摘要 綜述腸道菌群失調(diào)和糖尿病腎病進(jìn)展之間的聯(lián)系,包括炎癥、短鏈脂肪酸、蛋白質(zhì)代謝終產(chǎn)物等,探討腸道菌群與糖尿病腎病的關(guān)系。糖尿病腎病發(fā)病率的逐漸增加,使其成為世界公共衛(wèi)生組織越來越重視的問題之一。近年來,許多研究證實(shí)腸道菌群與腎臟疾病的相互影響,這種影響在糖尿病腎臟病的發(fā)生發(fā)展過程中趨于明顯,兩者形成惡性循環(huán)使腸道微生物穩(wěn)態(tài)及腎功能逐漸惡化。
關(guān)鍵詞 糖尿病腎??;腸道菌群失調(diào);微生物治療;腸腎軸;綜述
doi:10.12102/j.issn.1672-1349.2023.13.018
作者單位 1.山西醫(yī)科大學(xué)(太原 030001);2.山西醫(yī)科大學(xué)第一醫(yī)院(太原 030001)
通訊作者 常沁濤,E-mail:xhldstjy@126.com
引用信息 鄭瑞鑫,常沁濤,方敬愛,等.腸道菌群失調(diào)與糖尿病腎病關(guān)系的研究進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2023,21(13):2435-2438.
在人體腸道內(nèi),有一個超過1×106億的微生物組成的復(fù)雜群落[1],參與人體內(nèi)消化食物、合成必需維生素及氨基酸、排除病原體、清除毒素等過程[2],通過產(chǎn)生具有生物活性的代謝物來參與人體內(nèi)一系列代謝途徑,發(fā)揮“微生物器官”的功能。流行病學(xué)調(diào)查顯示,全球人群中糖尿病病人的患病率逐年增加,甚至與糖尿病相關(guān)的微血管并發(fā)癥發(fā)生率也不斷升高,據(jù)統(tǒng)計(jì)有大約35%的糖尿病病人會出現(xiàn)遠(yuǎn)期并發(fā)癥:糖尿病腎病最終導(dǎo)致不可逆轉(zhuǎn)的終末期腎臟病的發(fā)生[3-4]。臨床研究表明,單純的降糖藥物、血管緊張素轉(zhuǎn)化酶抑制劑(angiotensin converting enzyme inhibitor,ACEI)、鈉葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白-2抑制劑(sodium glucose cotransporter-2,SGLT2)等對糖尿病及其相關(guān)血管并發(fā)癥的作用及益處越來越局限,這就使研究者不斷開發(fā)新型的治療方式和新靶點(diǎn)來延緩糖尿病及其并發(fā)癥的發(fā)生發(fā)展[5-11]。
有學(xué)者提出“腸腎軸”理論,主要包括:1)慢性腎功能不全病人長期處于尿毒癥環(huán)境中,影響腸道微生物群的結(jié)構(gòu)和代謝;2)腸道微生物失調(diào)造成腸上皮屏障受損,宿主更多的暴露于內(nèi)毒素,導(dǎo)致機(jī)體器官損傷;3)許多重要的尿毒癥毒素來源于腸道微生物的釋放[12]。
1 腸道菌群的免疫功能
人類從出生時(shí),腸道菌群已經(jīng)開始在腸道內(nèi)定植擴(kuò)增,定植過程中病原相關(guān)模式分子(pathogen-associated molecular patterns,PAMPs)會刺激在腸上皮細(xì)胞上的模式識別受體(pattern recognition receptor,PRR)[13],這種刺激、識別過程可促使腸黏膜中相關(guān)淋巴組織和淋巴細(xì)胞發(fā)育成熟。定植的腸道菌群同樣也可激活腸道中原本存在的許多免疫細(xì)胞,如巨噬細(xì)胞和樹突狀細(xì)胞,從而正式啟動機(jī)體先天性和適應(yīng)性免疫過程,甚至導(dǎo)致體內(nèi)的炎癥反應(yīng)[5]。腸道固有細(xì)胞及免疫細(xì)胞表達(dá)的一系列PRR,如Toll樣受體(Toll-like receptors,TLR)和NOD樣受體(Nod-like receptors,NLR)。這些受體能夠識別腸道中某些致病細(xì)菌的細(xì)胞壁成分,從而激活自身的免疫炎癥系統(tǒng),這些免疫反應(yīng)可影響包括腎臟在內(nèi)的多個器官及組織,導(dǎo)致各種疾病的發(fā)生[3]。
2 糖尿病腎病
高糖、炎癥、血管損傷都可使腎臟出現(xiàn)病理改變,成為糖尿病腎病進(jìn)展的主要因素[14],造成主要病理損害包括:腎小球肥大、系膜增寬、足細(xì)胞破壞,并且隨著腎功能的進(jìn)一步下降,逐漸演變成腎小球硬化、間質(zhì)纖維化[15]。腎臟病理改變的整個過程都伴隨著炎癥及免疫成分的參與[16],尤其巨噬細(xì)胞的浸潤與蛋白尿形成、腎小球纖維化、腎小管硬化息息相關(guān)[17],并且糖尿病病人T淋巴細(xì)胞增殖也可促進(jìn)微血管并發(fā)癥的發(fā)生發(fā)展[18-19]。由于腎小球?yàn)V過率的下降,機(jī)體血液中的各種毒素蓄積,腸道就成為主要排泄途徑(尤其在結(jié)腸)[20],毒素會破壞腸道原本的酸堿度及先天腸道屏障,使微生物及其產(chǎn)物進(jìn)入到血液當(dāng)中,導(dǎo)致全身的炎癥反應(yīng),加重腎功能惡化[21]。
3 腸道菌群失調(diào)與糖尿病腎病關(guān)系
3.1 慢性低度炎癥
TLR是人體先天免疫的模式受體,能夠調(diào)節(jié)炎癥細(xì)胞和轉(zhuǎn)錄因子來介導(dǎo)細(xì)胞途徑殺死病原微生物。糖尿病腎病病人腸道微生物群中,革蘭陰性細(xì)菌相對增多促使脂多糖(lipopolysaccharide,LPS)血清水平升高,刺激細(xì)菌外膜的免疫細(xì)胞,使其過度表達(dá)與炎癥相關(guān)的因子,如腫瘤壞死因子、C-反應(yīng)蛋白、白細(xì)胞介素-6(IL-6)。但是,包括LPS和其他微生物產(chǎn)物在內(nèi)的許多免疫炎癥物質(zhì)不僅在白細(xì)胞亞群表達(dá),在非免疫細(xì)胞-腎臟組織內(nèi)也會表達(dá)TLR,其中TLR2和TLR4亞型的表達(dá)與病人糖尿病腎損傷密切相關(guān)[22-23]。腸道黏膜保護(hù)屏障完整性是由腸上皮、相關(guān)免疫組織、共生微生物群構(gòu)成的[24],腸道中具有脲酶活性的細(xì)菌相對豐度升高后會使腸腔pH改變,破壞腸道屏障,造成“腸漏”現(xiàn)象,循環(huán)中的微生物在腸腔釋放,通過激活TLR并釋放病原體相關(guān)分子模式(PAMPs)、受損相關(guān)分子模式(damage associated molecular patterns,DAMPs)開始啟動炎癥過程,包括:樹突狀細(xì)胞、巨噬細(xì)胞釋放趨化因子、活性氧(reactive oxygen species,ROS)、一氧化氮(nitric oxide,NO)等,進(jìn)一步增加腫瘤壞死因子-α(tumor necrosis factor,TNF-α)、白細(xì)胞介素等活性化學(xué)炎癥介質(zhì),觸發(fā)腎臟炎癥和糖尿病腎損傷[25]。糖尿病腎病病人炎癥介質(zhì)及標(biāo)志物水平升高,這種炎癥狀態(tài)在疾病及其并發(fā)癥的發(fā)展中起著至關(guān)重要的作用[21]。
3.2 短鏈脂肪酸(short-chain fatty acids,SCFA)
SCFA 是一段碳鏈長度為1~6個碳原子的脂肪酸,是經(jīng)過富含纖維的碳水化合物發(fā)酵衍生的[26],并且被機(jī)體用作能量來源,與維持人類健康和多種疾病的發(fā)展有關(guān)。SCFA主要包括乙酸鹽、丙酸鹽、丁酸鹽,尤其是丁酸鹽,有明確的證據(jù)證實(shí)可以抑制核轉(zhuǎn)錄因子-κB(NF-κB),從而抑制中性粒細(xì)胞、巨噬細(xì)胞等炎性因子的產(chǎn)生[24,27]。SCFA作為腸細(xì)胞主要能量來源,在糖尿病腎病中的作用:1)增加胰島素的敏感性,有助于葡萄糖穩(wěn)態(tài);2)增加機(jī)體能量消耗;3)減輕肥胖;4)抑制腸道炎癥和氧化應(yīng)激[28]。
動物研究表明,腎功能不全的小鼠,經(jīng)過口服能夠產(chǎn)生乙酸鹽的雙歧桿菌后,腎功能不全有所恢復(fù),炎癥反應(yīng)程度得到改善[29]。而在腎臟病病人常常因?yàn)轱嬍诚拗?,攝入高纖維食物較少故而產(chǎn)生SCFA受到了限制[30],在此背景下,觀察到小鼠腸道中包括擬桿菌、雙歧桿菌在內(nèi)的益生菌比例有所下降;而腸球菌、梭菌科、副桿菌屬的比例較前上升,兩者的平衡常常與炎癥和腸道屏障完整性相關(guān)。
3.3 蛋白質(zhì)代謝產(chǎn)物
腎功能不全病人長期處于尿毒癥環(huán)境中,為了形成對自身有益的SCFA,腸道菌產(chǎn)生更多蛋白質(zhì)產(chǎn)物,成為腸源性毒素,其中有代表性的有:對甲酚硫酸鹽(P-cresyl sulfate,PCS)、硫酸吲哚酚(indoxyl sulfate,IS)、三甲胺-N-氧化物(trimethylamine-N-oxide,TMAO)[31],這些蛋白質(zhì)產(chǎn)物可轉(zhuǎn)化為致病性的毒素進(jìn)入循環(huán)引起腎毒性及血管毒性,在腎小球、腎小管促炎、促纖維化、氧化應(yīng)激等方面都有難以替代的作用[32-34],進(jìn)一步加重了毒性物質(zhì)對腎臟損害[7]。值得注意的是,TMAO與慢性腎臟病病人長期生存率相關(guān),其在血液中濃度越高,病人心血管事件發(fā)生率越高[35]。重要的是,這些毒素與清蛋白高度結(jié)合,常規(guī)的透析不能完全清除,相反透析后使這些毒素在血液中的濃度更高,加劇其毒性[36]。
3.4 腎素-血管緊張素-醛固酮系統(tǒng)(renin angiotensin aldosterone system,RAAS)
研究發(fā)現(xiàn),腸道微生物群產(chǎn)生的過量乙酸可通過激活腎臟中的腎素-血管緊張素系統(tǒng)(RAS),參與早期糖尿病腎病的腎臟損傷[37]。血液中的RAS可以通過調(diào)節(jié)血壓和體液穩(wěn)態(tài)的來動態(tài)維持機(jī)體平衡,而部分RAS只在某些組織或特定器官內(nèi)運(yùn)行。而腎臟是特殊的,其中全部RAS都分布在腎小管、間質(zhì)、腎細(xì)胞內(nèi)。腎小球旁器的傳入小動脈中有嗅覺受體78(Olfr78),腎小球分泌的腎素儲存在Olfr78。Olfr78可介導(dǎo)SCFAs誘導(dǎo)的腎素釋放。在腎素的刺激下,近端腎小管細(xì)胞局部產(chǎn)生的血管緊張素原(angiotensinogen,AGT)會形成血管緊張素Ⅰ(angiotensin-Ⅰ,AngⅠ),AngⅠ由血管緊張素轉(zhuǎn)換酶(angiotensin converting enzyme,ACE)催化生成血管緊張素Ⅱ(AngⅡ)[38],作用于腎血管可收縮傳入和傳出動脈,收縮系膜細(xì)胞、減少髓質(zhì)血流量,AngⅡ激活后足以加重腎臟病理改變及炎癥程度。血管緊張素轉(zhuǎn)換酶2(ACE2)可促進(jìn)AngⅡ的降解從而改善腎臟自身炎癥及損傷。研究發(fā)現(xiàn),糖尿病腎病中存在ACE軸的下調(diào),而ACE2軸受到刺激,這表明對糖尿病腎臟損傷有自我保護(hù)作用[39]。目前正在研究新的靶點(diǎn)來增強(qiáng)血管保護(hù)性作用,進(jìn)一步治療糖尿病腎病相關(guān)的腎損傷。
4 潛在治療方案
患有復(fù)雜慢性病的病人常常需要通過多種途徑來限制和管理病情,對微生物成分的適當(dāng)控制被認(rèn)為是預(yù)防和治療疾病的合理方法。
4.1 膳食纖維
作為決定腸道菌群最大的外源性因素,飲食方式、飲食結(jié)構(gòu)可作為重新建立健康菌群的治療途徑。研究已經(jīng)證實(shí),攝入含膳食纖維較高的食物可降低炎癥和死亡率風(fēng)險(xiǎn),尤其是在糖尿病腎病病人中,SCFAs是將膳食纖維和腸道微生物群聯(lián)系起來的關(guān)鍵物質(zhì),膳食纖維可使血液中SCFAs升高,從而改善葡萄糖穩(wěn)態(tài)。Li等[40]研究表明,與無纖維飲食、正常飲食的糖尿病組相比,高纖維飲食的糖尿病小鼠模型發(fā)生糖尿病腎病的概率降低,病理改變相對較輕。膳食纖維降低了糖尿病腎臟中編碼炎性細(xì)胞因子、趨化因子和纖維化促進(jìn)蛋白的基因的表達(dá)??傊?,膳食纖維可通過調(diào)節(jié)腸道微生物群、富集能夠產(chǎn)生 SCFA 的細(xì)菌,從而增加SCFA的產(chǎn)生來預(yù)防和延緩糖尿病腎病的發(fā)生發(fā)展。
4.2 糞便移植
糞便微生物群移植(fecal microbiota trans plantation,F(xiàn)MT)是一種將健康供體的腸道微生物群轉(zhuǎn)移到受者體內(nèi)的生物技術(shù),目的是引入或恢復(fù)穩(wěn)定的腸道微生物群落[41-42],可明顯改善葡萄糖穩(wěn)態(tài),對胰島素耐受性存在很大益處。并且隨著時(shí)間的推移,出現(xiàn)腸道菌群從豐富度較低的疾病狀態(tài)到菌群多樣化的生態(tài)系統(tǒng),進(jìn)一步證實(shí)了腸道功能的恢復(fù)主要來自健康供體的腸道微生物的植入。糞便微生物群移植已是一項(xiàng)成熟的技術(shù),在維持腸道菌群穩(wěn)態(tài)、治療與腸道菌群失調(diào)相關(guān)的其他疾病方面具有潛在的臨床價(jià)值[43]。
4.3 益生菌治療
乳酸桿菌和雙歧桿菌是臨床中最常用的益生菌,主要通過調(diào)節(jié)腸道黏膜免疫、與共生微生物群或潛在病原體相互作用產(chǎn)生SCFA、膽汁酸等代謝物或者通過信號通路作用于宿主細(xì)胞,對宿主腸道生態(tài)系統(tǒng)產(chǎn)生影響[24]。在益生菌的作用下,初級膽汁酸轉(zhuǎn)化為脫氧膽酸和石膽酸,腸道免疫細(xì)胞,如巨噬細(xì)胞、樹突狀細(xì)胞表達(dá)膽汁酸受體,腸道膽汁酸可以與這些受體結(jié)合,從而抑制炎癥小體NLRP3介導(dǎo)的炎癥反應(yīng),有助于維持人體免疫穩(wěn)態(tài),同時(shí)抑制潛在病原體,增強(qiáng)腸道屏障。益生菌已經(jīng)在動物實(shí)驗(yàn)中證實(shí),可以減少慢性腎病小鼠尿毒素的產(chǎn)生,改善微生物群落穩(wěn)態(tài)。目前對益生菌產(chǎn)品還需要更長時(shí)間去研究,以確定其對慢性疾病人群的臨床影響[44]。
5 總結(jié)與展望
糖尿病腎病病人腸道微生物和腎臟的健康穩(wěn)態(tài)相互影響,糖尿病病人腎功能不全或腎損傷會導(dǎo)致腸道菌群失調(diào),腸道微生物的紊亂也會通過產(chǎn)生大量尿毒癥毒素進(jìn)一步損傷腎功能,甚至造成不可逆轉(zhuǎn)的病變。通過高纖維飲食、口服益生菌等特殊治療治療保護(hù)腸道菌群穩(wěn)態(tài)能夠在一定程度上改善腸道功能,延緩腎臟病的進(jìn)展??傮w來說,對腸道菌群與糖尿病腎病的認(rèn)識處于起步階段,需要建立新的治療靶點(diǎn)抑制或延緩腸道生態(tài)失調(diào)與糖尿病腎病的惡性循環(huán)。
參考文獻(xiàn):
[1] HU Q D,WU K Y,PAN W,et al.Intestinal flora alterations in patients with early chronic kidney disease:a case-control study among the Han population in southwestern China[J].The Journal of International Medical Research,2020,48(6):300060520926033.
[2] HEINTZ-BUSCHART A,WILMES P.Human gut microbiome:function matters[J].Trends in Microbiology,2018,26(7):563-574.
[3] ZHOU B L,YUAN Y T,ZHANG S S,et al.Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J].Frontiers in Immunology,2020,11:575.
[4] NCD Risk Factor Collaboration (NCD-Risc).Worldwide trends in diabetes since 1980:a pooled analysis of 751 population-based studies with 4.4 million participants[J].Lancet,2016,387(10027):1513-1530.
[5] FRIED L F,EMANUELE N,ZHANG J H,et al.Combined angiotensin inhibition for the treatment of diabetic nephropathy[J].The New England Journal of Medicine,2013,369(20):1892-1903.
[6] National Kidney Foundation.KDOQI clinical practice guideline for diabetes and CKD:2012 update[J].American Journal of Kidney Diseases:the Official Journal of the National Kidney Foundation,2012,60(5):850-886.
[7] WIVIOTT S D,RAZ I,BONACA M P,et al.Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J].The New England Journal of Medicine,2019,380(4):347-357.
[8] ZINMAN B,LACHIN J M,INZUCCHI S E.Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J].The New England Journal of Medicine,2016,374(11):1094.
[9] VAN BAAR M J B,VAN RUITEN C C,MUSKIET M H A,et al.SGLT2 inhibitors in combination therapy:from mechanisms to clinical considerations in type 2 diabetes management[J].Diabetes Care,2018,41(8):1543-1556.
[10] GERSTEIN H C,COLHOUN H M,DAGENAIS G R,et al.Dulaglutide and renal outcomes in type 2 diabetes:an exploratory analysis of the REWIND randomised,placebo-controlled trial[J].Lancet,2019,394(10193):131-138.
[11] SAGLIMBENE V,PALMER S C,RUOSPO M,et al.The long-term impact of renin-angiotensin system (RAS) inhibition on cardiorenal outcomes (LIRICO):a randomized,controlled trial[J].Journal of the American Society of Nephrology,2018,29(12):2890-2899.
[12] EVENEPOEL P,POESEN R,MEIJERS B.The gut-kidney axis[J].Pediatric Nephrology,2017,32(11):2005-2014.
[13] MAYNARD C L,ELSON C O,HATTON R D,et al.Reciprocal interactions of the intestinal microbiota and immune system[J].Nature,2012,489(7415):231-241.
[14] PICHLER R,AFKARIAN M,DIETER B P,et al.Immunity and inflammation in diabetic kidney disease:translating mechanisms to biomarkers and treatment targets[J].American Journal of Physiology-Renal Physiology,2017,312(4):F716-F731.
[15] ALICIC R Z,ROONEY M T,TUTTLE K R.Diabetic kidney disease:challenges,progress,and possibilities[J].Clinical Journal of the American Society of Nephrology,2017,12(12):2032-2045.
[16] SERGIO M,CLAUDIO A,ALEJANDRA D,et al.NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy[J].Nephrology,Dialysis,Transplantation:Official Publication of the European Dialysis and Transplant Association-European Renal Association,2004,19(10):2505-2512.
[17] CHOW F,OZOLS E,NIKOLIC-PATERSON D J,et al.Macrophages in mouse type 2 diabetic nephropathy:correlation with diabetic state and progressive renal injury[J].Kidney International,2004,65(1):116-128.
[18] CHOW F Y,NIKOLIC-PATERSON D J,OZOLS E,et al.Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice[J].Journal of the American Society of Nephrology,2005,16(6):1711-1722.
[19] BENDING J J,LOBO-YEO A,VERGANI D,et al.Proteinuria and activated T-lymphocytes in diabetic nephropathy[J].Diabetes,1988,37(5):507-511.
[20] GHEITH O,F(xiàn)AROUK N,NAMPOORY N,et al.Diabetic kidney disease:world wide difference of prevalence and risk factors[J].Journal of Nephropharmacology,2016,5(1):49-56.
[21] FRIED L F,DUCKWORTH W,ZHANG J H,et al.Design of combination angiotensin receptor blocker and angiotensin-converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D)[J].Clinical Journal of the American Society of Nephrology,2009,4(2):361-368.
[22] YANG M,GAN H,SHEN Q.Effect of LPS on the level of TLR4 and on the expression of NF-κB and Notch1 in monocytes from patients with type 2 diabetic nephropathy[J].Journal of Central South University (Medical Sciences),2012,37(6):578-585.
[23] LI F L,YANG N S,ZHANG L L,et al.Increased expression of toll-like receptor 2 in rat diabetic nephropathy[J].American Journal of Nephrology,2010,32(2):179-186.
[24] FERNANDES R,VIANA S D,NUNES S,et al.Diabetic gut microbiota dysbiosis as an inflammaging and immuno senescence condition that fosters progression of retinopathy and nephropathy[J].Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2019,1865(7):1876-1897.
[25] SALGUERO M V,AL-OBAIDE M A I,SINGH R,et al.Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease[J].Experimental and Therapeutic Medicine,2019,18(5):3461-3469.
[26] MASLOWSKI K M,VIEIRA A T,NG A,et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J].Nature,2009,461(7268):1282-1286.
[27] WHEELER M L,LIMON J J,BAR A S,et al.Immunological consequences of intestinal fungal dysbiosis[J].Cell Host amp; Microbe,2016,19(6):865-873.
[28] METZGER R N,KRUG A B,EISEN?CHER K.Enteric virome sensing-its role in intestinal homeostasis and immunity[J].Viruses,2018,10(4):146.
[29] ANDRADE-OLIVEIRA V,AMANO M T,CORREA-COSTA M,et al.Gut bacteria products prevent AKI induced by ischemia-reperfusion[J].Journal of the American Society of Nephrology,2015,26(8):1877-1888.
[30] JIANG S H,XIE S,LV D,et al.A reduction in the butyrate producing species Roseburia spp.and Faecalibacterium prausnitzii is associated with chronic kidney disease progression[J].Antonie Van Leeuwenhoek,2016,109(10):1389-1396.
[31] ARONOV P A,LUO F J,PLUMMER N S,et al.Colonic contribution to uremic solutes[J].Journal of the American Society of Nephrology,2011,22(9):1769-1776.
[32] GRYP T,HUYS G R B,JOOSSENS M,et al.Isolation and quantification of uremic toxin precursor-generating gut bacteria in chronic kidney disease patients[J].International Journal of Molecular Sciences,2020,21(6):1986.
[33] FELIZARDO R J F,DE ALMEIDA D C,PEREIRA R L,et al.Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic-and GPR109a-mediated mechanisms[J].FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology,2019,33(11):11894-11908.
[34] DONG W P,JIA Y,LIU X X,et al.Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC[J].Journal of Endocrinology,2017,232(1):71-83.
[35] HEIANZA Y,MA W J,MANSON J E,et al.Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death:a systematic review and meta-analysis of prospective studies[J].Journal of the American Heart Association,2017,6(7):e004947.
[36] DELTOMBE O,VAN BIESEN W,GLORIEUX G,et al.Exploring protein binding of uremic toxins in patients with different stages of chronic kidney disease and during hemodialysis[J].Toxins,2015,7(10):3933-3946.
[37] LU C C,MA K L,RUAN X Z,et al.Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy[J].International Journal of Medical Sciences,2018,15(8):816-822.
[38] 魏麗雪,杜玄.腸道菌群與腎臟病研究新進(jìn)展[J].中國中西醫(yī)結(jié)合腎病雜志,2020,21(5):453-455.
[39] HU Z B,LU J,CHEN P P,et al.Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis[J].Theranostics,2020,10(6):2803-2816.
[40] LI Y J,CHEN X C,KWAN T K,et al.Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A[J].Journal of the American Society of Nephrology,2020,31(6):1267-1281.
[41] 王漢,王敦方,宋紅新,等.腸道菌群失調(diào)在糖尿病腎病發(fā)病機(jī)制中的作用研究進(jìn)展[J].海南醫(yī)學(xué)院學(xué)報(bào),2022,28(8):626-634.
[42] 郭鑫,吳飛飛.腸道菌群參與糖尿病腎病的發(fā)病機(jī)制研究進(jìn)展[J].中國醫(yī)學(xué)創(chuàng)新,2021,18(14):184-188.
[43] SCHEITHAUER T P M,RAMPANELLI E,NIEUWDORP M,et al.Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes[J].Frontiers in Immunology,2020,11:571731.
[44] SALAZAR J,ANGARITA L,MORILLO V,et al.Microbiota and diabetes mellitus:role of lipid mediators[J].Nutrients,2020,12(10):3039.
(收稿日期:2022-03-20)
(本文編輯郭懷?。?/p>