亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        microRNA基因多態(tài)性與血壓鈉鉀反應(yīng)性的相關(guān)性分析

        2024-01-01 00:00:00王蘭崔瑩郭艷杰姚艷妮楊貝貝劉乃溶王佳馨劉盼盼杜鳴飛胡桂霖牛澤家馨張璽王丹褚超賈昊孫月高衛(wèi)華牟建軍汪洋

        摘要:

        目的" 探討miRNA基因多態(tài)性與鈉鉀飲食干預(yù)后血壓反應(yīng)性之間的關(guān)系。方法" 本課題組2004年從中國陜西寶雞7個村莊的124個家庭中招募514名參與者進(jìn)行慢性鹽負(fù)荷試驗干預(yù),包括3 d基線期、7 d低鹽飲食、7 d高鹽飲食和7 d高鹽補(bǔ)鉀飲食干預(yù)。納入19個miRNA-SNP位點(diǎn)進(jìn)行分析研究。結(jié)果" 在鈉鉀飲食干預(yù)過程中,受試者的血壓在低鹽期呈下降趨勢,高鹽期呈現(xiàn)上升趨勢,而在高鹽補(bǔ)鉀后,血壓則再次下降。在低鹽期,miR-210-3p SNP rs12364149與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān),miR-4638-3p SNP rs6601178與收縮壓反應(yīng)性顯著相關(guān),而miR-26b-3p SNP rs115254818與平均動脈壓反應(yīng)性顯著相關(guān)。在高鹽干預(yù)后,miR-26b-3p SNP rs115254818與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān);miR-1307-5p SNP rs11191676、rs2292807與收縮壓反應(yīng)性及平均動脈壓反應(yīng)性密切相關(guān);miR-4638-3p SNP rs6601178、miR-210-3p SNP rs12364149以及miR-382-5p SNP rs4906032、rs4143957與收縮壓反應(yīng)性存在顯著關(guān)聯(lián)性。此外,在給予補(bǔ)鉀干預(yù)后miR-26b-3p SNP rs115254818與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性關(guān)聯(lián)顯著;miR-1307-5p SNP rs11191676、rs2292807以及miR-19a-3p SNP rs4284505與收縮壓反應(yīng)性顯著相關(guān)。結(jié)論" miRNA基因多態(tài)性與血壓鈉鉀反應(yīng)性密切相關(guān),提示miRNA基因可能參與血壓鹽敏感性及鉀敏感性的形成。

        關(guān)鍵詞:miRNA;基因多態(tài)性;鹽敏感性;血壓的鈉鉀反應(yīng)性

        中圖分類號:R3;R544""" 文獻(xiàn)標(biāo)志碼:A

        DOI:10.7652/jdyxb202403013

        收稿日期:2023-09-20" 修回日期:2024-03-25

        基金項目:國家自然科學(xué)基金資助項目(No. 82070437);陜西省自然科學(xué)基金項目(No. 2021JM-257,2021JM-588);西安交通大學(xué)第一附屬醫(yī)院臨床研究項目(No. XJTU1AF-CRF-2022-002,XJTU1AF2021CRF-021)

        Supported by the National Natural Science Foundation of China (No. 82070437), Natural Science Basic Research Program of Shaanxi Province (No. 2021JM-257, 2021JM-588), and the Clinical Research Award of The First Affiliated Hospital of Xi’an Jiaotong University of China (No. XJTU1AF-CRF-2022-002, XJTU1AF2021CRF-021)

        通信作者:牟建軍,教授. E-mail:mujjun@163.com; 汪洋,副研究員. E-mail:wangyangxxk@126.com

        網(wǎng)絡(luò)出版地址:https://link.cnki.net/urlid/61.1399.R.20240401.1412.002 (2024-04-02)

        Association of gene polymorphisms in microRNA with blood pressure responses

        to salt and potassium intake

        WANG Lan1, CUI Ying2, GUO Yanjie1, YAO Yanni1, YANG Beibei1, LIU Nairong1,

        WANG Jiaxin1, LIU Panpan1, DU Mingfei3, HU Guilin3, NIU Zejiaxin3, ZHANG Xi3,

        WANG Dan3, CHU Chao3,JIA Hao3, SUN Yue3, GAO Weihua4, MU Jianjun3, WANG Yang3

        (1. Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an 710100;

        2. Department of Neurorehabilitation, Xi’an International Medical Center Hospital, Xi’an 710100;

        3. Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University,

        Xi’an 710061; 4. Department of Cardiology, Xi’an No. 1 Hospital, Xi’an 710002, China)

        ABSTRACT:

        Objective" To investigate the relationship of miRNA gene polymorphisms with blood pressure (BP) responses to the sodium and potassium diet intervention. Methods" In 2004, we recruited 514 participants from 124 families in seven villages of Baoji, Shaanxi Province, China. All subjects were given a three-day normal diet, followed by a seven-day low-salt diet, a seven-day high-salt diet, and finally a seven-day high-salt and potassium supplementation. A total of 19 miRNA single nucleotide polymorphisms (SNPs) were selected for analysis. Results" Throughout the sodium-potassium dietary intervention, the BP of the subjects fluctuated across all phases, showing a decrease during the low-salt period and an increase during the high-salt period, followed by a reduction in BP subsequent to potassium supplementation during the high-salt diet. MiR-210-3p SNP rs12364149 was significantly associated with systolic BP (SBP), diastolic BP (DBP) and mean arterial pressure (MAP) responses to low-salt diet." MiR-4638-3p SNP rs6601178 was significantly associated with SBP while miR-26b-3p SNP rs115254818 was significantly associated with MAP responses to low-salt intervention. In addition, miR-26b-3p SNP rs115254818 was significantly correlated with SBP, DBP and MAP responses to high-salt intervention." MiR-1307-5p SNPs rs11191676 and rs2292807 were associated with SBP and MAP responses to high-salt diet." MiR-4638-3p SNP rs6601178, miR-210-3p SNP rs12364149, miR-382-5p SNP rs4906032 and rs4143957 were significantly associated with SBP response to high-salt diet. In addition, miR-26b-3p SNP rs115254818 was significantly associated with SBP, DBP and MAP responses to potassium supplementation. MiR-1307-5p SNPs rs11191676, rs2292807, and miR-19a-3p SNP rs4284505 were significantly associated with SBP responses to high-salt and potassium supplementation. ConclusionmiRNA gene polymorphisms are associated with BP response to sodium and potassium, suggesting that miRNA genes may be involved in the pathophysiological process of salt sensitivity and potassium sensitivity.

        KEY WORDS: miRNA; genetic polymorphism; salt-sensitivity; blood pressure response to salt and potassium

        高血壓是全球人類死亡的主要原因之一[1]。人體血壓生理調(diào)節(jié)系統(tǒng)復(fù)雜,受遺傳和環(huán)境因素的共同影響[2],其中高鹽攝入對血壓的影響可能是最重要的環(huán)境影響因素之一。研究表明,個體血壓變化與鈉鹽攝入量呈正相關(guān)關(guān)系,過量鹽攝入會使血壓升高,反之,限制鹽攝入會降低血壓,且存在個體差異,即鹽敏感性[3-4]。此外,膳食中鉀的攝入與血壓呈現(xiàn)明顯的負(fù)相關(guān)關(guān)系,而不同個體對膳食的血壓反應(yīng)也存在差異[5-6]。已有的人群研究表明,個體對鈉鉀的反應(yīng)差異可能與等位基因的變異有關(guān)[7-8]。因此,探究遺傳變異與鹽敏感性和鉀敏感性的關(guān)系將有助于更深入地了解血壓的生物調(diào)節(jié)機(jī)制。

        microRNA(miRNA)是一類內(nèi)源性小核糖核酸(ribonucleic acid,RNA),通過與信使RNA的3′端非翻譯區(qū)(3′untranslated regions,3′UTR)靶向結(jié)合,參與轉(zhuǎn)錄后水平的基因表達(dá)調(diào)控[9]。在調(diào)節(jié)生物生命過程中,miRNA起著重要作用。近來研究發(fā)現(xiàn),miRNAs的表達(dá)和功能異??赡芘c高血壓的發(fā)病或靶器官損害有關(guān)。HAN等[10]采用高通量測序方法,在鹽敏感高血壓和鹽不敏感高血壓患者的miRNA表達(dá)譜中已發(fā)現(xiàn)36個具有表達(dá)差異的miRNAs。XIE等[11]在中國漢族人群中發(fā)現(xiàn),miR-1307-5p基因中攜帶rs11191676-C等位基因與攜帶rs11191676-A野生型等位基因相比,鹽敏感的風(fēng)險增加了1.424倍。GILDEA等[12]發(fā)現(xiàn)尿液中的45種外泌體miRNA的表達(dá)與血壓的鹽敏感性相關(guān),提示這可能是鹽敏感高血壓的一個重要機(jī)制。因此,本研究通過對既往建立的“鹽敏感性高血壓研究隊列”進(jìn)行慢性鹽負(fù)荷及補(bǔ)鉀干預(yù),旨在探討miRNA基因的遺傳變異與血壓鈉鉀反應(yīng)性的關(guān)系。

        1" 對象與方法

        1.1" 研究對象

        本課題組在2003年10月—2004年10月對陜西省寶雞眉縣地區(qū)18~60歲的漢族人群進(jìn)行系統(tǒng)篩查。本研究納入收縮壓(SBP)為130~160 mmHg和/或舒張壓(DBP)為85~100 mmHg且未使用降壓藥物的先證者及其兄弟姐妹、配偶和后代[13]。排除標(biāo)準(zhǔn)為繼發(fā)性高血壓、高血壓2級及以上、心血管病史或糖尿病史、使用降壓藥物、懷孕、酗酒、正在低鈉飲食或無法簽署知情同意書者。

        最終納入來自124個家庭的514名受試者,建立“鹽敏感性高血壓研究隊列”并行基線調(diào)查,對其中的333名非父母者進(jìn)行鈉鉀飲食干預(yù)研究。本研究已經(jīng)過西安交通大學(xué)第一附屬醫(yī)院倫理委員會審批通過,受試者均知曉研究內(nèi)容并簽署知情同意書。

        1.2" 飲食干預(yù)及基線調(diào)查

        慢性鈉鹽負(fù)荷及補(bǔ)鉀干預(yù)方案參照本課題組既往研究[14]。首先為3 d基線調(diào)查,包括問卷調(diào)查、測量身高、體質(zhì)量、血壓和血尿生化參數(shù)等。然后分別進(jìn)行為期7 d低鹽飲食(3 g氯化鈉或51.3 mmol鈉/d)、7 d高鹽飲食(18 g氯化鈉或307.8 mmol鈉/d)和7 d高鹽補(bǔ)鉀飲食(高鹽飲食基礎(chǔ)上再加60 mmol鉀/d或4.5 g氯化鉀/d)。所有食物均經(jīng)無鹽烹飪,并在之后由研究人員將預(yù)先分裝好的鈉鹽和鉀添加至每位受試者的食物中。整個研究期間,其他膳食營養(yǎng)的攝入量保持不變。為確保受試者遵守干預(yù)計劃,要求其三餐(早餐、午餐和晚餐)在指定餐廳用餐,以避免食用研究以外的食物。

        1.3" 24 h尿鈉鉀排泄量的測定

        為保證受試者對飲食干預(yù)的依從性,在基線期的第3天及每個干預(yù)期的第7天收集24 h尿液標(biāo)本,并用火焰光度計測定尿液中鈉和鉀的濃度。通過將測量的鈉和鉀濃度乘以個體 24 h尿量,計算每個受試者的尿鈉和尿鉀排泄量。

        1.4" 血壓測量

        受試者進(jìn)行血壓測量之前禁止吸煙、飲酒、進(jìn)食刺激性食物及劇烈活動,靜坐休息30 min,由專業(yè)人員按照Korotkoff聽音法測量右上臂坐位血壓。于基線期每天和每個飲食干預(yù)期的第5、6、7天測量血壓,每日測量3次,每次間隔1 min,最終將各階段9次血壓的平均值納入研究。具體的血壓測量方法請參照本課題組既往研究[15]。平均動脈壓及脈壓的計算公式如下:平均動脈壓=DBP+1/3(SBP-DBP);脈壓差=SBP-DBP。將血壓的鈉鉀反應(yīng)性視為連續(xù)性變量,計算公式如下:低鹽期血壓反應(yīng)性=低鹽期血壓-基線期血壓;高鹽期血壓反應(yīng)性=高鹽期血壓-低鹽期血壓;補(bǔ)鉀期血壓反應(yīng)性=高鹽補(bǔ)鉀期血壓-高鹽期血壓。

        1.5" 單核苷酸多態(tài)性(SNP)位點(diǎn)選擇和基因分型

        本研究從PubMed數(shù)據(jù)庫中選取了14個與血壓鹽敏感性相關(guān)的miRNAs,文獻(xiàn)研究發(fā)現(xiàn)這些miRNA的表達(dá)在鹽敏感高血壓組和鹽不敏感高血壓組之間存在顯著差異。進(jìn)一步檢索國家生物技術(shù)信息中心和基因組變異服務(wù)器數(shù)據(jù)庫,按照以下標(biāo)準(zhǔn)篩選miRNA基因的SNP位點(diǎn):①SNP頻率分布符合Hardy-Weinberg平衡定律,P值不小于0.05;②次要等位基因頻率(MAF)不小于0.05;③連鎖不平衡系數(shù)r2不小于0.8。根據(jù)以上標(biāo)準(zhǔn),排除了3個不滿足Hardy-Weinberg平衡定律的SNP位點(diǎn)(miR-101-5p/rs7536540,miR-26b-3p/rs2252235,miR-145/rs41291957),最終納入了12個miRNA的19個SNP位點(diǎn)進(jìn)行后續(xù)分析:miR-3620-5p(rs2070960)、miR-26b-3p(rs115254818)、miR-15b-5p(rs10936201)、miR-143(rs4705342)、miR-4638-3p(rs6601178)、miR-1307-5p(rs11191676,rs2292807)、miR-210-3p(rs7935908,rs7395206,rs12364149,rs10902173)、miR-19a-3p(rs4284505)、miR-382-5p(rs4906032,rs12886869,rs4143957,rs77282763)、miR-4508(rs12439354)、miR-423-5p(rs6505162)以及miR-361-5p(rs62608229)。

        采用GoldMag-Mini純化試劑盒提取受試者外周靜脈血脫氧核糖核酸,并通過MassARRAY平臺對miRNA-SNPs進(jìn)行基因分型。

        1.6" 統(tǒng)計學(xué)分析

        連續(xù)變量以均數(shù)±標(biāo)準(zhǔn)差表示,分類變量以頻率和百分比表示,兩組數(shù)據(jù)的比較采用獨(dú)立樣本t檢驗,多組數(shù)據(jù)間的比較采用方差分析,Plt;0.05為差異有統(tǒng)計學(xué)意義,以上分析使用軟件SPSS 26.0完成。通過PLINK軟件對SNP基因型進(jìn)行Hardy-Weinberg平衡檢驗和孟德爾一致性檢驗,同時計算最小等位基因頻率。采用PLINK軟件在加性、顯性和隱性遺傳模型中對各miRNA-SNP與血壓鈉鉀反應(yīng)性進(jìn)行廣義線性回歸分析,同時校正年齡、性別和體質(zhì)量指數(shù)。

        2" 結(jié)" 果

        2.1" 受試者基線特征及血壓的鈉鉀反應(yīng)性

        受試者的基線特征及鈉鉀飲食干預(yù)的血壓反應(yīng)結(jié)果顯示,在基線期先證者的DBP及平均動脈壓在各組中最高,而SBP低于其父母組。在鈉鉀飲食干預(yù)過程中,受試者各階段血壓均發(fā)生了變化,低鹽期呈下降趨勢,高鹽期呈現(xiàn)上升趨勢,而在高鹽補(bǔ)鉀后,血壓則再次下降(表1)。

        2.2" 鈉鉀干預(yù)對受試者24 h尿鈉和鉀排泄的影響

        2.3" miRNA SNP位點(diǎn)的基因型及等位基因頻率

        本研究初步納入由文獻(xiàn)檢索篩選出的22個與鹽敏感相關(guān)的miRNA-SNP位點(diǎn)中,除miR-101-5p/rs7536540、miR-26b-3p/rs2252235 及miR-145/rs41291957位點(diǎn)的Hardy-Weinberg平衡Plt;0.05 外,其余12個miRNAs的19個SNP位點(diǎn)基因型分布頻率均符合Hardy-Weinberg平衡定律(表2)。這說明受試人群的基因組具有群體代表性。因此,在后續(xù)分析中,已剔除SNP位點(diǎn)rs7536540、rs2252235和rs41291957。

        2.4" miRNA基因SNPs與血壓鈉鉀反應(yīng)性的關(guān)聯(lián)分析

        對各miRNA SNP位點(diǎn)與血壓的鈉鉀反應(yīng)性進(jìn)行分析的結(jié)果顯示,在低鹽干預(yù)后,miR-210-3p SNP rs12364149與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān),而miR-4638-3p SNP rs6601178與收縮壓反應(yīng)性顯著相關(guān),rs115254818與平均動脈壓反應(yīng)性顯著相關(guān);在高鹽干預(yù)后,miR-4638-3p SNP rs115254818與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性關(guān)聯(lián)顯著,miR-1307-5p SNP rs11191676及rs2292807與收縮壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān),miR-4638-3p SNP rs6601178、miR-210-3p SNP rs12364149以及miR-382-5p SNP rs4906032及rs4143957均與收縮壓反應(yīng)性存在顯著關(guān)聯(lián)性;在高鹽補(bǔ)鉀干預(yù)后,miR-26b-3p SNP rs115254818與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性關(guān)聯(lián)顯著,miR-1307-5p SNP rs11191676、rs2292807以及miR-19a-3p SNP rs4284505與收縮壓反應(yīng)性顯著相關(guān)(表3)。

        3" 討" 論

        高血壓的發(fā)生是由多種因素綜合作用的復(fù)雜過程,其中包括遺傳和環(huán)境因素的影響。鹽敏感性是個體血壓對鹽的遺傳易感性,是連接鹽與高血壓的遺傳基礎(chǔ)。多個候選基因研究也已經(jīng)確定了遺傳變異與血壓鹽敏感性具有相關(guān)性。miRNA在生物的生命周期中的作用至關(guān)重要,參與了發(fā)育、病毒防御、細(xì)胞增殖和凋亡、造血、器官形成以及脂肪代謝等多個方面的調(diào)控[16]。miRNA還可參與調(diào)節(jié)多種疾病的發(fā)展,如雙相障礙Ⅱ、甲狀腺腫瘤、2型糖尿病、缺血性卒中、冠狀動脈疾病和高血壓。

        有研究證據(jù)表明,miRNA可能參與鹽敏感的發(fā)病過程,大約有120個SNP位點(diǎn)與血壓的鹽敏感性相關(guān)[17]。LOMBARI等[18]在鹽敏感性高血壓大鼠模型中發(fā)現(xiàn),高鈉引起的miRNA-23a下調(diào)與參與鈉重吸收和血壓調(diào)節(jié)的膜蛋白NHE1表達(dá)升高密切相關(guān)。ZHU等[19]發(fā)現(xiàn)miR-429可與PHD2 mRNA的3′UTR區(qū)域靶向結(jié)合,高鹽促使腎髓質(zhì)中miR-429過表達(dá),通過調(diào)節(jié)PHD2/HIF-1α信號通路促進(jìn)尿鈉排泄,從而減輕DSS大鼠鹽敏感性高血壓的發(fā)生。HAO等[20]發(fā)現(xiàn),C57BL/6小鼠腎臟中miR-133a的表達(dá)與鹽攝入呈正相關(guān),是一種鹽敏感性miRNA。miR-133a與AGT mRNA的3′UTR區(qū)域靶向結(jié)合,可通過抑制AGT表達(dá)以緩解高鹽介導(dǎo)的血壓升高。本研究通過慢性鹽負(fù)荷實(shí)驗發(fā)現(xiàn)miR-210-3p SNP rs12364149與低鹽期的收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān);miR-4638-3p SNP rs6601178和miR-26b-3p SNP rs115254818分別與低鹽期的收縮壓反應(yīng)性和平均動脈壓反應(yīng)性顯著相關(guān)。在高鹽干預(yù)后,rs115254818與收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性關(guān)聯(lián)顯著;miR-1307-5p SNP rs11191676及rs2292807與收縮壓反應(yīng)性及平均動脈壓反應(yīng)性顯著相關(guān);miR-4638-3p SNP rs6601178、miR-210-3p SNP rs12364149以及miR-382-5p SNP rs4906032及rs4143957均與收縮壓反應(yīng)性存在顯著關(guān)聯(lián)性。然而,miRNAs及其風(fēng)險位點(diǎn)調(diào)控人類血壓鹽敏感性的具體分子細(xì)胞學(xué)機(jī)制仍需進(jìn)一步探索。

        有研究表明,膳食鉀攝入量與血壓呈負(fù)相關(guān),補(bǔ)鉀可降低高血壓和血壓正常個體的血壓水平,即為血壓的鉀敏感性。與鹽敏感性一樣,血壓的鉀敏感性是一種復(fù)雜的表型,受環(huán)境和基因組決定因素及其相互作用的影響?;蜻B鎖分析顯示多個染色體區(qū)域的候選基因與鉀敏感性有關(guān),提示遺傳變異調(diào)控鉀敏感性血壓表型。一項GWAS研究發(fā)現(xiàn),中國漢族人群中的4個基因位點(diǎn)變異(CDCA7、ARL4C、IRAK1BP1和SALL1)與7 d膳食鉀補(bǔ)充后的血壓下降密切相關(guān)[21]。此外,在全基因組與鉀的相關(guān)性分析中發(fā)現(xiàn),基因ARL15和RANBP3L分別參與調(diào)控脂肪細(xì)胞和間質(zhì)干細(xì)胞的分化。個體血壓對鉀攝入量的反應(yīng)存在異質(zhì)性。一項GenSalt研究發(fā)現(xiàn),中國漢族人群APLN和ACE2基因SNP位點(diǎn)與膳食鉀補(bǔ)充后的血壓反應(yīng)顯著相關(guān)[22]。此外,內(nèi)皮素1(EDN1)、一氧化氮合酶3(NOS3)及E選擇素(SELE)基因多態(tài)性與補(bǔ)鉀的降壓反應(yīng)均密切相關(guān)[6]。本課題組既往隊列研究發(fā)現(xiàn),抗衰老因子Klotho、脂肪素AdipoQ、蛋白激酶SGK1與補(bǔ)鉀的血壓反應(yīng)性存在顯著關(guān)聯(lián)[23-27]。這些研究表明,遺傳因素可能參與了血壓對鉀攝入量反應(yīng)的變化。然而,關(guān)于miRNA基因變異與補(bǔ)鉀引起的血壓變化之間的關(guān)系尚未報道。研究發(fā)現(xiàn),miRNA可參與血管代謝的復(fù)雜分子網(wǎng)絡(luò),可能以多種方式影響血壓的發(fā)展。本研究首次探討了miRNA基因多態(tài)性與鉀攝入引起的血壓反應(yīng)的關(guān)系,發(fā)現(xiàn)miR-26b-3p SNP rs115254818與高鹽補(bǔ)鉀后的收縮壓反應(yīng)性、舒張壓反應(yīng)性及平均動脈壓反應(yīng)性關(guān)聯(lián)顯著;miR-1307-5p SNP rs11191676、rs2292807以及miR-19a-3p SNP rs4284505與高鹽補(bǔ)鉀后的收縮壓反應(yīng)性顯著相關(guān)。因此,鉀敏感性的遺傳研究結(jié)果為高血壓的潛在機(jī)制提供了新的見解。

        綜上所述,本研究首次報道了miRNA基因多態(tài)性與飲食鈉鉀干預(yù)后血壓反應(yīng)的顯著相關(guān)性。這一結(jié)果有助于從遺傳學(xué)角度深入探索鈉鉀敏感性血壓的形成機(jī)制,并為高血壓的防治提供新思路。然而,本研究存在樣本量較小、受試者僅局限于中國北方人口等不足之處,因此未來仍需通過大規(guī)模前瞻性研究以證實(shí)膳食鈉鉀鹽的攝入與miRNA基因多態(tài)性在高血壓的發(fā)生發(fā)展中的作用。

        參考文獻(xiàn):

        [1] OLSEN M H, ANGELL S Y, ASMA S, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension[J]. Lancet, 2016, 388(10060): 2665-2712.

        [2] PETRIE J R, GUZIK T J, TOUYZ R M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms[J]. Can J Cardiol, 2018, 34(5): 575-584.

        [3] ABURTO N J, ZIOLKOVSKA A, HOOPER L, et al. Effect of lower sodium intake on health: systematic review and meta-analyses[J]. BMJ, 2013, 346: f1326.

        [4] LUFT F C, WEINBERGER M H. Review of salt restriction and the response to antihypertensive drugs. Satellite symposium on calcium antagonists[J]. Hypertension, 1988, 11(2 Pt 2): I229-I232.

        [5] GELEIJNSE J M, KOK F J, GROBBEE D E. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials[J]. J Hum Hypertens, 2003, 17(7): 471-480.

        [6] MONTASSER M E, SHIMMIN L C, GU D, et al. Blood pressure response to potassium supplementation is associated with genetic variation in endothelin 1 and interactions with E selectin in rural Chinese[J]. J Hypertens, 2010, 28(4): 748-755.

        [7] DEFAG M D, GU D F, HIXSON J E, et al. Common genetic variants in the endothelial system predict blood pressure response to sodium intake: the GenSalt study[J]. Am J Hypertens, 2013, 26(5): 643-656.

        [8] WANG Y L, LOU H K, WANG M L, et al. Correlation between genetic polymorphisms in apolipoprotein E and atrial fibrillation[J]. Rev Port Cardiol, 2022, 41(5): 417-423.

        [9] MOHR A M, MOTT J L. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3-11.

        [10] QI H, LIU Z, LIU B, et al. Micro-RNA screening and prediction model construction for diagnosis of salt-sensitive essential hypertension[J]. Medicine (Baltimore), 2017, 96(17): e6417.

        [11] XIE Y Y, LIU Z, LIU K, et al. Polymorphisms of microRNAs are associated with salt sensitivity in a Han Chinese population: the EpiSS study[J]. J Hum Hypertens, 2022, 36(2): 171-183.

        [12] FELDER R A, GILDEA J J, XU P, et al. Inverse salt sensitivity of blood pressure: mechanisms and potential relevance for prevention of cardiovascular disease[J]. Curr Hypertens Rep, 2022, 24(9): 361-374.

        [13] WANG Y, CHU C, REN J, et al. Genetic variants in renalase and blood pressure responses to dietary salt and potassium interventions: a family-based association study[J]. Kidney Blood Press Res, 2014, 39(5): 497-506.

        [14] GONZALEZ-VICENTE A, SAEZ F, MONZON C M, et al. Thick ascending limb sodium transport in the pathogenesis of hypertension[J]. Physiol Rev, 2019, 99(1): 235-309.

        [15] ZHANG Z F, COGSWELL M E, GILLESPIE C, et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005-2010[J]. PLoS One, 2013, 8(10): e75289.

        [16] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63.

        [17] LIU Y, SHI M Y, DOLAN J, et al. Sodium sensitivity of blood pressure in Chinese populations[J]. J Hum Hypertens, 2020, 34(2): 94-107.

        [18] LOMBARI P, MALLARDO M, PETRAZZUOLO O, et al. MiRNA-23a modulates sodium-hydrogen exchanger 1 expression: studies in medullary thick ascending limb of salt-induced hypertensive rats[J]. Nephrol Dial Transplant, 2023, 38(3): 586-598.

        [19] ZHU Q, HU J P, WANG L, et al. Overexpression of microRNA-429 transgene into the renal medulla attenuated salt-sensitive hypertension in dahl S rats[J]. Am J Hypertens, 2021, 34(10): 1071-1077.

        [20] HAO S J, SALZO J, ZHAO H, et al. MicroRNA-133a-dependent inhibition of proximal tubule angiotensinogen by renal TNF (tumor necrosis factor)[J]. Hypertension, 2020, 76(6): 1744-1752.

        [21] HE J, KELLY T N, ZHAO Q, et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese[J]. Circ Cardiovasc Genet, 2013, 6(6): 598-607.

        [22] ZHAO Q, GU D F, KELLY T N, et al. Association of genetic variants in the apelin-APJ system and ACE2 with blood pressure responses to potassium supplementation: the GenSalt study[J]. Am J Hypertens, 2010, 23(6): 606-613.

        [23] HU J W, SHI T, MU J J. Association of genetic variants of Klotho with BP responses to dietary sodium or potassium intervention and long-term BP progression[J]. Kidney Blood Press Res, 2022, 47(2): 94-102.

        [24] CHU C, WANG Y, REN K Y, et al. Genetic variants in adiponectin and blood pressure responses to dietary sodium or potassium interventions: a family-based association study[J]. J Hum Hypertens, 2016, 30(9): 563-570.

        [25] LANG F, SHUMILINA E. Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1[J]. FASEB J, 2013, 27(1): 3-12.

        [26] CHU C, WANG Y, WANG M, et al. Common variants in serum/glucocorticoid regulated kinase 1 (SGK1) and blood pressure responses to dietary sodium or potassium interventions: a family-based association study[J]. Kidney Blood Press Res, 2015, 40(4): 424-434.

        [27] ANTONIOU A C, SINILNIKOVA O M, MCGUFFOG L, et al. Common variants inLSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers[J]. Hum Mol Genet, 2009, 18(22): 4442-4456.

        (編輯" 國" 榮)

        国产亚洲情侣一区二区无| 男女搞事在线观看视频| 巨爆中文字幕巨爆区爆乳| 精品国产一二三产品区别在哪| 全免费a级毛片免费看视频 | 最新在线观看免费的a站国产| 色中文字幕视频在线观看| 精品国产乱子伦一区二区三| 免费国产在线精品一区| 亚洲国产成人久久一区| 日韩最新在线不卡av| 美腿丝袜av在线播放| 亚洲av老熟女一区二区三区| 蜜桃一区二区三区| 狠狠躁夜夜躁无码中文字幕| 国产毛片A啊久久久久| 人妻中文字幕一区二区视频| 全黄性性激高免费视频| 嫩草影院未满十八岁禁止入内| 亚洲AV无码一区二区一二区色戒| 国产专区亚洲专区久久| 国产精品久久久亚洲| 国产精品人妻一区夜夜爱| 亚洲最稳定资源在线观看| 国产一区二区三区成人| 中文字幕一区日韩精品| 91麻豆国产香蕉久久精品| 不卡国产视频| 亚洲中文乱码在线观看| 激情综合色五月丁香六月欧美| 国产精品无码日韩欧| 精品一区二区三区人妻久久| 亚洲av少妇高潮喷水在线| 小sao货水好多真紧h无码视频 | 韩国主播av福利一区二区| 国产午夜精品视频观看| 国产香蕉视频在线播放| 精品亚洲成a人7777在线观看| 中文无码日韩欧免费视频| 91精品国产九色综合久久香蕉 | 久久久久免费看成人影片|