王婧月,陸佳平*,王利強(qiáng),2
M型預(yù)制袋袋口折合機(jī)構(gòu)運(yùn)動(dòng)精度可靠性優(yōu)化
王婧月1,陸佳平1*,王利強(qiáng)1,2
(1.江南大學(xué),江蘇 無(wú)錫 214122; 2.江蘇省食品先進(jìn)制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122)
為提高M(jìn)型預(yù)制袋包裝機(jī)袋口折合機(jī)構(gòu)軌跡輸出點(diǎn)的運(yùn)動(dòng)精度,對(duì)袋口折合機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)精度可靠性優(yōu)化。在運(yùn)動(dòng)學(xué)分析的基礎(chǔ)上,用環(huán)路增量法建立考慮桿長(zhǎng)誤差時(shí)袋口折合機(jī)構(gòu)的位置誤差模型,接著對(duì)軌跡輸出點(diǎn)進(jìn)行可靠性分析及蒙特卡洛法驗(yàn)證,通過(guò)靈敏度分析確定關(guān)鍵誤差影響因素,最后進(jìn)行運(yùn)動(dòng)精度可靠性優(yōu)化。建立的可靠性模型可以有效地反映桿長(zhǎng)誤差對(duì)機(jī)構(gòu)運(yùn)動(dòng)精度的影響,分量軌跡的可靠度由82.5%提高至92.91%,分量軌跡可靠度由65.34%提高至89%。經(jīng)過(guò)可靠性優(yōu)化能夠使袋口折合機(jī)構(gòu)運(yùn)動(dòng)精度滿足設(shè)計(jì)要求。
包裝機(jī)械;M型預(yù)制袋;袋口折合機(jī)構(gòu);運(yùn)動(dòng)精度;靈敏度;可靠性優(yōu)化
M型預(yù)制袋是一種工業(yè)上常用的柔性包裝容器,它是由筒狀薄膜經(jīng)支撐板撐起四周,插邊輪將薄膜側(cè)面沿著中線折入,使左右兩側(cè)面折成M字形制成的。M型預(yù)制袋在經(jīng)過(guò)充填后,形成了自由開(kāi)放袋口,需要用折合機(jī)構(gòu)對(duì)袋口進(jìn)行折合,使得M型預(yù)制袋按預(yù)定邊要求再次折疊完成袋口的閉合。但由于機(jī)構(gòu)軌跡輸出點(diǎn)的運(yùn)動(dòng)精度將直接影響M型預(yù)制袋袋口折合工序的可靠性,且多連桿機(jī)構(gòu)的運(yùn)動(dòng)誤差具有累積效應(yīng),所以有必要探究無(wú)法消除的隨機(jī)誤差對(duì)M型預(yù)制袋袋口折合機(jī)構(gòu)運(yùn)動(dòng)精度的影響。
平面連桿機(jī)構(gòu)的隨機(jī)誤差主要有構(gòu)件的尺寸誤差、運(yùn)動(dòng)副的間隙、運(yùn)動(dòng)副軸線的歪斜等[1]。目前國(guó)內(nèi)外學(xué)者已經(jīng)對(duì)可靠性問(wèn)題進(jìn)行了大量的研究,并取得了豐碩的成果[2-6]。然而,這些可靠性的相關(guān)理論卻較少運(yùn)用于包裝機(jī)械領(lǐng)域[7-11]。
針對(duì)M型預(yù)制袋在折合工序時(shí)對(duì)袋口折合機(jī)構(gòu)軌跡輸出點(diǎn)的高精度要求以及目前包裝機(jī)械領(lǐng)域在運(yùn)動(dòng)精度可靠性方面研究的不足,基于環(huán)路增量法建立考慮桿長(zhǎng)尺寸誤差時(shí)的運(yùn)動(dòng)誤差模型。在此基礎(chǔ)上分析了袋口折合機(jī)構(gòu)的點(diǎn)位置可靠度以及軌跡可靠度,并用蒙特卡洛方法進(jìn)行驗(yàn)證,通過(guò)靈敏度分析模型討論各桿件制造誤差標(biāo)準(zhǔn)差對(duì)機(jī)構(gòu)運(yùn)動(dòng)精度的影響程度,并找到影響機(jī)構(gòu)運(yùn)動(dòng)精度的關(guān)鍵因素。最后綜合靈敏度信息和成本進(jìn)行袋口折合機(jī)構(gòu)可靠性優(yōu)化。
袋口折合機(jī)構(gòu)對(duì)稱分布于M型預(yù)制袋的兩側(cè),單側(cè)機(jī)構(gòu)的運(yùn)動(dòng)簡(jiǎn)圖如圖1所示。該機(jī)構(gòu)由哈特第二連桿機(jī)構(gòu)演化,含有8桿10副,自由度為1。其中3副構(gòu)件桿4和桿2的夾角以及固接在一起的桿、之間的夾角均為定值180°。在理想條件下由主動(dòng)構(gòu)件桿1帶動(dòng),可以使、、3點(diǎn)分別沿軸負(fù)方向、軸負(fù)方向、軸正方向作精確直線運(yùn)動(dòng)(即x=y=x=0),從而實(shí)現(xiàn)M型預(yù)制袋袋口的折合。
圖1 M型預(yù)制袋袋口折合機(jī)構(gòu)運(yùn)動(dòng)簡(jiǎn)圖
綜上所述軌跡輸出點(diǎn)、、3點(diǎn)的運(yùn)動(dòng)精度將直接影響M型預(yù)制袋袋口折合工序的可靠性,但根據(jù)多連桿機(jī)構(gòu)誤差累積作用,以運(yùn)動(dòng)誤差最大的點(diǎn)進(jìn)行運(yùn)動(dòng)精度可靠性分析。根據(jù)3個(gè)環(huán)路的矢量封閉方程,建立機(jī)構(gòu)運(yùn)動(dòng)方程式(1)。
在直角坐標(biāo)系下,軌跡輸出點(diǎn)的坐標(biāo)值可以寫(xiě)為
2.2節(jié)建立的是機(jī)構(gòu)點(diǎn)位置的可靠性模型,反映了機(jī)構(gòu)在運(yùn)動(dòng)過(guò)程中各隨機(jī)誤差瞬時(shí)對(duì)軌跡輸出點(diǎn)的運(yùn)動(dòng)精度的影響。但是無(wú)法綜合反映各隨機(jī)誤差對(duì)整條軌跡的影響,顯然分析軌跡可靠性更具有實(shí)用價(jià)值,因此有必要建立機(jī)構(gòu)軌跡精度可靠性模型[13]。
設(shè)驅(qū)動(dòng)構(gòu)件的轉(zhuǎn)角1的工作區(qū)間為[0,θ],機(jī)構(gòu)存在個(gè)軌跡點(diǎn),且每個(gè)軌跡點(diǎn)對(duì)應(yīng)的驅(qū)動(dòng)構(gòu)件轉(zhuǎn)角為θ,可以建立點(diǎn)在和方向運(yùn)動(dòng)分量的軌跡可靠度為:
式(15)的概率密度函數(shù)難以求解,涉及到多維積分的計(jì)算,且當(dāng)選取的軌跡點(diǎn)數(shù)目多時(shí)非常困難。為了簡(jiǎn)化運(yùn)算,引入等效極值[37]的思想,式(15)可簡(jiǎn)化為:
結(jié)合上述方法,運(yùn)用Matlab軟件進(jìn)行數(shù)學(xué)仿真。另外,為了驗(yàn)證上述模型的有效性,在驅(qū)動(dòng)構(gòu)件的轉(zhuǎn)角工作范圍內(nèi)取121個(gè)點(diǎn),用蒙塔卡洛方法模擬104次,計(jì)算考慮桿長(zhǎng)誤差時(shí)點(diǎn)各分量的軌跡可靠度。
仿真結(jié)果如表1所示,計(jì)算結(jié)果表明點(diǎn)各分量的點(diǎn)位置可靠度的最小值均在驅(qū)動(dòng)構(gòu)件轉(zhuǎn)角為177°時(shí)。由表1可知,用蒙特卡洛方法計(jì)算的軌跡精確度與所建模型誤差較小,驗(yàn)證了所建模型的有效性;桿長(zhǎng)尺寸誤差對(duì)點(diǎn)軸方向運(yùn)動(dòng)精度的影響不容小覷;目前初選的公差無(wú)法滿足袋口折合機(jī)構(gòu)的運(yùn)動(dòng)精度要求,后續(xù)有必要重新對(duì)桿長(zhǎng)尺寸公差進(jìn)行精度分配,以提高機(jī)構(gòu)運(yùn)動(dòng)精度可靠性。
表1點(diǎn)各分量的軌跡可靠度
Tab.1 Track reliability of each component of point P'
將式(18)代入式(17)得:
式中:( )為標(biāo)準(zhǔn)正態(tài)分布的概率密度函數(shù)。
圖2 標(biāo)準(zhǔn)差對(duì)P'點(diǎn)可靠性的靈敏度
圖3 關(guān)鍵誤差因素對(duì)位置誤差的綜合顯著度
圖4 基于靈敏度信息的機(jī)構(gòu)精度綜合流程
以最大顯著度的誤差因素桿3為基準(zhǔn)求出各構(gòu)件的靈敏度綜合系數(shù)R=3/n,如式(22)所示。R的數(shù)值意義為運(yùn)動(dòng)精度的相對(duì)影響程度,其值越小,表示在所有因素中影響越顯著,公差調(diào)整時(shí)越應(yīng)該優(yōu)先考慮。
加權(quán)方法在解決只有2個(gè)目標(biāo)函數(shù)的優(yōu)化問(wèn)題方面非常有效,因此使用加權(quán)方法綜合考慮靈敏度綜合系數(shù)R和成本綜合系數(shù)K得到加權(quán)線性組合系數(shù)M[16],見(jiàn)式(23)。
表2 綜合靈敏度和成本的加權(quán)線性組合系數(shù)
Tab.2 Weighted linear combination coefficient that combines sensitivity and cost
表3 調(diào)整過(guò)程和調(diào)整結(jié)果
Tab.3 Adjustment process and results
[1] 石則昌, 劉深厚. 機(jī)構(gòu)精確度[M]. 北京: 高等教育出版社, 1995: 1.
SHI Ze-chang, LIU Shen-hou. Mechanism Accuracy[M]. Beijing: Higher Education Press, 1995: 1.
[2] SHI Z. Synthesis of Mechanical Error in Spatial Linkages Based on Reliability Concept[J]. Mechanism and Machine Theory, 1997, 32(2): 255-259.
[3] KIM J, SONG W J, KANG B S. Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism with Dimensional Tolerance[J]. Applied Mathematical Modelling, 2010, 34(5): 1225-1237.
[4] DU Xiao-ping. Time-Dependent Mechanism Reliability Analysis with Envelope Functions and First-Order Approximation[J]. Journal of Mechanical Design, 2014, 136: 1-4.
[5] 吳吉平, 賀兵, 胡威林. 直線運(yùn)動(dòng)機(jī)構(gòu)軌跡可靠性靈敏度分析[J]. 機(jī)械傳動(dòng), 2016, 40(6): 140-143.
WU Ji-ping, HE Bing, HU Wei-lin. Sensitivity Analysis of Trajectory Reliability of Linear Motion Mechanism[J]. Journal of Mechanical Transmission, 2016, 40(6): 140-143.
[6] 聶飛飛, 周金宇, 曹清林. 高速經(jīng)編機(jī)槽針機(jī)構(gòu)運(yùn)動(dòng)精度可靠性優(yōu)化[J]. 機(jī)械設(shè)計(jì)與制造, 2019(12): 40-44.
NIE Fei-fei, ZHOU Jin-yu, CAO Qing-lin. The Optimization of Kinematics Accuracy Reliability on Needle Mechanism of High-Speed Warp Knitting Machine[J]. Machinery Design & Manufacture, 2019(12): 40-44.
[7] 余成發(fā), 王勇. 全自動(dòng)模切機(jī)清廢機(jī)構(gòu)運(yùn)動(dòng)精度可靠性分析[J]. 包裝工程, 2009, 30(3): 3-6.
YU Cheng-fa, WANG Yong. Reliability Analysis for Kinematics Accuracy of Trash-Cleaning Mechanism of Automatic Die Cutting Machine[J]. Packaging Engineering, 2009, 30(3): 3-6.
[8] 劉志青. 藥品包裝盒出盒機(jī)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)精度可靠性分析[D]. 湘潭: 湘潭大學(xué), 2020: 13-18.
LIU Zhi-qing. Analysis of the Design of the Mechanism and the Reliability of the Motion Accuracy of the Medicine Packing Box[D]. Xiangtan: Xiangtan University, 2020: 13-18.
[9] 郎詩(shī)慧, 辛洪兵. 糖果包裝機(jī)推糖機(jī)構(gòu)的運(yùn)動(dòng)精度分析[J]. 包裝工程, 2017, 38(5): 49-57.
LANG Shi-hui, XIN Hong-bing. Kinematic Accuracy of Candy Pusher of Candy Packaging Machine[J]. Packaging Engineering, 2017, 38(5): 49-57.
[10] 吳金文, 田祎. 推料四桿機(jī)構(gòu)參數(shù)優(yōu)化與運(yùn)動(dòng)精度分析研究[J]. 包裝工程, 2018, 39(21): 163-167.
WU Jin-wen, TIAN Yi. Research on Parameter Optimization and Motion Accuracy Analysis of Pushing Four-Bar Mechanism[J]. Packaging Engineering, 2018, 39(21): 163-167.
[11] 趙之瑜. 糊底機(jī)貼閥裝置優(yōu)化設(shè)計(jì)[D]. 蘭州: 蘭州交通大學(xué), 2022: 9-13.
ZHAO Zhi-yu. Optimal Design of Valve Sticking Device for Bottom Pasting Machine[D]. Lanzhou: Lanzhou Jiatong University, 2022: 9-13.
[12] 孫志禮, 陳良玉. 實(shí)用機(jī)械可靠性設(shè)計(jì)理論與方法[M]. 北京: 科學(xué)出版社, 2003: 210-221.
SUN Zhi-li, CHEN Liang-yu. Theory and Method of Practical Mechanical Reliability Design[M]. Beijing: Science Press, 2003: 210-221.
[13] 潘敬鋒, 訾斌, 王正雨, 等. 基于試驗(yàn)與仿真聯(lián)合分析的噴涂機(jī)器人軌跡精度可靠性研究[J]. 機(jī)械工程學(xué)報(bào), 2020, 56(19): 210-220.
PAN Jing-feng, ZI Bin, WANG Zheng-yu, et al. Research on Reliability of Spray Robot Trajectory Accuracy Based on Conjoint Analysis of Experiment and Simulation[J]. Journal of Mechanical Engineering, 2020, 56(19): 210-220.
[14] 龍進(jìn), 張均富, 王進(jìn)戈. 平面四桿轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)可靠性靈敏度分析[J]. 機(jī)械設(shè)計(jì)與研究, 2011, 27(6): 21-23.
LONG Jin, ZHANG Jun-fu, WANG Jin-ge. The Kinematic Reliability Sensitivity Analysis of Planar Four-Bar Steering Mechanism[J]. Machine Design and Research, 2011, 27(6): 21-23.
[15] 劉濤, 文瑞橋, 張均富. 弧面分度凸輪機(jī)構(gòu)的運(yùn)動(dòng)可靠性靈敏度分析[J]. 西華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 36(3): 36-39.
LIU Tao, WEN Rui-qiao, ZHANG Jun-fu. The Kinematic Reliability Sensitivity Analysis of Globoidal Indexing Cam Mechanism[J]. Journal of Xihua University (Natural Science Edition), 2017, 36(3): 36-39.
[16] 騫華楠, 陶璟, 于隨然. 高精度壓力機(jī)連桿機(jī)構(gòu)的誤差分析及精度綜合[J]. 上海交通大學(xué)學(xué)報(bào), 2019, 53(3): 269-275.
QIAN Hua-nan, TAO Jing, YU Sui-ran. Error Analysis and Accuracy Synthesis for Linkage Mechanism of High-Precision Press[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 269-275.
Reliability Optimization of Opening Folding Mechanism Movement Accuracy of M-shaped Prefabricated Bags
WANG Jing-yue1, LU Jia-ping1*, WANG Li-qiang1,2
(1. Jiangnan University, Jiangsu Wuxi 214122, China; 2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangsu Wuxi 214122, China)
The work aims to improve the kinematic accuracy of the trajectory output point of the M-shaped prefabricated bag opening folding mechanism, and optimize the kinematic accuracy reliability of the opening folding mechanism. Based on kinematic analysis, a position error model of the opening folding mechanism considering rod length errors was established according to the loop increment method. Then, reliability analysis and Monte Carlo verification were performed on the trajectory output points, and key error influencing factors were determined through sensitivity analysis. Finally, reliability optimization of motion accuracy was performed.The results showed that the reliability model established could effectively reflect the impact of rod length errors on the kinematic accuracy of the mechanism. The reliability of the-component trajectory was increased from 82.5% to 92.91%, and the reliability of the-component trajectory was increased from 65.34% to 89%. In summary, the reliability optimization can make the movement accuracy of the opening folding mechanism meet the design requirements.
packaging machinery;M-shaped prefabricated bag; opening folding mechanism; kinematic accuracy; sensitivity; reliability optimization
TH112
A
1001-3563(2023)23-0191-07
10.19554/j.cnki.1001-3563.2023.23.023
2023-03-30
自主研究課題資助項(xiàng)目(FMZ201902)
責(zé)任編輯:曾鈺嬋