摘要:研究一類Euler-Bernoulli方程的能量衰減問(wèn)題.在混合邊界控制下,利用耗散反饋算子和變量替換,建立了能量衰減不等式,證明了Euler-Bernoulli方程解的能量是指數(shù)衰減的.
關(guān)鍵詞:Euler-Bernoulli方程;混合邊界控制;指數(shù)衰減;反饋算子;變量替換
中圖分類號(hào):O 231.4""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-988Ⅹ(2024)05-0104-06
Exponential decay of energy for Euler-Bernoulli
equation with mixed boundary control
BAI Zhong-yu
(Basic Teaching Department,Xinjiang University of Political Science and Law,Tumushuke 843900,Xinjiang,China)
Abstract:The energy decay of a class of Euler-Bernoulli equations is studied.Under mixed boundary control,the dissipative feedback operator and variable substitution are used to establish an energy estimation inequality.It is proved that the energy of the solution of Euler-Bernoulli equation decays exponentially.
Key words:Euler-Bernoulli equation;mixed boundary control;exponential decay;feedback operator;variable substitution
能量衰減問(wèn)題是偏微分方程邊界控制理論中一個(gè)十分重要的研究領(lǐng)域,特別地,Euler-Bernoulli方程的衰減問(wèn)題近年來(lái)引起了越來(lái)越多學(xué)者的關(guān)注[1-9],取得的成果豐富和發(fā)展了控制理論中能量衰減的理論.
Lazzari等[10]利用算子半群,證明了具有邊界能量耗散的Euler-Bernoulli方程的能量衰減,給出了指數(shù)衰減的一個(gè)充要條件.Han等[11]基于Lyapunov方法,將指數(shù)穩(wěn)定性問(wèn)題轉(zhuǎn)化為不等式方程的可解性,研究了具有內(nèi)部時(shí)間延遲和邊界阻尼的Euler-Bernoulli梁的指數(shù)衰減.Benaissa等[12]考慮了具有時(shí)變內(nèi)部流體的Euler-Bernoulli方程的能量衰減,通過(guò)引入Lyapunov泛函,建立了指數(shù)衰減不等式.但在抽象系統(tǒng)框架下,有關(guān)Euler-Bernoulli方程指數(shù)衰減的研究還較少.Rebiai[13]在Dirichlet邊界條件下,通過(guò)抽象系統(tǒng)、變量替換和乘子技術(shù),討論了變系數(shù)Schrdinger方程的指數(shù)衰減.本文將文獻(xiàn)[13]的方法用于Euler-Bernoulli方程,首先用算子理論把系統(tǒng)化為二階抽象形式,然后選取合適的耗散反饋算子,通過(guò)變量替換和乘子法得出Euler-Bernoulli方程在最優(yōu)空間上的能量衰減估計(jì)不等式.
考慮Euler-Bernoulli方程
wtt+Δ2w=0, (x,t)∈Ω×(0,T),
w=0, (x,t)∈?!粒?,T),
wν=0, (x,t)∈Γ0×(0,T),
wν=Δ(A-1wt), (x,t)∈Γ1×(0,T),
w(x,0)=w0,wt(x,0)=w1, x∈Ω,(1)
其中,Ω是Rn中具有光滑邊界Γ=Ω的有界開集,ν是Γ上的單位外法向量,Γ0和Γ1是邊界Γ上兩個(gè)不相交的開集,Γ0∪Γ1=Γ,算子A:L2(Ω)D(A)L2(Ω)是正定自共軛算子,
Af=Δ2f, D(A)=H4(Ω)∩H20(Ω).(2)
由文獻(xiàn)[14]可得
D(A1/4)=H10(Ω),
D(A1/2)=H20(Ω)=
f∈H2(Ω):fΓ=fνΓ=0,
因此,對(duì)f∈D(A1/4)=H10(Ω),由Poincare不等式[15]可得等價(jià)范數(shù)
fD(A1/4)=A1/4fL2(Ω)=
fH1(Ω)=∫Ωf2dx1/2;
同理,對(duì)f∈D(A1/2)=H20(Ω),也有
fD(A1/2)=A1/2fL2(Ω)=∫ΩΔf2dx1/2.(3)
1 預(yù)備知識(shí)
考慮齊次邊值問(wèn)題
wtt+Δ2w=0, (x,t)∈Ω×(0,T],
w=0, (x,t)∈?!粒?,T],
wν=0, (x,t)∈Γ×(0,T],
w(x,0)=w0,wt(x,0)=w1, x∈Ω.
映射(w0,w1)(w,wt)定義了L2(Ω)×[D(A1/2)]′上的一個(gè)酉群.
設(shè)算子L:L2(Γ)H3/2(Ω)∩H10(Ω)如下:
Lu=y
Δ2y=0, (x,t)∈Ω×(0,T],
y=0, (x,t)∈?!粒?,T],
yν=0, (x,t)∈Γ0×(0,T],
yν=u, (x,t)∈Γ1×(0,T].
定義L的共軛算子L*為
(Lu,v)L2(Ω)=(u,L*v)L2(Γ1),
u∈L2(Γ1),v∈L2(Ω).
進(jìn)而由Green定理[16]可知,對(duì)f∈D(A),有
L*Af=0, x∈Γ0,
-Δf, x∈Γ1.
于是,選取反饋算子F=F(wt),使得
wν=u=F(wt)=-L*wt=
-L*AA-1wt=ΔA-1wt,
(x,t)∈Γ1×(0,∞),(4)
則由文獻(xiàn)[17],系統(tǒng)(1)可化為二階抽象形式
wtt=-Aw-ALL*wt,(5)
ddtwwt=Λwwt,
(w,wt)∈L2(Ω)×H-2(Ω),
其中
Λ=0I
-A-ALL*,(6)
D(Λ)={y:Λy∈L2(Ω)×H-2(Ω)}.
由(6)式可知,對(duì)(z1,z2)∈D(Λ),有
Λz=(z2,-Az1-ALL*z2)∈
L2(Ω)×[D(A1/2)]′,
這表明
z1+LL*z2∈D(A1/2)=H20(Ω),
z2∈L2(Ω).(7)
因此,由算子L的定義和(7)式可得
LL*z2∈H3(Ω)∩H10(Ω),
z1∈H2(Ω)∩H10(Ω).(8)
結(jié)合(7)和(8)式,若(w0,w1)∈D(Λ),則
w∈C([0,T];H2(Ω)∩H10(Ω)),
w1∈C([0,T];L2(Ω)).
從而由Lumer-Phillips定理[18],算子Λ生成了L2(Ω)×[D(A1/2)]′上的一個(gè)強(qiáng)連續(xù)壓縮半群,記為w(t)=eΛtw0.
對(duì)(w0,w1)∈L2(Ω)×[D(A1/2)]′,定義系統(tǒng)(1)的能量
E(t)=eΛt(w0,w1)2L2(Ω)×[D(A1/2)]′=
w2L2(Ω)+A-1/2wt2L2(Ω).(9)
由(4)式,系統(tǒng)(1)的解w滿足
dE(t)dt=-2∫Γ1wν2dΓ=
-2L*wt2L2(Γ1)=
-2Δ(A-1wt)2L2(Γ1)≤0,(10)
E(t)-E(0)=-2∫t0∫Γ1wν2dΓdt=
-2∫t0L*wt2L2(Γ1)dt,(11)
∫∞0∫Γ1wν2dΓdt=
∫∞0L*wt2L2(Γ1)dt≤E(0).(12)
根據(jù)文獻(xiàn)[19],引入新變量,令A(yù)1/2p=A-1/2wt,即
p=A-1wt∈
C(0,T;D(A1/2)),
(w0,w1)∈L2(Ω)×
[D(A1/2)]′;"""" (13)
C([0,T];D(A)),
(w0,w1)∈D(Λ).
則由(5)和(13)式可得
pt=A-1wtt=-w-LL*wt
∈
L2((0,T);L2(Ω)), (w0,w1)
∈L2(Ω)×[D(A1/2)]′;
C([0,T];D(A1/2)),
(w0,w1)∈D(Λ).(14)
因此,由(14)式可得
ptt=-wt-LL*wtt=-Ap-LL*wtt.(15)
由標(biāo)量函數(shù)p(x,t),x∈Ω可得對(duì)應(yīng)的向量值函數(shù)p(t)=p(x,t),x∈Ω,(15)式改寫為
ptt+Δ2p=Ψ, (x,t)∈Ω×(0,∞),
p=pν=0, (x,t)∈Γ×(0,∞),
p(x,0)=p0,p1(x,0)=p1, x∈Ω,(16)
其中
p0=A-1w1∈D(A),
p1=A-1wtt(0)=-(w0+LL*w1)∈D(A1/2),
且
Ψ=-LL*wtt=-LL*AA-1wtt=L(Δpt),
(x,t)∈Γ1×(0,T].(17)
結(jié)合(3),(13)和(14)式可得
wt[D(A1/2)]′=A-1/2wtL2(Ω)=
A1/2pL2(Ω)=∫Ω(Δp)2dx1/2,(18)
pt=-w-LL*wt.(19)
又Ψ在L2(Γ)中有界,則由(12)式,有
wν=-L*wt∈L2(0,∞;L2(Γ1)).
由系統(tǒng)(1)解的能量E(t)的定義及(18)和(19)式,有
E(t)=∫Ω(p2t(t)+(Δp(t))2)dx+
L*wt2L2(Γ1).(20)
2 主要結(jié)果
先證下面的估計(jì).
引理1 設(shè)有向量場(chǎng)
h(x)=(h1(x),h2(x),…,hn(x))∈(C3))n,(w0,w1)∈D(Λ),使得
(p0,p1)∈D(A)×D(A1/2),
則存在C1gt;0,對(duì)任意εgt;0,有
-∫T0∫ΩΨh·pdxdt-12∫T0∫ΩΨpdivhdxdt+
(p1,h·p)T0+12(pt,pdivh)T0=
-(w,h·p)T0-12(w,pdivh)T0-
∫T0(LL*wt,h·pt)dt-
12∫T0(LL*wt,ptdivh)dt≥
-C1(E(T)+E(0))-
C1ε∫T0L*wt2L2(Γ1)dt-
ε∫T0pt2L2(Ω)dt.(21)
證明 (17)式中的Ψ=-LL*wtt關(guān)于t分部積分可得
-∫T0∫ΩΨh·pdxdt=
∫T0(LL*wtt,h·p)dt=
(LL*wt,h·p)T0-
∫T0(LL*wt,h·pt)dt.(22)
又由(14)式,有
LL*wt=-w-pt,(23)
結(jié)合(22)和(23)式可得
-∫T0∫ΩΨh·pdxdt+(pt,h·p)T0=
-(w,h·p)T0-
∫T0(LL*wt,h·pt)dt;(24)
同理
-∫T0∫ΩΨpdivhdxdt+(pt,pdivh)T0=
-(w,pdivh)T0-
∫T0(LL*wt,ptdivh)dt.(25)
由(24)和(25)式可得(21)式中的等號(hào)成立.
利用散度定理[20],有
∫Ωh·φdx=∫Γφh·νdΓ-
∫Ωφh·dx-∫Ωφdivhdx.
令=-LL*wt,φ=pt,則由(16)式中的p=0,(x,t)∈?!粒?,T]和算子L的定義,可得
(LL*wt,h·pt)+12(LL*wt,ptdivh)=
-12(LL*wt,ptdivh)-
(pt,h·(LL*wt))≤
L*wtL2(Γ1)ptL2(Ω).(26)
最后,結(jié)合(26),(18)和(9)式可得
-∫T0∫ΩΨh·pdxdt-
12∫T0∫ΩΨpdivhdxdt+
(pt,h·p)T0+12(pt,pdivh)T0≥
-C1(E(T)+E(0))-
C1ε∫T0L*wt2L2(Γ1)dt-
ε∫T0pt2L2(Ω)dt,
即估計(jì)式(21)成立." 】
定理1 系統(tǒng)(1)是指數(shù)衰減的,如果存在M≥1,δgt;0,使得系統(tǒng)(1)的解滿足
(w,wt)L2(Ω)×[D(A1/2)]′=
eΛt(w0,wt)L2(Ω)×[D(A1/2)]′≤
Me-δt(w0,wt)L2(Ω)×[D(A1/2)]′.(27)
證明 由(9)式中E(t)的定義,為證(27)式,只需證存在0lt;Tlt;∞,使得
E(T)≤σE(0), σlt;1.(28)
由(12)式,要證(28)式,即證存在CTgt;0,滿足
E(T)≤CT∫T0∫Γ1wν2dΓdt.(29)
用h·p乘以(16)式的第一個(gè)方程,并分部積分可得
12∫T0∫Γ(Δp)2h·νdΓdt=
2∫T0∫ΩΔp·∑ni=1(hi·pxi)dxdt+
∫T0∫ΩΔp·(Δh1,Δh2,…,Δhn)·pdxdt+
12∫T0∫Ω[p2t-(Δp)2]divhdxdt-
∫T0∫ΩΨh·pdxdt+(pt,h·p)T0.
記
H=H(x)=
h1x1h1x2…h(huán)1xn
hnx1hnx2…h(huán)nxn,
注意到
div(Hp)=∑ni=1(hi·pxi)+
p·(divh),(30)
div(HTp)=∑ni=1(hi·pxi)+
(Δh1,Δh2,…,Δhn)·p,(31)
則由(30)和(31)式可得
div[(H+HT)p]=
2∑ni=1(hi·pxi)+
p·(divh)+
(Δh1,Δh2,…,Δhn)·p,
因此
12∫T0∫Γ(Δp)2h·νdΓdt=
12∫T0∫Ω[p2t-(Δp)2]divhdxdt+
∫T0∫ΩΔp·div[(H+HT)p]dxdt-
∫T0∫ΩΔpp·(divh)dxdt-
∫T0∫ΩΨh·pdxdt+(pt,h·p)T0=
2∫T0∫ΩΔp·∑ni=1(hi·pxi)dxdt+
∫T0∫ΩΔp·(Δh1,Δh2,…Δhn)·pdxdt+
12∫T0∫ΩpΔp·Δ(divh)dxdt+
∫T0∫ΩΔpp·(divh)dxdt-
∫T0∫ΩΨh·pdxdt-
12∫T0∫ΩΨp·divhdxdt+
(pt,h·p)T0+12(pt,pdivh)T0=
∫T0∫ΩΔp·div[(H+HT)p]dxdt+
12∫T0∫ΩpΔp·Δ(divh)dxdt-
∫T0∫ΩΨh·pdxdt-
12∫T0∫ΩΨp·divhdxdt+
(pt,h·p)T0+12(pt,pdivh)T0.(32)
取h(x)=x-x0,x0∈Rn, 使得
Γ0={x∈Γ:(x-x0)·ν≤0},
則H(x)=I,divh=dimΩ=n,(divh)=0,于是,(32)式化為
12∫T0∫Γ(Δp)2h·νdΓdt=
2∫T0∫Ω(Δp)2dxdt-
∫T0∫ΩΨh·pdxdt-
12∫T0∫ΩΨp·divhdxdt+
(pt,h·p)T0+12(pt,pdivh)T0.(33)
再用pdivh乘以(16)式的第一個(gè)方程,并分部積分可得
∫T0∫Ω[p2t-(Δp)2]divhdxdt=
-∫T0∫ΩΨpdivhdxdt+
∫T0∫ΩpΔpΔ(divh)dxdt+
2∫T0∫ΩΔpp·(divh)dxdt+
(pt,pdivh)T0.(34)
注意到當(dāng)divh=1時(shí)(34)式也成立,從而
∫T0∫Ω(Δp)2dxdt=∫T0∫Ωp2tdxdt+
∫T0∫ΩΨpdxdt-(pt,p)T0.(35)
將(35)式代入(33)式可得
12∫T0∫Γ(Δp)2h·νdΓdt=
2∫T0∫Ωp2tdxdt-∫T0∫ΩΨh·pdxdt-
12∫T0∫ΩΨp·divhdxdt+
2∫T0∫ΩΨpdxdt-2(pt,p)T0+
(pt,h·p)T0+12(pt,pdivh)T0.(36)
由(33)和(36)式可得
∫T0∫Γ(Δp)2h·νdΓdt=
2∫T0∫Ω[(Δp)2+p2t]dxdt+
2∫T0∫ΩΨpdxdt-2(pt,p)T0-
2∫T0∫ΩΨh·pdxdt+
12∫T0∫ΩΨp·divhdxdt-
(pt,h·p)T0-12(pt,pdivh)T0.(37)
下面估計(jì)(37)式的右端.由(11),(20)式和引理1可得
(37)式的右端≥
(2-ε)∫T0E(t)dt-C2[E(T)+E(0)]-
C1ε∫T0L*wt2L2(Γ1)dt≥
(2-ε)∫T0E(t)dt-2C2E(T)-
C3∫T0∫Γ1wν2dΓdt,(38)
其中Cigt;0, i=2,3.
接著估計(jì)(37)式的左端.由(4)和(13)式可得
wν=ΔA-1wt=Δp, (x,t)∈Γ1×(0,T],
從而
(37)式的左端=
∫T0∫Γ(Δp)2(x-x0)·νdΓdt≤
∫T0∫Γ1(Δp)2(x-x0)·νdΓdt≤
C4∫T0∫Γ1wν2dΓdt,(39)
其中C4gt;0.
結(jié)合(38)和(39)式,并利用(10)式中E(t)的耗散性可得
C5∫T0∫Γ1wν2dΓdt≥
(2-ε)∫T0E(t)dt-2C6E(T)≥
[(2-ε)T-2C6]E(T).
其中Cigt;0,i=5,6.所以當(dāng)T充分大時(shí),即得(29)式." 】
參考文獻(xiàn):
[1] WEI Q,WANG L.Exponential stabilization of Euler-Bernoulli beam with uncertain disturbance[J].Int J Control,2019,94(6):1622.
[2] LI J,CHAI S G.Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback[J].J Math Anal Appl,2016,443(2):981.
[3] ZHOU H C,F(xiàn)ENG H Y P.Stabilization for Euler-Bernoulli beam equation with boundary moment control and disturbance via a new disturbance estimator[J].J Dyna and Control Sys,2021,27:247.
[4] WU J L,SHANG Y F.Exponential stabilization of Euler-Bernoulli beam with input time-delay in the boundary control[J].J Harbin Inst Technol(New Series),2019,26(3):20.
[5] 郝江浩,張晉周.一類變系數(shù)Euler-Bernoulli板方程解的穩(wěn)定性[J].山西大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,34(2):169.
[6] ZHANG W,ZHANG Z F.Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks[J].J Math Anal Appl,2015,422(2):1504.
[7] YANG Z F.Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay[J].Zamm-Z Angew Math Phy,2015,66(3):727.
[8] LIU J K,GUO B Z.A novel semi-discrete scheme preserving uniformly exponential stability for an Euler-Bernoulli beam[J].Syst Control Lett,2019,134:1.
[9] AOURAGH M D,BOUKILI A E.Stabilization of variable coefficients Euler-Bernoulli beam equation with a tip mass controlled by combined feedback forces[J].Ann Univ Craiova-Mat,2015,42(1):238.
[10] LAZZARI B,NIBBI R.On the exponential decay of the Euler-Bernoulli beam with boundary energy dissipation[J].J Math Anal Appl,2012,389(2):1078.
[11] HAN P C,LI Y F,XU G Q,et al.The exponential stability result of an Euler-Bernoulli beam equation with interior delays and boundary damping[J].J Diff Equa,2016(10):1.
[12] BENAISSA A,ABDELLI M,DUCA A.Well-posedness and exponential decay for the Euler-Bernoulli beam conveying fluid equation with non-constant velocity and dynamical boundary conditions[J].Zamm-Z Angew Math Phy,2021,72(2):1.
[13] REBIAI S E.Uniform energy decay of Schrdinger equations with variable coefficients[J].IMA J Math Control and Infor,2003,20(3):335.
[14] GRISVARD P.Caracterization de quelques espaces d’interpolation[J].Arch Rational Mech Anal,1967(25):40.
[15] 郭寶珠,柴樹根.無(wú)窮維線性系統(tǒng)控制理論[M].北京:科學(xué)出版社,2012.
[16] LASIECKA I,TRIGGIANI R.Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions:a nonconservative case[J].SIAM J Control Optim,1989,27(2):330.
[17] LASIECKA I,TRIGGIANI R.A cosine operator approach to modeling L2(0,T;L2(Γ))-boundary input hyperbolic equations[J].App Math Optim,1981,7(1):35.
[18] PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].New York:Springer-Verlag,1983.
[19] TRIGGIANI R.Wave equation on a bounded domain with boundary dissipation:An operator approach[J].J Math Anal Appl,1989,137(2):438.
[20] TAYLOR M E.Partial Differential Equation I:Basic Theory[M].New York:Springer-Verlag,1996.
(責(zé)任編輯 馬宇鴻)