亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        豆甾醇治療膠質(zhì)母細(xì)胞瘤靶基因預(yù)測(cè)及相關(guān)預(yù)后模型的建立

        2024-01-01 00:00:00朱強(qiáng)李瑞春郭世梁晨

        摘要:目的 預(yù)測(cè)豆甾醇治療膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)的潛在靶基因并構(gòu)建相關(guān)預(yù)后模型,以期揭示其抗膠質(zhì)瘤的作用機(jī)制,并探討這些靶基因在GBM患者預(yù)后中的作用。方法 通過(guò)數(shù)據(jù)庫(kù)獲得GBM差異表達(dá)基因及豆甾醇靶基因,使用韋恩圖篩選豆甾醇治療GBM的潛在靶基因并使用R語(yǔ)言進(jìn)行富集分析。采用單因素COX回歸分析和最小絕對(duì)收縮與選擇算子(least absolute shrinkage and selection operator,LASSO)分析篩選與GBM患者預(yù)后相關(guān)的豆甾醇靶基因并構(gòu)建相關(guān)的預(yù)后模型。采用逆轉(zhuǎn)錄實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(real-time quantitative reverse transcription polymerase chain reaction,RT-qPCR)和Western blotting分析檢測(cè)豆甾醇對(duì)相關(guān)靶基因表達(dá)的影響。結(jié)果 共獲得31個(gè)豆甾醇治療GBM的潛在靶基因。富集分析顯示,這些靶基因與G蛋白偶聯(lián)受體(G protein-coupled receptor,GPCR)信號(hào)通路的激活和脂質(zhì)代謝的調(diào)控有關(guān)?;貧w分析篩選出2個(gè)與GBM預(yù)后相關(guān)的豆甾醇靶基因脂肪酸結(jié)合蛋白5(fatty acid binding protein 5,F(xiàn)ABP5)和α-1B腎上腺素能受體(alpha-1B adrenergic receptor,ADRA1B),基于這2個(gè)基因構(gòu)建的預(yù)后模型能夠準(zhǔn)確預(yù)測(cè)GBM患者的預(yù)后。豆甾醇能夠抑制GBM細(xì)胞中這2種基因在轉(zhuǎn)錄及翻譯水平的表達(dá)(FABP5:t=9.909,P=0.001;ADRA1B:t=3.319,P=0.029)。結(jié)論 豆甾醇的抗膠質(zhì)瘤作用可能與GPCR信號(hào)通路及脂質(zhì)代謝的調(diào)控有關(guān)。通過(guò)抑制FABP5及ADRA1B的表達(dá),豆甾醇可能具有改善GBM患者預(yù)后的潛在作用。同時(shí),以FABP5及ADRA1B的表達(dá)水平構(gòu)建的預(yù)后模型在預(yù)測(cè)GBM患者預(yù)后及監(jiān)測(cè)療效方面可能能夠發(fā)揮一定的作用。

        關(guān)鍵詞:豆甾醇;膠質(zhì)母細(xì)胞瘤(GBM);預(yù)后模型

        中圖分類(lèi)號(hào):R730.5

        文獻(xiàn)標(biāo)志碼:A

        DOI:10.7652/jdyxb202406005

        收稿日期:2024-05-30

        修回日期:2024-07-31

        基金項(xiàng)目:陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No. 2024SF-YBXM-047)

        Supported by the Key Research and Development Plan of Shaanxi Province (No. 2024SF-YBXM-047)

        通信作者:梁晨,副主任醫(yī)師. E-mail:liangchen01@xjtu.edu.cn

        網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1399.r.20240812.1341.002.html (2024-08-13)

        Prediction of target genes and establishment of related prognostic model for the treatment of glioblastoma with stigmasterol

        ZHU Qiang1,2, LI Ruichun1, GUO Shiwen1, LIANG Chen1

        (1. Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061; 2. Department of Neurosurgery, the Affiliated Hospital of Yan’an University, Yan’an 716000, China)

        ABSTRACT: Objective To predict potential target genes for the treatment of glioblastoma (GBM) with stigmasterol and construct a relevant prognostic model, in order to reveal its antiglioma mechanism and the role of these target genes in the prognosis of GBM patients. Methods Differential expression genes in GBM and stigmasterol target genes were obtained via online databases. Venn diagram was used to select potential target genes for stigmasterol treatment of GBM, and enrichment analysis was performed using R language. Univariate COX regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were made to select stigmasterol target genes related to the prognosis of GBM patients and construct a relevant prognostic model. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting analyses were used to detect the effect of stigmasterol on the expressions of related target genes. Results In this study, a total of 31 potential target genes for the treatment of GBM with stigmasterol were identified. Enrichment analysis showed that these target genes were associated with the activation of the G protein coupled receptor (GPCR) signaling pathway and the regulation of lipid metabolism. Regression analysis identified two stigmasterol target genes, namely, fatty acid binding protein 5 (FABP5) and alpha 1B adrenergic receptor (ADRA1B), which are associated with the prognosis of GBM. A prognostic model constructed based on these two genes could accurately predict the prognosis of GBM patients. Finally, stigmasterol inhibited the expressions of these two genes in GBM cells (FABP5: t=9.909, P=0.001; ADRA1B: t=3.319, P=0.029). Conclusion Stigmasterol’s anti-tumor effect may be linked to its regulation of GPCR signaling pathways and lipid metabolism. By inhibiting the expressions of FABP5 and ADRA1B, stigmasterol could potentially enhance the prognosis for GBM patients. Additionally, a prognostic model based on the expression levels of FABP5 and ADRA1B can be valuable for predicting patient outcomes and monitoring therapeutic efficacy in GBM.

        KEY WORDS: stigmasterol; glioblastoma (GBM); prognostic model

        膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)是最常見(jiàn)的人類(lèi)原發(fā)性惡性腦腫瘤[1。盡管對(duì)于GBM新療法的研究是目前神經(jīng)外科基礎(chǔ)及臨床研究的熱點(diǎn)問(wèn)題,但患者的預(yù)后仍然不盡如人意[1。因此,有必要尋找更有效的治療方法來(lái)改善GBM患者的預(yù)后。近年來(lái),天然藥物被證明可有效治療GBM[2-3。這些天然藥物中的許多活性成分,如木犀草素4、槲皮素5和山奈酚6等,已被證明具有抗膠質(zhì)瘤的作用。豆甾醇是一種甾醇化合物,是許多天然藥物中的活性成分7,其被認(rèn)為具有維持細(xì)胞膜結(jié)構(gòu)和生理功能的重要作用8。此外,豆甾醇對(duì)許多類(lèi)型的腫瘤也具有一定的治療作用9。然而,關(guān)于豆甾醇對(duì)GBM作用的研究目前較少。有研究指出,豆甾醇對(duì)膠質(zhì)瘤細(xì)胞具有細(xì)胞毒作用[10。我們之前的研究也證實(shí),豆甾醇可以抑制GBM細(xì)胞的增殖和侵襲[7。然而,其具體機(jī)制目前仍不清楚。本研究旨在通過(guò)生物信息學(xué)方法預(yù)測(cè)豆甾醇治療GBM的潛在靶基因并構(gòu)建相關(guān)預(yù)后模型,以期揭示其抗膠質(zhì)瘤的可能作用機(jī)制,并探討這些靶基因在GBM患者預(yù)后中的作用。

        1 材料與方法

        1.1 細(xì)胞株及培養(yǎng)

        U87 GBM細(xì)胞購(gòu)于武漢Procell公司,細(xì)胞使用含100 mL/L胎牛血清(fetal bovine serum,F(xiàn)BS,Gibco)的DMEM(Dulbecco’s Modified Eagle Medium)培養(yǎng)基(Gibco),在50 mL/L CO2、37 ℃恒溫培養(yǎng)箱中培養(yǎng)。

        1.2 試劑及耗材

        HiScript? Ⅱ Q Select RT SuperMix 逆轉(zhuǎn)錄試劑盒 (Vazyme Biotech Co., Ltd.);2× Q3 SYBR qPCR Master Mix 熒光定量PCR試劑盒(Tolo Biotech Co., Ltd.);兔抗脂肪酸結(jié)合蛋白5(fatty acid binding protein 5,F(xiàn)ABP5)抗體(武漢三鷹),兔抗α-1B腎上腺素能受體(alpha 1B adrenergic receptor,ADRA1B)抗體(武漢三鷹);小鼠抗β-actin抗體(Affinity);HRP(horseradish peroxidase)偶聯(lián)山羊抗兔抗體(碧云天);HRP 偶聯(lián)山羊抗小鼠抗體(武漢三鷹)。

        1.3 豆甾醇治療GBM的潛在靶基因預(yù)測(cè)

        在之前的研究中,通過(guò)R語(yǔ)言分析TCGA(The Cancer Genome Atlas)數(shù)據(jù)庫(kù)(https://www.cancer.gov/about-nci/organization/ccg/research/structural- genomics/tcga)中TCGA-GBM數(shù)據(jù)集獲得了3 100個(gè)GBM差異表達(dá)基因(differentially expressed genes,DEGs)[7。該數(shù)據(jù)集包含174個(gè)樣本信息,其中包括159個(gè)具有完整生存數(shù)據(jù)的GBM患者樣本和5個(gè)正常對(duì)照組織樣本。豆甾醇靶基因來(lái)自SwissTargetPrediction數(shù)據(jù)庫(kù)(http://www.swisstargetprediction.ch/)和TCMSP(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform)數(shù)據(jù)庫(kù)(https://www.tcmsp-e.com/#/database)。使用Venny 2.1(https://bioinfogp.cnb.csic.es/tools/venny/)繪制韋恩圖對(duì)GBM DEGs和豆甾醇靶基因進(jìn)行交叉匹配,篩選豆甾醇治療GBM的潛在靶基因。

        1.4 靶基因富集分析

        使用R語(yǔ)言中的“clusterProfiler”“org.Hs.eg.db”“enrichplot”以及“pathview”包進(jìn)行GO(gene ontology)富集分析及KEGG(Kyoto Encyclopedia of Genes and Genomes)和WP(WikiPathways)通路富集分析。使用“ggplot2”包實(shí)現(xiàn)結(jié)果可視化。

        1.5 豆甾醇治療GBM預(yù)后相關(guān)靶基因的預(yù)測(cè)

        使用單因素COX回歸分析篩選與DEGs中總體生存期(overall survival,OS)相關(guān)的基因,并通過(guò)韋恩圖與豆甾醇治療GBM的潛在靶基因進(jìn)行交叉匹配,獲得豆甾醇治療GBM預(yù)后相關(guān)靶基因。

        1.6 豆甾醇靶基因相關(guān)預(yù)后模型的構(gòu)建和驗(yàn)證

        方法同文獻(xiàn)[11,TCGA-GBM數(shù)據(jù)集中的159個(gè)具有完整生存數(shù)據(jù)的樣本被隨機(jī)分為訓(xùn)練集(n=109)和內(nèi)部驗(yàn)證集(n=50)。此外,使用CGGA數(shù)據(jù)庫(kù)(http://www.cgga.org.cn/)中的mRNAseq-693數(shù)據(jù)集作為外部驗(yàn)證集。使用R語(yǔ)言中“glmnet”包進(jìn)行最小絕對(duì)收縮與選擇算子(least absolute shrinkage and selection operator,LASSO)分析,并根據(jù)LASSO回歸系數(shù)計(jì)算風(fēng)險(xiǎn)評(píng)分,公式如下:

        Risk score=∑ni=1coef(genei)·expr(genei

        其中coef(genei)是風(fēng)險(xiǎn)系數(shù),expr(genei)是預(yù)后相關(guān)基因的表達(dá)水平。根據(jù)中位風(fēng)險(xiǎn)評(píng)分,將訓(xùn)練集中的樣本分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組。采用Kaplan-Meier生存分析對(duì)這2個(gè)風(fēng)險(xiǎn)組的生存差異進(jìn)行比較。為了評(píng)估預(yù)后模型的性能,使用R語(yǔ)言中的“timeROC”包進(jìn)行受試者工作特征(receiver opera-ting characteristic,

        ROC)曲線(xiàn)下面積(area under the curve,AUC)分析。此外,使用訓(xùn)練集構(gòu)建的公式和方法計(jì)算內(nèi)部驗(yàn)證集和外部驗(yàn)證集中GBM患者的風(fēng)險(xiǎn)評(píng)分并評(píng)估其預(yù)測(cè)準(zhǔn)確性。

        1.7 預(yù)后模型獨(dú)立預(yù)后價(jià)值分析

        為進(jìn)一步研究預(yù)后模型的獨(dú)立預(yù)后價(jià)值,將TCGA-GBM數(shù)據(jù)集中患者年齡、性別、O6-甲基鳥(niǎo)嘌呤-DNA-甲基轉(zhuǎn)移酶(methylguanine-DNA methyltransferase,MGMT)類(lèi)型(甲基化/非甲基化)、異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)類(lèi)型(野生型/突變型)及腫瘤病理亞型等臨床病理特征與風(fēng)險(xiǎn)評(píng)分納入單因素及多因素COX獨(dú)立預(yù)后分析,評(píng)估通過(guò)預(yù)后模型獲得的風(fēng)險(xiǎn)評(píng)分是否為GBM患者可靠的獨(dú)立預(yù)后因子。

        1.8 生存預(yù)測(cè)列線(xiàn)圖及校準(zhǔn)曲線(xiàn)的繪制

        使用R語(yǔ)言“rms”包繪制風(fēng)險(xiǎn)評(píng)分相關(guān)的GBM患者生存預(yù)測(cè)列線(xiàn)圖,并繪制校準(zhǔn)曲線(xiàn),評(píng)估通過(guò)預(yù)后模型獲得的風(fēng)險(xiǎn)評(píng)分在預(yù)測(cè)患者生存率中的作用。

        1.9 逆轉(zhuǎn)錄實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(RT-qPCR)

        將U87細(xì)胞以5×105個(gè)細(xì)胞/孔的密度接種在6孔板中,240 μmol/L豆甾醇干預(yù)24 h后提取總RNA。使用HiScript? Ⅱ Q Select RT SuperMix試劑盒進(jìn)行RNA逆轉(zhuǎn)錄。使用2× Q3 SYBR qPCR Master Mix試劑盒在ViiATM 7實(shí)時(shí)熒光定量PCR系統(tǒng)上進(jìn)行PCR擴(kuò)增,并使用QuantStudioTM實(shí)時(shí)熒光定量PCR軟件v1.6.1進(jìn)行分析。所用引物由北京擎科生物科技有限公司設(shè)計(jì)和合成(表1)。數(shù)據(jù)處理采用2-ΔΔCt法。

        1.10 Western blotting分析

        將U87細(xì)胞以5×105個(gè)細(xì)胞/孔的密度接種在6孔板中,240 μmol/L豆甾醇干預(yù)24 h后進(jìn)行Western blotting分析,具體方法同參考文獻(xiàn)[12。一抗?jié)舛龋和每笷ABP5抗體1∶2 000;兔抗ADRA1B抗體1∶1 000;小鼠抗β-actin抗體1∶5 000。二抗?jié)舛龋篐RP偶聯(lián)山羊抗兔抗體1∶5 000;HRP偶聯(lián)山羊抗小鼠抗體1∶5 000。

        1.11 統(tǒng)計(jì)學(xué)分析

        單因素及多因素COX回歸分析、LASSO分析、Kaplan-Meier生存分析采用R語(yǔ)言4.3.2進(jìn)行統(tǒng)計(jì)分析。其余計(jì)量數(shù)據(jù)以±s表示,用SPSS 25.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析。各組數(shù)據(jù)進(jìn)行正態(tài)性檢驗(yàn)及方差齊性檢驗(yàn),符合正態(tài)分布及方差齊性。采用t檢驗(yàn)比較2組獨(dú)立樣本數(shù)據(jù)。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。

        2 結(jié)

        2.1 豆甾醇治療GBM的潛在靶基因預(yù)測(cè)

        從數(shù)據(jù)庫(kù)中篩選出112個(gè)豆甾醇靶基因,通過(guò)韋恩圖與GBM DEGs交叉匹配后,共獲得31個(gè)豆甾醇治療GBM的潛在靶基因(表2、圖1)。

        2.2 豆甾醇治療GBM潛在靶基因的富集分析

        通過(guò)對(duì)31個(gè)豆甾醇治療GBM潛在靶基因進(jìn)行GO分析,共獲得207個(gè)GO條目(圖2A、2B、2D)。其中生物過(guò)程(biological process,BP)152項(xiàng),細(xì)胞成分(cellular component,CC)18項(xiàng),分子功能(mole-cular function,MF)37項(xiàng)。結(jié)果表明,豆甾醇治療GBM的機(jī)制可能與G蛋白偶聯(lián)受體(G protein-coupled receptor,GPCR)信號(hào)通路和部分神經(jīng)遞質(zhì)受體信號(hào)通路的調(diào)控等多種BP有關(guān)。相關(guān)MF包括G蛋白偶聯(lián)神經(jīng)遞質(zhì)受體活化、G蛋白偶聯(lián)胺受體活化、神經(jīng)遞質(zhì)受體活化、轉(zhuǎn)錄共激活因子結(jié)合等。此外,一些相關(guān)的CC包括突觸后膜、突觸膜和質(zhì)膜筏等可能也參與調(diào)控的過(guò)程。

        通過(guò)KEGG通路富集分析,共獲得3條相關(guān)信號(hào)通路,通過(guò)WP信號(hào)通路分析共獲得20條相關(guān)信號(hào)通路(圖2C、2E)。結(jié)果表明,豆甾醇治療GBM的潛在靶基因與調(diào)節(jié)神經(jīng)活性配體-受體相互作用、脂質(zhì)代謝、GPCRs、鈣信號(hào)傳導(dǎo)、腫瘤、衰老等的信號(hào)通路有關(guān)。

        2.3 豆甾醇治療GBM預(yù)后相關(guān)靶基因預(yù)測(cè)及相關(guān)預(yù)后模型的建立和驗(yàn)證

        單因素COX回歸分析確定了325個(gè)與GBM患者OS顯著相關(guān)的基因。通過(guò)韋恩圖對(duì)豆甾醇治療GBM潛在靶基因與GBM患者預(yù)后相關(guān)基因進(jìn)行交叉匹配,確定了豆甾醇治療GBM的2個(gè)預(yù)后相關(guān)靶基因FABP5和ADRA1B(圖3A、3B)。通過(guò)LASSO分析計(jì)算了FABP5和ADRA1B相應(yīng)的回歸系數(shù)(圖3C、3D)。利用這2個(gè)預(yù)后相關(guān)基因的表達(dá)水平及其在TCGA-GBM訓(xùn)練集中對(duì)應(yīng)的回歸系數(shù)構(gòu)建預(yù)后模型對(duì)GBM進(jìn)行預(yù)后風(fēng)險(xiǎn)評(píng)分,公式如下:風(fēng)險(xiǎn)評(píng)分=0.14×FABP5+0.25×ADRA1B。根據(jù)TCGA-GBM訓(xùn)練集中的中位風(fēng)險(xiǎn)評(píng)分1.038,將所有患者分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組(圖3E)。在高風(fēng)險(xiǎn)評(píng)分的患者中觀察到這2個(gè)基因的高表達(dá)(圖3F)。生存分析顯示,高風(fēng)險(xiǎn)組患者OS顯著低于低風(fēng)險(xiǎn)組(P=0.036,圖3G)。繪制了第1、3、5年患者生存率的受試者ROC曲線(xiàn),所有AUC值均高于0.6,表明預(yù)后模型具有較好的預(yù)測(cè)效能(圖3H)。在內(nèi)部驗(yàn)證集中,根據(jù)中位風(fēng)險(xiǎn)評(píng)分0.98將患者分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組,高風(fēng)險(xiǎn)組患者OS同樣顯著低于低風(fēng)險(xiǎn)組(P=0.033,圖3I)。在外部驗(yàn)證集中同樣獲得了類(lèi)似的結(jié)果(P=0.001 2,圖3J)。

        2.4 預(yù)后模型獨(dú)立預(yù)后價(jià)值分析

        單因素COX獨(dú)立預(yù)后分析中,風(fēng)險(xiǎn)評(píng)分(risk score)、年齡(age)、MGMT類(lèi)型(MGMT_status)、IDH1類(lèi)型(IDH1_status)的P值均小于0.05(圖4A)。再次將上述4個(gè)因素納入多因素COX獨(dú)立預(yù)后分析(圖4B)。結(jié)果顯示在單因素和多因素COX獨(dú)立預(yù)后分析中風(fēng)險(xiǎn)評(píng)分的P值均小于0.05。同時(shí),在外部驗(yàn)證集中進(jìn)行單因素及多因素COX獨(dú)立預(yù)后分析,風(fēng)險(xiǎn)評(píng)分的P值均小于0.05(圖4C、4D)。說(shuō)明根據(jù)本研究中構(gòu)建的預(yù)后模型所計(jì)算的風(fēng)險(xiǎn)評(píng)分是GBM患者較為可靠的獨(dú)立預(yù)后因子。

        2.5 生存預(yù)測(cè)列線(xiàn)圖及校準(zhǔn)曲線(xiàn)

        在訓(xùn)練集中繪制列線(xiàn)圖(圖5A),使用列線(xiàn)圖可以對(duì)患者的風(fēng)險(xiǎn)評(píng)分、年齡、IDH1類(lèi)型(IDH1_status)及MGMT類(lèi)型(MGMT_Status)分別進(jìn)行評(píng)分,各因素評(píng)分相加獲得總評(píng)分,根據(jù)總評(píng)分預(yù)測(cè)生存率,分?jǐn)?shù)越高,生存率越低。本研究中訓(xùn)練集所構(gòu)建列線(xiàn)圖C指數(shù)(C-index)為0.683,在外部驗(yàn)證集中,運(yùn)用風(fēng)險(xiǎn)評(píng)分及IDH1類(lèi)型構(gòu)建列線(xiàn)圖模型,C指數(shù)為0.573,說(shuō)明與風(fēng)險(xiǎn)評(píng)分相關(guān)的列線(xiàn)圖模型預(yù)測(cè)GBM患者1~2年生存率效果較好。列線(xiàn)圖矯正曲線(xiàn)(圖5B)結(jié)果顯示,該列線(xiàn)圖對(duì)GBM患者1~2年生存率的預(yù)測(cè)準(zhǔn)確度較高。

        2.6 豆甾醇抑制GBM細(xì)胞中預(yù)后相關(guān)靶基因的表達(dá)

        豆甾醇顯著降低U87細(xì)胞中FABP5和ADRA1B mRNA表達(dá)水平(FABP5:t=9.909,P=0.001;ADRA1B:t=3.319,P=0.029;圖6A)。此外,豆甾醇還降低了U87細(xì)胞中FABP5和ADRA1B的蛋白表達(dá)(圖6B)。

        3 討

        豆甾醇被證實(shí)具有多種藥理作用,如抗炎、調(diào)節(jié)血糖、免疫調(diào)節(jié)、抗寄生蟲(chóng)、抗真菌、抗氧化和神經(jīng)保護(hù)等[9。研究證實(shí),豆甾醇對(duì)胃癌[13、乳腺癌14、肝癌15、皮膚癌16和膽管癌17等多種類(lèi)型的腫瘤具有抗腫瘤作用。然而,目前有關(guān)豆甾醇對(duì)膠質(zhì)瘤的影響及機(jī)制的研究鮮有報(bào)道。本研究通過(guò)生物信息學(xué)方法篩選出豆甾醇治療GBM的潛在靶基因,并通過(guò)富集分析來(lái)探索其抗膠質(zhì)瘤可能的機(jī)制。結(jié)果表明,GPCR信號(hào)通路可能在其中發(fā)揮重要作用。GPCR是一大類(lèi)膜受體家族,能夠通過(guò)經(jīng)典和非經(jīng)典信號(hào)通路影響腫瘤的各種生物學(xué)行為,使其成為調(diào)控腫瘤發(fā)生的一類(lèi)重要分子[18。GPCRs參與調(diào)節(jié)膠質(zhì)瘤的各種生物學(xué)行為,如細(xì)胞周期、增殖、遷移、侵襲、轉(zhuǎn)移、耐藥和血管生成[18-20。GPCR基因的表達(dá)水平也與膠質(zhì)瘤的預(yù)后密切相關(guān)[21。靶向GPCR被認(rèn)為是一種潛在的膠質(zhì)瘤治療策略[22-23。富集分析中另一個(gè)值得注意的機(jī)制是豆甾醇可能通過(guò)調(diào)節(jié)脂質(zhì)代謝發(fā)揮抗膠質(zhì)瘤的作用。長(zhǎng)期以來(lái),豆甾醇一直都被認(rèn)為能夠調(diào)節(jié)脂類(lèi)代謝24-25。脂質(zhì)代謝的重編程是膠質(zhì)瘤的一個(gè)重要特征,調(diào)節(jié)膠質(zhì)瘤中的脂質(zhì)代謝可以抑制腫瘤生長(zhǎng)26。因此,脂質(zhì)代謝已成為膠質(zhì)瘤治療的一個(gè)潛在靶點(diǎn)。

        本研究通過(guò)單變量COX回歸分析和韋恩圖分析,篩選出2個(gè)豆甾醇治療GBM預(yù)后相關(guān)靶基因FABP5和ADRA1B?;谶@2個(gè)基因的表達(dá)水平構(gòu)建的預(yù)后模型有效地預(yù)測(cè)了GBM患者的預(yù)后,證實(shí)該預(yù)后模型能夠運(yùn)用于GBM患者的預(yù)后和療效評(píng)估。在本研究中,豆甾醇在轉(zhuǎn)錄和翻譯水平上顯著降低了GBM細(xì)胞中FABP5和ADRA1B的表達(dá)。FABP5在脂質(zhì)代謝、代謝綜合征、細(xì)胞生長(zhǎng)、細(xì)胞分化、免疫反應(yīng)、軸突生長(zhǎng)、軸突發(fā)育和炎癥細(xì)胞因子產(chǎn)生中發(fā)揮重要作用[27。最近的研究證實(shí),F(xiàn)ABP5可以通過(guò)調(diào)節(jié)脂質(zhì)代謝來(lái)促進(jìn)腫瘤增殖、進(jìn)展和轉(zhuǎn)移[28-30。在膠質(zhì)瘤中,F(xiàn)ABP5已被證明與腫瘤惡性程度相關(guān)[31。抑制FABP5表達(dá)能夠顯著抑制膠質(zhì)瘤細(xì)胞的增殖、侵襲和遷移[32。作為一種神經(jīng)遞質(zhì)受體,ADRA1B在惡性腫瘤的進(jìn)展中也起著重要作用。ADRA1B的表達(dá)水平被認(rèn)為與GBM[33和乳腺腫瘤34的預(yù)后呈負(fù)相關(guān)。本研究結(jié)果提示,豆甾醇潛在的抗膠質(zhì)瘤作用可能與其抑制FABP5和ADRA1B的表達(dá)有關(guān)??紤]到這2個(gè)基因的表達(dá)水平與GBM患者的預(yù)后之間存在相關(guān)性,有理由推測(cè)豆甾醇可能通過(guò)抑制這2種基因的表達(dá)改善GBM患者的預(yù)后。

        然而,本研究仍然存在一些不足。首先,豆甾醇潛在靶基因的篩選主要來(lái)源于數(shù)據(jù)庫(kù),存在一定的局限性。其次,對(duì)相應(yīng)機(jī)制的分析主要基于生物信息學(xué)方法,仍需要進(jìn)一步的體外和體內(nèi)實(shí)驗(yàn)來(lái)驗(yàn)證這些可能的機(jī)制。這些不足將在下一步的研究中加以完善。

        總之,本研究結(jié)果表明,豆甾醇的抗膠質(zhì)瘤作用可能與GPCR信號(hào)通路及脂質(zhì)代謝的調(diào)控有關(guān)。通過(guò)抑制FABP5及ADRA1B的表達(dá),豆甾醇可能具有改善GBM患者預(yù)后的潛在作用。同時(shí),以FABP5及ADRA1B的表達(dá)水平構(gòu)建的預(yù)后模型在預(yù)測(cè)GBM患者預(yù)后及監(jiān)測(cè)療效方面可能能夠發(fā)揮一定的作用。

        參考文獻(xiàn):

        [1]SHERGALIS A, BANKHEAD A, LUESAKUL U, et al. Current challenges and opportunities in treating glioblastoma[J]. Pharmacol Rev, 2018, 70(3): 412-445.

        [2]周揚(yáng), 姜東京, 劉松柏, 等. 基于網(wǎng)絡(luò)藥理學(xué)、分子模擬的射干治療腦膠質(zhì)瘤的作用機(jī)制[J]. 西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022, 43(5): 769-778.

        ZHOU Y, JIANG D J, LIU S B, et al. The mechanism of Belamcanda chinensis in the treatment of glioma based on network pharmacology and molecular simulation[J]. J Xi’an Jiaotong Univ(Med Sci), 2022, 43(5): 769-778.

        [3]LI T, XIAO Y, WANG Z, et al. The mechanism study of common flavonoids on antiglioma based on network pharmacology and molecular docking[J]. Evid Based Complement Alternat Med, 2022, 2022: 2198722.

        [4]ALJOHANI H, KHODIER A E, AL-GAYYAR M M. Antitumor activity of luteolin against ehrlich solid carcinoma in rats via blocking Wnt/β-catenin/SMAD4 pathway[J]. Cureus, 2023, 15(5): e39789.

        [5]BADZIUL D, JAKUBOWICZ-GIL J, LANGNER E, et al. The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro[J]. Pharmacol Rep, 2014, 66(2): 292-300.

        [6]ZHOU J, LIU Y, CHEN J, et al. Kaempferol suppresses glioma progression and synergistically enhances the antitumor activity of gefitinib by inhibiting the EGFR/SRC/STAT3 signaling pathway[J]. Drug Dev Res, 2023, 84(3): 592-610.

        [7]LIANG C, ZHANG B B, LI R C, et al. Network pharmacology-based study on the mechanism of traditional Chinese medicine in the treatment of glioblastoma multiforme[J]. BMC Complement Med Ther, 2023, 23(1): 342.

        [8]FERRER A, ALTABELLA T, ARRó M, et al. Emerging roles for conjugated sterols in plants[J]. Prog Lipid Res, 2017, 67: 27-37.

        [9]BAKRIM S, BENKHAIRA N, BOURAIS I, et al. Health benefits and pharmacological properties of stigmasterol[J]. Antioxidants, 2022, 11(10): 1912.

        [10]SHARMA N, SHARMA A, BHATIA G, et al. Isolation of phytochemicals from bauhinia variegata L. bark and their in vitro antioxidant and cytotoxic potential[J]. Antioxidants, 2019, 8(10): 492.

        [11]ZHANG B, CHENG Y, LI R, et al. Development of a novel angiogenesis-related lncRNA signature to predict the prognosis and immunotherapy of glioblastoma multiforme[J]. Transl Cancer Res, 2023, 12(1): 13-30.

        [12]LIANG C, SHANGGUAN J, YANG L, et al. Downregulation of astrocyte elevated gene-1 expression inhibits the development of vasculogenic mimicry in gliomas[J]. Exp Ther Med, 2021, 21(1): 22.

        [13]ZHAO H, ZHANG X, WANG M, et al. Stigmasterol simultaneously induces apoptosis and protective autophagy by inhibiting Akt/mTOR pathway in gastric cancer cells[J]. Front Oncol, 2021, 11: 629008.

        [14]AMELIMOJARAD M, AMELIMOJARAD M, POURMAHDIAN A. The inhibitory role of stigmasterol on tumor growth by inducing apoptosis in Balb/c mouse with spontaneous breast tumor(SMMT)[J]. BMC Pharmacol Toxicol, 2022, 23(1): 42.

        [15]KIM Y S, LI X F, KANG K H, et al. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells[J]. BMB Rep, 2014, 47(8): 433-438.

        [16]ALI H, DIXIT S, ALI D, et al. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma[J]. Drug Des Devel Ther, 2015, 9: 2793-2800.

        [17]KANGSAMAKSIN T, CHAITHONGYOT S, WOOTTHICHAIRANGSAN C, et al. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α[J]. PLoS One, 2017, 12(12): e0189628.

        [18]CHERRY A E, STELLA N. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues[J]. Neuroscience, 2014, 278: 222-236.

        [19]BUZATU I, TACHE D E, MANEA CARNELUTI E V, et al. ELTD1 review: new regulator of angiogenesis in glioma[J]. Curr Health Sci J, 2023, 49(4): 495-502.

        [20]CHAIM O M, MIKI S, PRAGER B C, et al. Gα12 signaling regulates transcriptional and phenotypic responses that promote glioblastoma tumor invasion[J]. Sci Rep, 2023, 13(1): 22412.

        [21]KO E A, ZHOU T. GPCR genes as a predictor of glioma severity and clinical outcome[J]. J Int Med Res, 2022, 50(7): 3000605221113911.

        [22]GUDA M R, VELPULA K K, ASUTHKAR S, et al. Targeting RGS4 ablates glioblastoma proliferation[J]. Int J Mol Sci, 2020, 21(9): 3300.

        [23]LE JONCOUR V, GUICHET P O, DEMBéLé K P, et al. Targeting the urotensin II/UT G protein-coupled receptor to counteract angiogenesis and mesenchymal hypoxia/necrosis in glioblastoma[J]. Front Cell Dev Biol, 2021, 9: 652544.

        [24]GOSWAMI M, PRIYA, JASWAL S, et al. A comprehensive update on phytochemistry, analytical aspects, medicinal attributes, specifications and stability of stigmasterol[J]. Steroids, 2023, 196: 109244.

        [25]ZHANG H, SUN Y, ZOU Y, et al. Stigmasterol and gastrodin, two major components of banxia-baizhu-tianma decoction, alleviated the excessive phlegm-dampness hypertension by reducing lipid accumulation[J]. J Ethnopharmacol, 2024, 319(Pt 2): 117193.

        [26]KOLAR E A, SHI X, CLAY E M, et al. Very long-chain acyl-CoA synthetase 3 mediates onco-sphingolipid metabolism in malignant glioma[J]. Med Res Arch, 2021, 9(5): 2433.

        [27]XU B, CHEN L, ZHAN Y, et al. The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases[J]. Front Cell Dev Biol, 2022,10: 857919.

        [28]LU F, YE M, HU C, et al. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/beta-catenin pathway[J]. Cancer Sci, 2023, 114(9): 3553-3567.

        [29]ZHANG C, LIAO Y, LIU P, et al. FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism[J]. Theranostics, 2020, 10(15): 6561-6580.

        [30]SEO J, JEONG D W, PARK J W, et al. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Commun Biol, 2020, 3(1): 638.

        [31]WANG Y, WAHAFU A, WU W, et al. FABP5 enhances malignancies of lower-grade gliomas via canonical activation of NF-kappaB signaling[J]. J Cell Mol Med, 2021, 25(9): 4487-4500.

        [32]TANG Q, MAO X, CHEN Z, et al. Liquid-liquid phase separation-related gene in gliomas: FABP5 is a potential prognostic marker[J]. J Gene Med, 2023, 25(10): e3517.

        [33]BELOTTI Y, TOLOMEO S, YU R, et al. Prognostic neurotransmitter receptors genes are associated with immune response, inflammation and cancer hallmarks in brain tumors[J]. Cancers (Basel), 2022, 14(10): 2544.

        [34]POWE D G, VOSS M J, HABASHY H O, et al. Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study[J]. Breast Cancer Res Treat, 2011, 130(2): 457-463.

        (編輯 陳 波)

        欧美成a人片在线观看久| 亚洲av网站在线免费观看| 一级a免费高清免在线| 亚洲熟妇一区二区蜜桃在线观看| 日本视频一区二区三区观看| 精品人妻av一区二区三区麻豆| 人妖一区二区三区在线| 狠狠cao日日橹夜夜十橹| 国产精品无码久久综合网| 久久久久久国产精品免费免费| 精品国产人成亚洲区| 亚洲va欧美va国产综合| 亚洲欧洲日产国码无码AV一| 啊v在线视频| 女优av性天堂网男人天堂| 亚洲一区二区国产激情| www夜插内射视频网站| 少女韩国电视剧在线观看完整| 精品国产午夜理论片不卡| 人人妻人人澡av天堂香蕉| 男人j进女人p免费视频| 久久精品国产成人午夜福利| 成人性生交大片免费看激情玛丽莎| 91九色国产老熟女视频| 亚洲av无码精品无码麻豆| 亚洲精品成人无码中文毛片| 久久中文字幕人妻熟av女蜜柚m | 精品国偷自产在线不卡短视频| 久久午夜伦鲁鲁片免费| 免费国产不卡在线观看| 国产日产在线视频一区| 国产精品无码素人福利不卡| 欧美人妻日韩精品| 久久无码精品精品古装毛片| av无码特黄一级| 日本女优五十路中文字幕| 校园春色综合久久精品中文字幕| aⅴ精品无码无卡在线观看| 亚洲av无码不卡| 精品国免费一区二区三区| 国内精品少妇久久精品|