Guizhou(GZSZCYJSTX-03)
0引言
【研究意義】柯樂豬是我國貴州的地方品種,屬于云貴高原烏蒙烏金豬系列,具有耐粗飼、抗病能力強、肉質(zhì)鮮美及口感綿軟等特點,深受廣大消費者青睞??聵坟i還是制作宣威火腿的優(yōu)質(zhì)原材料,在滿足人們對優(yōu)質(zhì)豬肉品質(zhì)需求及促進地方畜牧業(yè)高質(zhì)量發(fā)展方面發(fā)揮著重要作用(楊蓮等,2021;向進等,2023;楊酸等,2023),但柯樂豬存在產(chǎn)仔數(shù)少、性成熟早、繁殖率低、生長速度慢等缺陷。因此,亟待挖掘柯樂豬繁殖性狀相關(guān)的遺傳標記,為加速其種群選育及提高繁殖性能提供理論支撐。【前人研究進展】速激肽受體3(Tachykinin receptor 3,TAC3R)是一種神經(jīng)肽Y受體,屬于G蛋白偶聯(lián)受體家族成員,參與多種生理和病理過程的調(diào)節(jié),特別是在神經(jīng)系統(tǒng)、免疫系統(tǒng)和生殖系統(tǒng)中發(fā)揮重要作用(Zhang et al.,2023;Florido et al.,2024)。TAC3R基因編碼的神經(jīng)肽受體能與神經(jīng)遞質(zhì)Tachykinin 3(NK3)相互作用,在生殖系統(tǒng)和神經(jīng)系統(tǒng)中扮演著重要角色(Camarda et al.,2002;Bellucci et al.,2002)。在生殖系統(tǒng)領(lǐng)域,TAC3R基因在性腺激素調(diào)控中發(fā)揮重要作用,與TAC3基因協(xié)同影響動物生殖周期、性腺發(fā)育和激素分泌等生理活動(Topaloglu et al.,2010;Xin et al.,2015;Zhang et al.,2020;Zuo etal.,2022)。還有研究發(fā)現(xiàn),多囊卵巢綜合征(PCOS)患者卵巢組織中的TAC3R基因表達水平顯著上調(diào),提示TAC3R基因在PCOS的發(fā)病機制中可能起重要作用(Qi et al.,2016;Blasco et al.,2019)。在人類神經(jīng)系統(tǒng)領(lǐng)域,TAC3R基因也逐漸成為研究焦點,其參與了情緒調(diào)節(jié)、疼痛傳導及神經(jīng)疾病的發(fā)病機制,尤其在與焦慮、抑郁等情緒障礙有關(guān)的神經(jīng)回路中發(fā)揮調(diào)節(jié)作用(Valdes-Socin et al.,2014)。TAC3R在動物上也有廣泛的研究報道,如TAC3R激動劑能誘發(fā)豚鼠氣道產(chǎn)生微血管滲漏過敏癥(Daoui et al.,2001),TAC3R信號與牛的體溫調(diào)節(jié)相關(guān)(Nakamura et al.,2021),小鼠外側(cè)韁核的TAC3R表達可緩解其疼痛和焦慮(Zhang et al.,2023)等?!颈狙芯壳腥朦c】至今,已有大量研究證實TAC3R基因在生殖系統(tǒng)和神經(jīng)系統(tǒng)中發(fā)揮關(guān)鍵作用(Ribeiro et al.,1999;Zhang et al.,2020),但其分子生物學功能尚未闡明,尤其是TAC3R基因在豬上的研究鮮見報道?!緮M解決的關(guān)鍵問題】根據(jù)家豬TAC3R基因參考序列(NC_010450.4)設(shè)計引物擴增柯樂豬TAC3R基因,運用Sanger直接測序法挖掘TAC3R基因外顯子單核苷酸多態(tài)性(SNP)位點,并分析SNP位點與柯樂豬繁殖性能的關(guān)聯(lián)性,篩選出與繁殖性狀相關(guān)的遺傳標記,為加速柯樂豬的品種改良提供技術(shù)支撐。
1材料與方法
1.1試驗動物
195頭2胎以上的健康經(jīng)產(chǎn)柯樂豬由貴州優(yōu)農(nóng)谷生態(tài)產(chǎn)業(yè)有限公司提供,采集其耳組織樣本約2 g,放入含1 mL 75%乙醇的離心管中保存。查閱每頭母豬的繁殖記錄,收集總產(chǎn)仔數(shù)、產(chǎn)活仔數(shù)、初生個體重、斷奶仔豬數(shù)和斷奶個體重等繁殖性狀指標。動物試驗由貴州大學動物倫理委員會批準,批準號EAE-GZU-2022-P049。
1.2基因組DNA提取
按組織DNA提取試劑盒(美國ThermoFisher Scientific公司)操作說明,對每個組織樣本進行DNA提取,利用1.0%瓊脂糖凝膠電泳檢測DNA完整性、NanoDrop 2000超微量分光光度計檢測其濃度和純度。合格的DNA稀釋至100~150 ng/μL,-40℃冰箱保存?zhèn)溆谩?/p>
1.3引物設(shè)計與合成
根據(jù)GenBank已收錄的家豬TAC3R基因參考序列(NC_010450.4),利用Primer Premier 5.0設(shè)計5對引物(表1)擴增柯樂豬TAC3R基因,引物委托生工生物工程(上海)股份有限公司合成。
1.4 PCR擴增及SNP位點鑒定
PCR反應體系25.0μL:2×Taq PCR Master Mix 10.0μL,上、下游引物各1.0μL,DNA模板1.0μL,RNase-free H2O 12.0μL。擴增程序:95℃預變性5 min;94℃90 s,退火60 s,72℃60 s,進行30個循環(huán);72℃延伸10 min,10℃保存。采用1.2%瓊脂糖凝膠電泳檢測PCR擴增產(chǎn)物,合格的PCR擴增產(chǎn)物送至生工生物工程(上海)股份有限公司測序,使用DNASTAR v7.1.0中的MegAlign模塊和Chromas v2.6.5結(jié)合人工校對,進行SNP位點鑒定及其基因型判定。
1.5統(tǒng)計分析
利用SHEsisPlus(http://analysis.bio-x.cn/)計算各SNP位點的等位基因數(shù)、基因型頻率、單倍型/雙倍型頻率、多態(tài)信息含量(PIC)及基因型分布卡方值(χ2),采用HaploView計算連鎖不平衡的LD系數(shù)(D?)和相關(guān)系數(shù)(r2),并以SPSS 22.0中的一般線性模型(GLM)分析SNP位點基因型和雙倍型對柯樂豬5個繁殖指標的遺傳效應。
2結(jié)果與分析
2.1柯樂豬TAC3R基因SNP位點鑒定結(jié)果
通過TAC3R基因核苷酸序列比對分析,在柯樂豬群體中共發(fā)現(xiàn)5個SNPs位點(圖1)。其中,g.117686266Tgt;C、g.117686381Agt;G和g.117686384Agt;G位點出現(xiàn)在內(nèi)含子1(Intron 1)上,g.117688503Tgt;C和g.117688518Tgt;C位點出現(xiàn)在內(nèi)含子2(Intron 2)上,5個外顯子(Exon)中均未檢測到SNP位點。此外,每個SNP位點均檢測到3種基因型。
2.2柯樂豬TAC3R基因SNP位點連鎖不平衡分析結(jié)果
通過SHEsisPlus對柯樂豬TAC3R基因5個SNPs位點進行連鎖不平衡分析,結(jié)果(表2)顯示,g.117686381Agt;G位點與g.117686384Agt;G位點間完全連鎖,g.117688503Tgt;C位點與g.117686266Tgt;C、g.117686381Agt;G和g.117686384Agt;G位點間不存在連鎖關(guān)系,而其他各SNP位點間均存在強連鎖不平衡關(guān)系。5個SNPs位點聯(lián)合共檢測到5種單倍型和10種雙倍型(表3),單倍型中以H5的頻率最高(0.433)、H2的頻率最低(0.059),雙倍型中以H3H5的頻率最高(0.221)、H1H4的頻率最低(0.031)。
2.3柯樂豬TAC3R基因SNP位點群體遺傳學特性分析結(jié)果
柯樂豬TAC3R基因SNP位點群體遺傳學特性分析結(jié)果(表4)顯示:g.117686266Tgt;C、g.117686381/117686384Agt;G、g.117688503Tgt;C和g.117688518Tgt;C位點的優(yōu)勢基因型分別為TC、AA、TT/TC和TT,對應的基因型頻率分別是0.503、0.538、0.431和0.523;優(yōu)勢等位基因分別為T、A、T和T,對應的等位基因頻率分別是0.575、0.728、0.647和0.721。5個SNPs位點在柯樂豬群體中均呈中度多態(tài)性(0.25lt;PIClt;0.50),且其基因型分布均未偏離Hardy-Weinberg平衡(χ2-HWEgt;0.05)。
2.4柯樂豬TAC3R基因SNP位點與繁殖性狀的關(guān)聯(lián)分析結(jié)果
分析柯樂豬TAC3R基因SNP位點與其繁殖性狀的關(guān)聯(lián)性,結(jié)果(表5)顯示:g.117688503Tgt;C位點對窩均產(chǎn)仔數(shù)和斷奶仔豬數(shù)的影響達顯著水平(Plt;0.05,下同),其中TT基因型個體的窩均產(chǎn)仔數(shù)顯著高于TC和CC基因型個體,TT基因型個體的斷奶仔豬數(shù)顯著高于CC基因型個體;g.117688518Tgt;C位點對斷奶仔豬數(shù)的影響達顯著水平,其中CC基因型個體顯著高于TT基因型個體;其他SNP位點各基因型個體間的繁殖性狀指標差異均未達顯著水平(Pgt;0.05,下同)。
柯樂豬TAC3R基因SNP位點雙倍型與其繁殖性狀的關(guān)聯(lián)分析結(jié)果(表6)顯示:除H1H1型外,H2H4型的窩均產(chǎn)仔數(shù)顯著高于其他雙倍型;窩均產(chǎn)活仔數(shù)表現(xiàn)為H2H4型顯著高于H1H3型、H1H5型、
H2H5型、H3H3型、H3H5型、H4H5型和H5H5型,H1H3型則顯著低于除H1H5型外的其他雙倍型;窩斷奶仔豬數(shù)表現(xiàn)為H2H4型最高,顯著高于H1H3型、H1H5型、H3H5型、H4H5型和H5H5型,H1H3型的窩斷奶仔豬數(shù)最少;平均斷奶重表現(xiàn)為H1H3型顯著高于H1H1型、H1H5型和H3H3型,H1H1型的平均斷奶重最輕,顯著低于除H1H5型和H3H3型外的其他雙倍型。綜上所述,以H2H4型的繁殖性狀表現(xiàn)最優(yōu),其次是H1H1型。
3討論
養(yǎng)豬場的生產(chǎn)效率和產(chǎn)業(yè)經(jīng)濟回報直接受母豬繁殖性能的影響。與國外高繁殖力和高瘦肉率的品種(杜洛克、長白豬和大白豬)相比,國內(nèi)地方豬品種普遍存在繁殖力低、生長緩慢、育種周期長等缺陷(崔世泉等,2007)。齊婧等(2023)研究表明,柯樂豬與大白豬在種質(zhì)上存在明顯差異,盡管柯樂豬的胴體品質(zhì)不及大白豬,但其肉質(zhì)性狀優(yōu)于大白豬,具有良好的保水性、多汁的肌肉和出色的肉色等特點,能為消費者提供高品質(zhì)的豬肉。TAC3R屬于G蛋白偶聯(lián)受體家族成員,在細胞膜上跨越7個膜通道,主要參與信號傳遞調(diào)節(jié)。TAC3R基因編碼的受體是TAC3神經(jīng)肽的主要受體,在神經(jīng)系統(tǒng)中發(fā)揮重要的調(diào)節(jié)作用(Camarda et al.,2002)。TAC3R與TAC3結(jié)合不僅對機體的生殖周期、性腺發(fā)育和激素分泌有影響(Zhang et al.,2020;Zuo etal.,2022),還與動物生殖系統(tǒng)的正常發(fā)育及功能維持密切相關(guān)(Topalogluetal.,2010;Xin et al.,2015)。王婷(2016)通過比較黑線倉鼠不同發(fā)育階段TAC3和TAC3R基因的表達情況,結(jié)果發(fā)現(xiàn)雌性幼體期TAC3和TAC3R基因高表達,而雄性幼體在亞成體期達峰值,故推測TAC3/TAC3R調(diào)控黑線倉鼠生殖啟動,但在時間上存在雌雄差異。陳煒昊等(2019)在小尾寒羊的TAC3R基因上發(fā)現(xiàn)3個SNPs位點:g.21484478Agt;C、g.21560640Cgt;T和g.21560688Tgt;C,但不適宜用于小尾寒羊的產(chǎn)羔數(shù)選育??梢?,TAC3R基因在中樞神經(jīng)系統(tǒng)中參與多種生理過程,包括生殖周期、性腺發(fā)育和激素分泌調(diào)節(jié)等,進而影響機體的繁殖性能。
本研究選擇TAC3R基因作為柯樂豬繁殖性能的分子遺傳標記輔助選擇基因,通過Sanger直接測序法篩查和鑒定SNP位點,結(jié)果獲得5個SNPs位點:g.117686266Tgt;C、g.117686381Agt;G、g.117686384Agt;G、g.117688503Tgt;C和g.117688518Tgt;C。SNP位點高度多態(tài)性意味著該基因在種群中擁有許多不同的等位基因,也提示該基因在進化過程中具有適應性優(yōu)勢,或反映環(huán)境變化對該基因的選擇壓;而低度多態(tài)性意味著該基因在種群中的等位基因相對較少,可能是較新的基因,或受限制性地理分布的影響(Serrote et al.,2020)。本研究中,5個SNPs位點均呈中度多態(tài)性(0.25lt;PIClt;0.50),群體變異程度較大,具有一定遺傳信息量;經(jīng)χ2合適性檢驗,其基因型分布均未偏離Hardy-Weinberg平衡(χ2-HWEgt;0.05),故推測柯樂豬群體尚未受到突變、選擇或遺傳漂變等影響,或曾經(jīng)受到影響,但由于長期人工選擇并大規(guī)模擴群后重新恢復到新的平衡狀態(tài)。
基因突變會在動物的表型上產(chǎn)生顯著影響。潘章源等(2015)研究發(fā)現(xiàn),澳大利亞布魯拉綿羊BMPR1B基因發(fā)生746A→G突變后,其排卵數(shù)和產(chǎn)羔數(shù)顯著增加。張意茗(2015)研究表明,人類TAC3R基因的1108G→T突變改變了第370位氨基酸,增強了TAC3R受體功能,但同時損害其受體作用,故推測TAC3R基因多態(tài)性會影響柯樂豬的繁殖性能。至今,TAC3R基因在人類(Obata et al.,2016)及大鼠(Navarro et al.,2011)、小鼠(Valeroetal.,2011)和猴子(Barros etal.,2013)等哺乳動物生殖軸上的研究較充分,但在豬方面的研究相對匱乏。本研究結(jié)果表明,g.117688503Tgt;C位點顯著影響窩均產(chǎn)仔數(shù)和斷奶仔豬數(shù),TT基因型個體的窩均產(chǎn)仔數(shù)和斷奶仔豬數(shù)顯著高于CC基因型個體。由此推測,TT基因型為g.117688503Tgt;C位點的有利基因型??聵坟iTAC3R基因SNP位點雙倍型與其繁殖性狀的關(guān)聯(lián)分析發(fā)現(xiàn),H2H4型為窩均產(chǎn)仔數(shù)、窩均產(chǎn)活仔數(shù)和窩斷奶仔豬數(shù)3個指標的最優(yōu)雙倍型,H1H3型為平均斷奶重指標的最優(yōu)雙倍型。綜上所述,H2H4型的繁殖性狀表現(xiàn)最優(yōu),即H2H4型為有利雙倍型,可作為分子標記輔助選擇的參考。
4結(jié)論
在柯樂豬TAC3R基因上檢測到5個SNPs位點,其中g(shù).117688503Tgt;C和g.117688518Tgt;C位點對柯樂豬的繁殖性能有顯著影響。TAC3R基因可作為柯樂豬繁殖性狀的候選基因,雙倍型H2H4可作為分子標記輔助選擇的參考。
參考文獻(References):
陳煒昊,田志龍,孫偉,儲明星.2019.綿羊Tacr3基因多態(tài)性與產(chǎn)羔數(shù)的關(guān)聯(lián)分析[J].中國畜牧獸醫(yī),46(5):1405-1412.[Chen W H,Tian Z L,Sun W,Chu M X.2019.Association analysis of Tacr3 gene polymorphism and lamb number in sheep[J].China Animal Husbandryamp;Vete-rinary Medicine,46(5):1405-1412.]doi:10.16431/j.cnki.1671-7236.2019.05.018.
崔世泉,李劍虹,崔衛(wèi)國,包軍.2007.母豬哺乳初期的母性行為與催乳素受體基因多態(tài)性關(guān)系的初探[J].遺傳,29(1):47-51.[Cui S Q,Li J H,Cui W G,Bao J.2007.Pre-liminary study on the relationship between sow maternal behaviour during early lactation and polymorphism of PRLR gene[J].Hereditas,29(1):47-51.]doi:10.16288/j.yczz.2007.01.009.
潘章源,狄冉,劉秋月,儲明星.2015.綿羊多羔主效基因BMPR1B的研究進展[J].家畜生態(tài)學報,36(5):1-6.[Pan Z Y,Di R,Liu Q Y,Chu M X.2015.Advances in ovine prolificacy gene BMPR1B[J].Acta EcologaeAnimalisDomastici,36(5):1-6.]doi:10.3969/j.issn.1673-1182.2015.05.001.
齊婧,譚婭,張靜,張雄,趙春萍,杜春林,王婧,周思旋,史開志.2023.柯樂豬與大白豬胴體性狀、肉質(zhì)性狀研究及相關(guān)性分析[J].現(xiàn)代畜牧科技,(7):1-6.[Qi J,Tan Y,Zhang J,Zhang X,Zhao C P,Du C L,Wang J,Zhou S X,Shi K Z.2023.Study and correlation analysis on carcass and meat quality between Kole pig and large white pig[J].Modern Animal Husbandry Scienceamp;Technology,(7):1-6.]doi:10.19369/j.cnki.2095-9737.2023.07.001.
王婷.2016.Tac3/Tacr3在黑線倉鼠繁殖過程中的調(diào)控作用[D].曲阜:曲阜師范大學.[Wang T.2016.Regulation of Tac3/Tacr3 during reproduction of black-line hamsters[D].Qufu:Qufu Normal University.]doi:10.7666/d.D01063407.
向進,王春源,吳燕,譚元成,楊酸,張依裕.2023.柯樂豬DSP基因SNP鑒定及其與繁殖性狀的關(guān)聯(lián)分析[J].中國畜牧雜志,59(8):95-102.[Xiang J,Wang C Y,Wu Y,Tan Y C,Yang S,Zhang Y Y.2023.SNP identification of DSP gene in Kele pigs and its association analysis with repro-ductive traits[J].Chinese Journal of Animal Science,59(8):95-102.]doi:10.19556/j.0258-7033.20230630-07.
楊蓮,燕志宏,黃維江,楊仕鈺,吳光松,顧麗菊,林鵬飛,楊蓉,李平,任麗群,張蕓.2021.純種柯樂豬與巴×柯雜交豬腸道菌群結(jié)構(gòu)的研究[J].動物營養(yǎng)學報,33(3):1359-1371.[Yang L,Yan Z H,Huang W J,Yang S Y,Wu G S,Gu L J,Lin P F,Yang R,Li P,Ren L Q,Zhang Y.2021.Study on intestinal microflora structure of pure-bred Kele pigs and Berkshire×Kele hybrid pigs[J].Chinese Journal of Animal Nutrition,33(3):1359-1371.]doi:10.3969/j.issn.1006-267x.2021.03.019.
楊酸,郭小江,楊紅文,熊力,李晨,譚元成,王春源,張依裕.2023.柯樂豬PRLR基因多態(tài)性與繁殖性狀的關(guān)聯(lián)性[J].浙江農(nóng)業(yè)學報,35(3):556-564.[Yang S,Guo X J,Yang H W,Xiong L,Li C,Tan Y C,Wang C Y,Zhang Y Y.2023.Correlation of PRLR gene polymorphisms and reproductive traits in Kele pig[J].Acta Agriculturae Zhe-jiangensis,35(3):556-564.]doi:10.3969/j.issn.1004-1524.2023.03.08.
張意茗.2015.特發(fā)性低促性腺激素性性腺功能減退癥致病基因篩選及IVF妊娠結(jié)局分析[D].濟南:山東大學.[Zhang Y M.2015.Screening of causative genes in Chi-nese patients with idiopathic hypogonadotropic hypogo-nadism(IHH)and the reproductive performance of women with IHH during in vitro fertilization and embryo transfertreatment[D].Jinan:Shandong University.]doi:10.7666/d.Y2792589.
Barros M,Dempster E L,Illott N,Chabrawi S,Maior R S,Tomaz C,de Souza Silva M A,Huston J P,Mill J,Müller C P.2013.Decreased methylation of the Nk3 receptor co-ding gene(Tacr3)after cocaine-induced placepreference in marmoset monkeys[J].Addiction Biology,18(3):452-454.doi:10.1111/j.1369-1600.2011.00409.x.
Bellucci F,Carini F,Catalani C,Cucchi P,Lecci A,Meini S,
Patacchini R,Quartara L,Ricci R,Tramontana M,Giuliani S,Maggi C A.2002.Pharmacological profile of the novel mammalian tachykinin,hemokinin 1[J].British Journal of Pharmacology,135(1):266-274.doi:10.1038/sj.bjp.0704 443.
Blasco V,Pinto F M,F(xiàn)ernández-Atucha A,Prados N,Tena-
Sempere M,F(xiàn)ernández-Sánchez M,Candenas L.2019.Altered expression of the kisspeptin/KISS1R and neuroki-nin B/NK3R systems in mural granulosa and cumulus cells of patients with polycystic ovarian syndrome[J].Journal of Assisted Reproduction and Genetics,36(1):113-120.doi:10.1007/s 10815-018-1338-7.
Camarda V,Rizzi A,Calo G,Guerrini R,Salvadori S,Regoli D.2002.Pharmacological profile of hemokinin 1:A novel member of the tachykinin family[J].Life Sciences,71(4):363-370.doi:10.1016/s0024-3205(02)01682-x.
Daoui S,Ahnaou A,Naline E,Emonds-Alt X,Lagente V,Advenier C.2001.Tachykinin NK3 receptor agonists induced microvascular leakage hypersensitivity in the guinea-pig airways[J].European Journal of Pharmaco-logy,433(2-3):199-207.doi:10.1016/s0014-2999(01)01505-9.
Florido A,Velasco E R,Romero L R,Acharya N,Marin Blasco I J,Nabás J F,Perez-Caballero L,Rivero G,Olabarrieta E,Nu?ez-Delmoral A,González-Parra J A,Porta-Casteràs D,Cano M,Steward T,Antony M S,Cardoner N,Torrubia R,Jackson A C,F(xiàn)ullana M A,Andero R.2024.Sex diffe-rences in neural projections of fear memory processing in mice and humans[J].Science Advances,10(28):eadk3365.doi:10.1126/sciadv.adk3365.
Nakamura S,Miwa M,Morita Y,Ohkura S,Yamamura T,Waka-bayashi Y,Matsuyama S.2021.Neurokinin 3 receptor-selective agonist,senktide,decreases core temperature in Japanese Black cattle[J].Domestic Animal Endocrinology,74:106522.doi:10.1016/j.domaniend.2020.106522.
Navarro V M,Castellano J M,McConkey S M,Pineda R,Ruiz-Pino F,Pinilla L,Clifton D K,Tena-Sempere M,Steiner R A.2011.lnteractions between kisspeptin and neurokinin B in the control of GnRH secrefion in the female rat[J].American Journal of Physiology Endocrinology and Meta-bolism,300(1):E202-E210.doi:10.1152/ajpendo.00517.2010.
Obata K,Shimo T,Okui T,Matsumoto K,Takada H,Taka-batake K,Kunisada Y,Ibaragi S,Nagatsuka H,Sasaki A.2016.Tachykinin receptor 3 distribution in human oral squamous cell carcinoma[J].Anticancer Research,36(12):6335-6341.doi:10.21873/anticanres.11230.
Qi X,Salem M,Zhou W Y,Sato-Shimizu M,Ye G,Smitz J,Peng C.2016.Neurokinin B exerts direct effects on the ovary to stimulate estradiol production[J].Endocrinology,157(9):3355-3365.doi:10.1210/en.2016-1354.
Ribeiro S J,Teixeira R M,Calixto J B,de Lima T C M.1999.Tachykinin NK3 receptor involvement in anxiety[J].Neu-ropeptides,33(2):181-188.doi:10.1054/npep.1999.0021.
Serrote C M L,Reiniger L R S,Silva K B,Rabaiolli S M D S,Stefanel C M.2020.Determining the polymorphism infor-mation content of a molecular marker[J].Gene,726:144175.doi:10.1016/j.gene.2019.144175.
Topaloglu A K,Kotan L D,Yuksel B.2010.Neurokinin B sig-nalling in human puberty[J].Journal of Neuroendocrino-logy,22(7):765-770.doi:10.1111/j.1365-2826.2010.02013.x.
Valdes-Socin H,Rubio Almanza M,ToméFernández-LadredaM,Debray F G,Bours V,Beckers A.2014.Reproduction,smell,and neurodevelopmental disorders:Genetic defects in different hypogonadotropic hypogonadal syndromes[J].Frontiers in Endocrinology,5:109.doi:10.3389/fendo.2014.00109.
Valero M S,F(xiàn)agundes D S,Grasa L,Arruebo M P,Plaza Má,Murillo M D.2011.Contractile efectoftachykinins on rab-bit small intestine[J].Acta Pharmacologica Sinica,32(4):487-494.doi:10.1038/aps.2010.227.
Xin X J,Zhang J,Chang Y N,Wu Y X.2015.Association study of TAC3 and TACR3 gene polymorphisms with idio-pathic precocious puberty in Chinese girls[J].Journal of Pediatric Endocrinology and Metabolism,28(1-2):65-71.doi:10.1515/jpem-2013-0460.
Zhang W W,Wang Y Q,Chu Y X.2020.Tacr3/NK3R:Beyond their roles in reproduction[J].ACS Chemical Neuros-cience,11(19):2935-2943.doi:10.1021/acschemneuro.0c00421.
Zhang W W,Chen T,Li S Y,Wang X Y,Liu W B,Wang Y Q,Mi W L,Mao-Ying Q L,Wang Y Q,Chu Y X.2023.Tachykinin receptor 3 in the lateral habenula alleviates pain and anxiety comorbidity in mice[J].Frontiers in Immunology,14:1049739.doi:10.3389/fimmu.2023.104 9739.
Zuo C P,Lyu L,Zou W H,Wen H S,Li Y,Qi X.2022.TAC3/TACR3 system function in the catadromous migration te-leost,Anguilla japonica[J].Frontiers in Endocrinology,13:848808.doi:10.3389/fendo.2022.848808.
(責任編輯蘭宗寶)