鄭皓鳴,朱文富,羅穎鴻,王子琨,劉美茵,黃皓旻,葉代啟,李洪祥,吳軍良**
摻氮石油焦基活性炭常溫催化氧化硫化氫研究
鄭皓鳴1,朱文富1,羅穎鴻1,王子琨1,劉美茵1,黃皓旻1,2,葉代啟1,2,李洪祥3*,吳軍良1,2**
(1.華南理工大學(xué)環(huán)境與能源學(xué)院,廣東 廣州 510006;2.揮發(fā)性有機(jī)物污染治理技術(shù)與裝備國(guó)家工程實(shí)驗(yàn)室,廣東省大氣環(huán)境與污染控制重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510006;3.山西新華化工有限責(zé)任公司,山西 太原 030008)
以石油焦為碳源,以三聚氰胺生產(chǎn)中的固體廢棄物為氮源,成功制備了一種新型氮摻雜多孔碳,并在室溫下表現(xiàn)出優(yōu)異的H2S催化氧化能力,穿透硫容可達(dá)398.4mg/g.制備過(guò)程中活化劑用量、氮摻雜溫度、氮源用量三個(gè)工藝參數(shù)分別改變了催化劑的比表面、N構(gòu)型、N含量.通過(guò)優(yōu)化工藝條件,可使最高的反應(yīng)活性中心——吡啶N的含量達(dá)2.88at.%.與傳統(tǒng)材料制備的催化劑相比,實(shí)現(xiàn)了廢物利用和綠色制備.本文結(jié)果可為制備低成本、高突破硫容量的多孔碳材料提供一種新的方法.
硫化氫;氮摻雜;活性炭;催化氧化;石油焦
硫化氫(H2S)廣泛來(lái)源于石油化工廠、焦化廠等工業(yè)與生活生產(chǎn)地,是惡臭氣體的主要成分之一[1-3].它是一種無(wú)色但有刺激性氣味氣體[4],具有毒性強(qiáng)、嗅閾值低[5]等特點(diǎn),會(huì)刺激與危害人體黏膜和呼吸道[6].此外,H2S還具有強(qiáng)腐蝕性,會(huì)對(duì)金屬管道、生產(chǎn)設(shè)備造成腐蝕破壞[7].因此,使用高效的方法脫除H2S至關(guān)重要.
常用的脫除H2S方法主要包括液相吸收[8]、固相吸附[9]、膜分離[10]、生物處理[11]和催化氧化[12-13].其中,催化氧化法可對(duì)硫進(jìn)行回收,同時(shí)成本較低,被認(rèn)為是最佳的處理方法.催化氧化法的關(guān)鍵在于催化劑的制備,其中多孔材料是目前研究的熱門.多孔活性炭因其具有高比表面和豐富的表面官能團(tuán)而被廣泛應(yīng)用于H2S的吸附/催化[14].相關(guān)研究最先以商用活性炭為研究對(duì)象,探究了活性炭表面化學(xué)基團(tuán)、酸度和孔結(jié)構(gòu)等系列參數(shù)對(duì)商用活性炭脫H2S性能的影響,提出活性炭表面化學(xué)基團(tuán)、酸度和孔結(jié)構(gòu)是影響H2S去除能力的主要因素[15-17].在此基礎(chǔ)上,研究者們通過(guò)化學(xué)浸漬[18]、金屬氧化物沉積[19]和N元素?fù)诫s[20-21]來(lái)改變活性炭表面性質(zhì)以提高活性炭對(duì)H2S的去除能力.其中N元素?fù)诫s具有成本低、產(chǎn)物選擇性高和產(chǎn)物可回收的優(yōu)點(diǎn),引起了研究者的廣泛重視.將N元素引入C骨架中,由于N原子能提供孤電子對(duì),從而提高了材料的供電能力,在析氫反應(yīng)(HER)、析氧反應(yīng)(OER)和氧還原反應(yīng)(ORR)中有著廣泛研究[22-25].同時(shí),N原子摻雜能提高活性炭表面的局部Lewis堿性,有利于酸性氣體吸附并電離[21,26],進(jìn)一步促進(jìn)H2S吸附/催化,提高活性炭去除H2S的能力.
研究者們以不同的化工原料制備出了高性能的脫硫介孔活性炭,穿透硫容可達(dá)1.83~2.77g/g,但所用原料價(jià)格高,制備工藝相對(duì)復(fù)雜限制了其進(jìn)一步的應(yīng)用[21,27].在此基礎(chǔ)上,有研究者[28]研究了廢棄物綠色制備脫硫材料的可能性,以廢棄聚氨酯為原料,通過(guò)熱解活化法制備活性炭材料,但其脫硫性能較差,穿透硫容及飽和硫容分別僅為15.64mg/g和205.06mg/g.目前報(bào)道中,仍缺少以低值廢棄物作為碳、氮源制備的具有優(yōu)秀性能的摻氮活性炭材料.
石油焦是石油煉制過(guò)程中的副產(chǎn)物,主要用于燃料燃燒[29].然而,石油焦燃燒過(guò)程中會(huì)生成大量CO2、SO污染物,引起環(huán)境污染問(wèn)題[30-31].石油焦產(chǎn)量大、價(jià)格較低而且含碳量高,是制備功能活性炭的優(yōu)質(zhì)原料.已有研究者對(duì)石油焦制備活性炭材料用于吸附CO2進(jìn)行了研究[32-34],但很少應(yīng)用于H2S處理.三聚氰胺廢渣(OAT)是三聚氰胺生產(chǎn)中產(chǎn)生的難利用廢料,主要成分包括三聚氰胺、三聚氰酸、三聚氰酸一酰胺和三聚氰酸二酰胺等,其氮含量高、價(jià)格低廉,是極具潛力的新型摻氮?jiǎng)?
本研究以石油焦和OAT分別為碳源、氮源,通過(guò)兩步熱解法制備石油焦基摻氮活性炭(NPCs),并考察不同制備工藝和不同工況條件對(duì)NPCs脫H2S性能的影響.制備得到一系列N含量可控的摻氮活性炭,用于室溫下催化氧化H2S.并采用氮?dú)馕摳降榷喾N表征手段研究制備工藝參數(shù)對(duì)材料結(jié)構(gòu)的影響,進(jìn)而探究影響材料脫H2S性能的內(nèi)在因素.本研究提出新的低值廢棄物作為原料制備高性能脫H2S活性炭方法,為其資源化利用提供了新的路徑.
實(shí)驗(yàn)主要原料有石油焦(廣東某石化公司);氫氧化鉀(KOH,化學(xué)純,天津市大茂化學(xué)試劑廠); 三聚氰胺生產(chǎn)廢渣OAT(江蘇某化工公司);三聚氰胺(化學(xué)純,上海阿拉丁生化科技股份有限公司).
預(yù)先將石油焦、OAT分別研磨并過(guò)篩,得到100 ~200目石油焦及OAT粉末.摻氮活性炭的制備分兩步進(jìn)行.石油焦的炭化活化:稱取2g石油焦粉末和一定量的氫氧化鉀(KOH與石油焦質(zhì)量比分別為1,1.5,2)充分研磨混合.混合后的固體粉末混合物轉(zhuǎn)移至管式爐中,在N2氣氛下,以5 ℃/min升溫速率升溫至800℃活化1h.冷卻后用去離子水洗滌至中性(pH = 7),烘箱內(nèi)105℃干燥24h,得到石油焦基活性炭.石油焦基活性炭摻氮:稱取炭化活化步驟中所得石油焦基活性炭和一定量的OAT(OAT與石油焦基活性炭質(zhì)量比分別為0,0.5,0.75,1.0,1.5)充分研磨混合.混合后的固體粉末混合物轉(zhuǎn)移至管式爐中,在N2氣氛下,以5 ℃/min升溫速率升至確定溫度(600, 700,800,900℃)煅燒2h.冷卻后得到石油焦基摻氮活性炭.該系列材料命名為(N)PC--(),其中N表示該材料進(jìn)行了氮摻雜,表示KOH與石油焦的質(zhì)量比,表示OAT與石油焦基活性炭的質(zhì)量比,表示摻氮步驟的煅燒溫度.
為驗(yàn)證新型摻氮?jiǎng)㎡AT的效果,選擇常用摻氮?jiǎng)┤矍璋诽娲鶲AT進(jìn)行對(duì)照實(shí)驗(yàn).選取KOH與石油焦質(zhì)量比為2、三聚氰胺與石油焦基活性炭質(zhì)量比為0.75、氮摻雜溫度為800℃,在其它條件保持不變的條件下制備三聚氰胺摻氮材料.該材料命名為NPC-2-0.75(800M),其中M代表所用摻氮?jiǎng)槿矍璋?
氮?dú)馕摳綄?shí)驗(yàn)采用美國(guó)Micromeritics公司ASAP 2460型物理吸附儀進(jìn)行,測(cè)試前樣品在180℃下脫氣6h;材料表面形狀觀察與能譜分析采用德國(guó)Zeiss公司Merlin型掃描電子顯微鏡(SEM)得到;有機(jī)元素分析實(shí)驗(yàn)采用德國(guó)Elementar公司UNICUBE型號(hào)有機(jī)元素分析儀進(jìn)行分析;熱重分析(TG)采用德國(guó)Netzsch公司STA 449F5型同步熱分析儀進(jìn)行,測(cè)試氣氛為N2,升溫速率10℃/min;X射線衍射(XRD)采用荷蘭PANalytical公司Empyrean型號(hào)X射線衍射儀測(cè)試,掃描范圍2θ=10°~70°;X射線光電子能譜分析(XPS)采用美國(guó)Thermo Fisher Scientific公司EscaLab 250Xi型X射線光電子能譜儀對(duì)催化劑表面成分及化學(xué)價(jià)態(tài)進(jìn)行;拉曼光譜分析(Raman)采用法國(guó)Horiba公司LabRAM HR Evolution型號(hào)拉曼光譜儀進(jìn)行,激發(fā)光源為532nm(可見(jiàn)),掃描范圍為800~2000cm-1.
H2S催化氧化實(shí)驗(yàn):將150mg 100 ~ 200 目的催化劑裝入外徑為8mm、內(nèi)徑為6mm的石英管中.實(shí)驗(yàn)時(shí),通入含H2S的混合氣進(jìn)行反應(yīng)(H2S濃度為1000×10-6,干空平衡,流量為135mL/min,空速為54000mL/(g·h),反應(yīng)溫度25℃,相對(duì)濕度RH為60%).反應(yīng)器出口H2S濃度由便攜式H2S檢測(cè)儀(NGP40-H2S,中國(guó))進(jìn)行檢測(cè).當(dāng)反應(yīng)器出口H2S濃度為進(jìn)口濃度的50%(即500 ×10-6)時(shí)停止測(cè)試.
定義出口H2S濃度為進(jìn)口濃度的5%(即50 ×10-6)時(shí)材料的硫容為穿透硫容.穿透硫容(Q,mg H2S/g catalysts)計(jì)算公式如下:
式中:代表H2S的摩爾質(zhì)量,g/mol;代表反應(yīng)氣體流速,mL/min;0代表反應(yīng)器進(jìn)口H2S濃度, ×10-6;t代表穿透時(shí)間,min;()代表反應(yīng)器出口濃度, ×10-6;代表催化劑質(zhì)量,mg;M代表氣體摩爾體積,L/mol,本文取值為24.5L/mol.
PC(未摻氮活性炭)和NPC材料的活性評(píng)價(jià)如圖1所示.圖1(a)為不同活化劑KOH用量下NPC材料的H2S穿透曲線.當(dāng)控制摻入OAT比例為1,氮摻雜溫度為800℃時(shí),隨著活化劑KOH用量的增加,催化劑的脫硫性能顯著提高,穿透硫容Q從103.6mg/g提高至382.1mg/g,故選定KOH與石油焦質(zhì)量比為2開(kāi)展后續(xù)實(shí)驗(yàn).圖1(b)為不同氮摻雜溫度下NPC材料的H2S穿透曲線.在控制活化劑用量比例為2,OAT比例為1時(shí),隨著氮摻雜溫度的升高,催化劑的脫硫性能呈現(xiàn)先提高后降低的趨勢(shì),氮摻雜溫度為800℃時(shí)穿透硫容最高,800℃為最優(yōu)的氮摻雜溫度.圖1(c)為不同OAT用量下NPC材料的H2S穿透曲線.未摻氮的PC-2-0(800)脫硫性能遠(yuǎn)低于引入OAT摻氮的NPC材料,穿透硫容僅為35.4mg/g,而摻氮后材料脫硫性能顯著提高,穿透硫容最高可達(dá)398.4mg/g,是未摻氮材料的11倍.當(dāng)引入摻氮?jiǎng)㎡AT后,隨著OAT用量的增加,材料的脫硫性能呈現(xiàn)先提高后降低的趨勢(shì).
上述材料中,穿透硫容最高的材料是NPC-2- 0.75(800),其穿透硫容高達(dá)398.4mg/g.最優(yōu)制備條件為KOH比例為2,OAT比例為0.75,氮摻雜溫度為800℃.在該條件下,用三聚氰胺替代OAT以制備NPC-2-0.75(800M),其與OAT制備材料的H2S穿透曲線如圖1d所示.NPC-2-0.75(800M)有著更好的脫硫性能,其穿透硫容可達(dá)491.0mg/g.雖用OAT替換三聚氰胺做摻氮?jiǎng)?huì)使穿透硫容降低19%,但OAT為生產(chǎn)三聚氰胺中產(chǎn)生的廢料,作為氮源可以實(shí)現(xiàn)廢物利用、綠色制備,有著其獨(dú)特的優(yōu)勢(shì).將該結(jié)果與相關(guān)研究進(jìn)行比較(如表1所示),該材料的穿透硫容接近文獻(xiàn)中報(bào)道的高值.本實(shí)驗(yàn)所用碳源石油焦原料約為1800 元/t,與煤制活性炭原料無(wú)煙煤(約1570元/t)價(jià)格相近、低于椰殼活性炭原料活化椰殼(約4000元/t)價(jià)格.氮源OAT為三聚氰胺生產(chǎn)廢渣,無(wú)需額外成本購(gòu)買三聚氰胺(約7825元/t)、尿素(約2800元/t)等化工產(chǎn)品,OAT的使用能大幅度降低材料的制備成本.因此,本研究的制備方法成本相對(duì)較低.
選取脫硫性能最優(yōu)NPC-2-0.72(800)材料,在不同工況條件下(質(zhì)量空速、相對(duì)濕度、溫度、氧含量)進(jìn)行了性能測(cè)試.如圖2所示,質(zhì)量空速、相對(duì)濕度(RH)、溫度和氧含量的變化均對(duì)材料的脫硫性能有著顯著的影響.
隨著空速的降低,穿透硫容呈現(xiàn)遞增的趨勢(shì).降低空速能增加反應(yīng)氣在活性炭床層的停留時(shí)間,使得H2S在活性炭表面吸附解離、O2在活性炭表面吸附活化更加充分,HS-和活性氧物種充分反應(yīng),進(jìn)而提高了材料的穿透硫容.
材料的脫硫性能隨著RH的提高,也呈現(xiàn)了先增后降的趨勢(shì).RH為0%時(shí),材料的穿透硫容僅為46.4mg/g,隨著RH的增加,穿透硫容逐漸提升,并在RH=60%時(shí)達(dá)到最大值,當(dāng)RH進(jìn)一步增加至90%時(shí),材料的穿透硫容減低至321.8mg/g.通常認(rèn)為,H2S在水膜中溶解解離為第一步驟.低RH使得材料表面水膜覆蓋不完整,缺少或少量水膜不利于H2S的溶解解離,進(jìn)而使材料性能降低.而較高的RH導(dǎo)致材料的微孔被過(guò)量的水填充,阻礙反應(yīng)物進(jìn)入孔道,降低了材料的脫硫性能,這與之前的研究結(jié)果相一致[40-41].
圖1 不同KOH用量,氮摻雜溫度,OAT用量和摻氮?jiǎng)㎞PCs的H2S穿透曲線
表1 不同氮摻雜活性炭的H2S穿透硫容
對(duì)材料在5、25、50℃下的脫硫性能進(jìn)行了測(cè)試,結(jié)果表明,25℃下,材料的穿透硫容最高.溫度為5℃時(shí),其穿透硫容遠(yuǎn)小于25℃時(shí)的性能,僅為其49%.溫度為50℃時(shí),其穿透硫容雖為25℃時(shí)的85%,但其穿透后失活速度明顯放緩,在30h后脫硫效率仍有70%.溫度顯著影響著材料的性能.低溫(5℃)條件下,水蒸氣的絕對(duì)含量低,影響了水膜在材料表面的生成,使得材料性能降低.而高溫(50℃)下穿透硫容的降低可能是材料對(duì)反應(yīng)物(H2S、O2)的吸附能力減弱,也可能與高溫引起水膜破裂有關(guān)[21].據(jù)反應(yīng)動(dòng)力學(xué)原理,溫度提高能加快反應(yīng)速率,較高的反應(yīng)溫度可以為反應(yīng)物H2S和O2提供更多的能量,促進(jìn)了O2活化為O*,使反應(yīng)物(HS-和O*)之間更容易發(fā)生接觸,推動(dòng)了氧化反應(yīng)發(fā)生,從而提高了反應(yīng)活性[42]. 50℃時(shí)材料的失活速度放緩,并在1750min后仍能保持70%的H2S催化氧化能力可能與之相關(guān).
材料在不同氧含量下的脫硫性能進(jìn)行了測(cè)試,氧含量0%、0.05%、1%和21%分別對(duì)應(yīng)無(wú)氧、化學(xué)反應(yīng)當(dāng)量、過(guò)量氧和空氣中氧含量的條件.無(wú)氧時(shí),穿脫硫容最小;含量為0.05%時(shí),穿透硫容最高;含量為1%和21%時(shí),穿透硫容無(wú)明顯差異.這可能是因?yàn)闊o(wú)氧條件下,H2S不能進(jìn)行氧化反應(yīng),只能通過(guò)吸附進(jìn)行去除.在氧含量為化學(xué)反應(yīng)當(dāng)量(0.05%)時(shí),H2S氧化反應(yīng)產(chǎn)物主要為單質(zhì)硫,不易發(fā)生過(guò)度氧化從而減少了硫酸的生成.當(dāng)氧含量繼續(xù)增加,H2S更易過(guò)度氧化為硫酸.產(chǎn)物硫酸的生成會(huì)使活性炭表面酸性增加,使酸性H2S更難在表面吸附,導(dǎo)致性能的下降.
上述四項(xiàng)工況參數(shù)的實(shí)驗(yàn)結(jié)果表明,空速、相對(duì)濕度、溫度和氧含量均不同程度地影響著材料的脫硫性能.RH、氧含量大于零時(shí),材料穿透硫容都迅速增加,這說(shuō)明水和氧氣在摻氮活性炭表面發(fā)生的H2S催化氧化反應(yīng)中起著關(guān)鍵的作用.空速為27000mL/(g·h)、RH = 60%、溫度為25℃、氧含量為0.05%是最佳的工況參數(shù).
圖2 不同質(zhì)量空速,相對(duì)濕度,溫度和氧含量下NPCs的H2S穿透曲線
2.2.1 物理結(jié)構(gòu) 如圖3所示,材料在低壓區(qū)(/0<0.1)對(duì)N2有著強(qiáng)吸附作用,曲線均為典型的Ⅰ型等溫線,這說(shuō)明所有材料均為微孔材料,所有材料的微孔孔容占比均約89%.DFT(密度泛函理論)孔徑分布表明,所有材料有著相似的孔結(jié)構(gòu),孔徑主要集中分布在0.6~1nm.研究表明,H2S在活性炭表面發(fā)生催化氧化反應(yīng)的第一步是H2S被吸附,而微孔對(duì)于H2S的吸附起著關(guān)鍵作用[43].該材料的大量微孔為H2S的吸附提供了大量位點(diǎn),有助于H2S催化氧化步驟的進(jìn)行.當(dāng)控制氮摻雜溫度為800℃,OAT用量為1時(shí),隨著活化劑KOH使用量增加,材料的BET比表面、總孔孔容和微孔孔容隨之增加,當(dāng)KOH與石油焦的質(zhì)量比為2時(shí),材料有著最高的BET比表面和微孔孔容.這是因?yàn)镵OH與C反應(yīng)生成K、H2和K2CO3[44-45],隨著KOH用量的增加,更多的KOH與C進(jìn)行反應(yīng),從而提高了活化后材料的比表面積和孔容.KOH的用量能顯著地改變材料的微孔孔隙,是影響材料微孔孔隙結(jié)構(gòu)的關(guān)鍵因素.當(dāng)控制KOH用量為2,氮摻雜溫度為800℃時(shí),未摻N材料PC- 2-0(800)有著最高的BET比表面(1874.7m2/g),而摻氮后材料BET比表面、總孔孔容和微孔孔容均減少.隨著OAT用量的增加,BET比表面、總控孔容和微孔孔容隨之減少,這可能是因?yàn)榈獡诫s導(dǎo)致了孔道的部分堵塞[46],隨著摻N量的增加,孔道堵塞更加嚴(yán)重,使得BET比表面、總控孔容和微孔孔容隨之減少.發(fā)達(dá)的孔隙結(jié)構(gòu)能為H2S催化氧化產(chǎn)物提供儲(chǔ)存空間,從而提高穿透硫容.然而更發(fā)達(dá)的孔隙結(jié)構(gòu)并不意味著更高的穿透硫容,孔隙結(jié)構(gòu)還會(huì)與活性位點(diǎn)一起決定材料的脫硫性能.
圖3 不同KOH和OAT用量NPCs的N2吸脫附曲線與DFT孔徑分布
2.2.2 活性位點(diǎn) 表2列舉了原料石油焦與NPCs的有機(jī)元素分析結(jié)果.原料石油焦C、N、S原子含量分別為88.05wt.%、1.50wt.%和3.22wt.%.活化后,材料的S原子含量接近于0wt.%,說(shuō)明石油焦中所含S元素在高溫化學(xué)活化下極易脫出.引入OAT材料高溫?fù)降?N原子含量由0.23wt.%提高至1.66wt.% ~ 3.46wt.%,說(shuō)明了N元素的成功摻雜.N元素含量隨著氮摻雜溫度的升高而逐漸降低,這可能是高溫下OAT分解更徹底從而不利于N元素引入以及高溫下C-N鍵的斷裂[24,47]導(dǎo)致的,與已有的報(bào)道一致.NPC-2-1(600)有著最高的N元素含量(3.46wt.%),但其Q僅為21.8mg/g,遠(yuǎn)低于NPC-2-1 (800)的382.1mg/g.這說(shuō)明NPCs性能的好壞與材料N含量的高低并非呈直接對(duì)應(yīng)關(guān)系,材料性能的差異由多種因素共同決定.
表2 石油焦原料和不同制備條件下NPCs的有機(jī)元素分析結(jié)果
N含量與材料的孔隙結(jié)構(gòu)共同影響脫硫性能.有研究表明,H2S催化氧化的產(chǎn)物單質(zhì)S或H2SO4會(huì)在材料孔道內(nèi)儲(chǔ)存堆積.更多的孔體積能為產(chǎn)物提供更多的儲(chǔ)存空間,從而延緩產(chǎn)物對(duì)活性位點(diǎn)的覆蓋,從而提高穿透硫容[21,48].材料N含量隨著OAT用量的增加而增加,但其SBET和Vtot分別由1693.8m2/g、0.711cm3/g降至1424.6m2/g、0.592cm3/g.少量的N元素?fù)诫s對(duì)總孔體積影響較小,但催化劑N元素含量較低;較多的N元素?fù)诫s能提高催化劑的N元素含量,但對(duì)總孔體積影響較大.NPC-2- 0.75(800)在N元素含量、比表面積和總孔體積中取得了平衡,具有適中的N元素含量、比表面積和總孔體積,同時(shí)兼?zhèn)淞溯^好的H2S催化性能和產(chǎn)物儲(chǔ)存性能,因此具備了最高的穿透硫容.
對(duì)材料進(jìn)行可見(jiàn)Raman測(cè)試,結(jié)果如圖4所示.所有材料均在相同位置出現(xiàn)了2個(gè)特征峰,其中波長(zhǎng)為1347cm-1處的出峰被稱為D帶,代表碳的缺陷或無(wú)序結(jié)構(gòu);波長(zhǎng)為1590cm-1處的出峰被稱為G帶,代表有序的石墨結(jié)構(gòu)[49-50].ID/IG代表了多孔炭的缺陷程度[51-52],ID/IG的值越高,代表著炭材料的缺陷度越高.未摻氮催化劑PC-2-0(800)的ID/IG為1.22,在摻氮后,催化劑NPC-2-1(800)和NPC-2-0.75(800)的ID/IG提高到1.40,說(shuō)明氮摻雜引入含氮官能團(tuán)使得缺陷度顯著提高.此外,隨著氮摻雜溫度的提高, NPCs的ID/IG逐漸提高(1.21~1.43),這表明更高溫的氮摻雜溫度下缺陷構(gòu)建能力增強(qiáng).同時(shí),許多研究表明,提高炭材料的缺陷程度,能提高電子轉(zhuǎn)移能力,促進(jìn)O2的化學(xué)吸附并使其活化為活性氧物種,從而提高了炭材料的催化活性[27,53].綜上所述,氮摻雜溫度為800℃時(shí)材料有著較高的缺陷程度,氣相O2的吸附和活化能力較強(qiáng),為材料的優(yōu)異性能提供了幫助.
圖4 不同氮摻雜溫度下NPCs的Raman光譜
圖5 不同氮摻雜溫度下NPCs的N 1s譜圖和N構(gòu)型含量
對(duì)材料進(jìn)行了XPS測(cè)試,催化劑的N 1s軌道譜圖如圖5所示.N 1s可分解為4個(gè)結(jié)合能峰,分別位于398.5,400.0,401.2,402.7eV.這4種峰分別代表著吡啶氮(N-6)、吡咯氮(N-5)、石墨氮(N-Q)和吡啶氮氧化物(N-X)[54-55].隨著氮摻雜溫度的升高,NPCs表面N元素含量隨之降低,與有機(jī)元素分析結(jié)果一致.同時(shí),氮摻雜溫度能顯著地改變材料的N構(gòu)型分布.從4種N構(gòu)型的統(tǒng)計(jì)結(jié)果可知,隨著氮摻雜溫度的升高,N-5含量逐漸降低,N-6含量先升高后降低,在氮摻雜溫度為800℃時(shí),N-6含量最高(2.88at.%).這可能是因?yàn)殡S著溫度的升高,熱穩(wěn)定性最差的N-5逐漸轉(zhuǎn)變?yōu)闊岱€(wěn)定性相對(duì)更好的N-6,并隨著溫度的繼續(xù)升高,轉(zhuǎn)變?yōu)闊岱€(wěn)定性更好的N-Q[56-57].據(jù)報(bào)道,N-6被認(rèn)為是H2S催化氧化反應(yīng)的活性位點(diǎn)[58]. N-6旁的C原子被認(rèn)為是具有Lewis堿性的位點(diǎn),這有利于酸性氣體H2S的吸附.此外,N-6為六元環(huán)的共軛π系統(tǒng)提供了一個(gè)孤電子,增強(qiáng)了電子轉(zhuǎn)移的能力,促進(jìn)O2的吸附并加速了活性氧物種的形成,從而提高對(duì)H2S催化氧化的能力[35,59-60].當(dāng)?shù)獡诫s溫度為800℃時(shí),材料擁有著最高的N-6含量,因而擁有著最好的脫硫性能.結(jié)合上述所有表征,NPC- 2-0.75(800)有著最高的缺陷程度,有著較高的N含量和N-6含量,對(duì)H2S的催化氧化有著較強(qiáng)的反應(yīng)活性;同時(shí)該材料具有發(fā)達(dá)的孔隙結(jié)構(gòu),較大的總孔體積、微孔體積為產(chǎn)物的儲(chǔ)存提供了足夠的空間,因此具有最高的穿透硫容.
2.2.3 產(chǎn)物分析 SEM圖像如圖6所示.由圖6(a)、(b)可知,未摻氮催化劑PC-2-0(800)與摻氮催化劑NPC-2-0.75(800)均呈片塊狀結(jié)構(gòu),摻氮前后無(wú)明顯變化,說(shuō)明摻氮與否對(duì)材料結(jié)構(gòu)影響不大.圖6(c)(d)為NPC-2-0.75(800)使用后的SEM圖像.使用后的催化劑同樣呈現(xiàn)片塊狀結(jié)構(gòu),且表面未見(jiàn)明顯的顆粒產(chǎn)物生成.對(duì)使用后催化劑進(jìn)行EDS能譜分析,結(jié)果顯示,使用后催化劑表面出現(xiàn)了大量的硫元素.
圖6 PC-2-0(800)和使用前后NPC-2-0.75(800)的SEM及EDS元素分布圖
為判斷產(chǎn)物種類,首先使用XRD對(duì)催化劑進(jìn)行表征以分析是否生成了晶態(tài)硫S8.如圖7(a)所示,使用前后催化劑均在2θ=23.5°和44°附近出現(xiàn)了大包峰,為活性炭材料的特征峰.使用后材料的XRD譜圖未見(jiàn)明顯的晶態(tài)硫S8特征峰,說(shuō)明H2S催化氧化后產(chǎn)物沒(méi)有生成晶態(tài)硫S8.
為進(jìn)一步分析H2S催化氧化的產(chǎn)物,對(duì)使用后NPC-2-0.75(800)進(jìn)行了XPS和TG分析.如圖7b所示,使用后NPC-2-0.75(800)的S 2p軌道譜圖可分為4個(gè)峰,其中163.8和165.0eV處的分峰分別歸屬于單質(zhì)硫的S 2p3/2和S 2p1/2軌道,168.7和169.9eV處的分峰分別歸屬于硫酸根(SO42-)的S 2p3/2和S 2p1/2軌道[27-28,35].結(jié)合XRD表征可知,H2S催化氧化產(chǎn)物為不定態(tài)的單質(zhì)硫和硫酸.TG分析發(fā)現(xiàn)使用后NPC-2-0.75(800)主要在100℃~530℃間存在質(zhì)量損失,一共有3個(gè)質(zhì)量損失段.其中100℃左右的質(zhì)量損失為吸附水的脫除,160~300℃間的質(zhì)量損失為硫酸的分解,300~530℃間的質(zhì)量損失為單質(zhì)硫的升華[61-63].歸屬于硫酸和單質(zhì)硫的質(zhì)量損失分別為12.05%和21.3%,可知H2S氧化的主要產(chǎn)物為單質(zhì)硫,占比為63.9%.
圖8(a)為使用前后催化劑的N 1s譜圖,均可在398.5,400.0,401.2,402.7eV分出N-6、N-5、N-Q、N-X4個(gè)結(jié)合能峰.分別對(duì)使用前后N構(gòu)型的含量進(jìn)行了統(tǒng)計(jì).使用后材料的吡啶氮含量由2.45%降為1.32%,其大幅降低可能是因?yàn)楫a(chǎn)物在N-6位點(diǎn)堆積.這種現(xiàn)象進(jìn)一步表明,N-6在H2S催化氧化中起著關(guān)鍵作用,N-6活性位點(diǎn)逐漸被產(chǎn)物單質(zhì)硫或硫酸覆蓋,反應(yīng)物H2S更難與N-6接觸,從而導(dǎo)致了催化活性的下降.而N-Q的大量增加可能是因?yàn)榱蛩岬纳汕治g了活性炭表面,使得N-Q得以暴露.這種現(xiàn)象可能說(shuō)明未使用的材料表面能暴露更多活性位點(diǎn),隨著活性位點(diǎn)的被覆蓋和非活性位點(diǎn)的暴露,從而使得材料性能降低.
圖7 使用前后NPC-2-0.75(800)的XRD衍射圖及使用后NPC-2-0.75(800)的S 2p譜圖和TG曲線
圖8 NPC-2-0.75(800)使用前后N 1s譜圖和N構(gòu)型含量
3.1 通過(guò)改變活化劑用量、氮摻雜溫度和OAT用量,得到了具有較高比表面(1518.2m2/g)、高度微孔分布的氮摻雜材料.在高空速下(54000mL/(g·h)),材料穿透硫容最高可達(dá)398.4mg/g.
3.2 吡啶N(N-6)為H2S催化氧化的活性位點(diǎn),材料適中的比表面和高吡啶N含量能提高其穿透硫容.H2S催化氧化產(chǎn)物為不定態(tài)單質(zhì)硫和硫酸.
[1] Yan R, Chin T, Ng Y L, et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons [J]. Environmental Science & Technology, 2004,38(1):316-323.
[2] Yang C, Wang Y, Fan H, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation [J]. Applied Catalysis B: Environmental, 2020,266.
[3] 莊榮玉,王磊剛,李美燕,等.異養(yǎng)菌與新型填料成膜性及BTF處理屠宰H2S廢氣 [J]. 中國(guó)環(huán)境科學(xué), 2020,40(3):1106-1115. Zhuang Y Y, Wang L G, Li M Y, et al. Biofilm formation of a heterotrophic bacterium on the novel packing material and the removal of hydrogen sulfide produced in a slaughtering process by biotrickling filter [J]. China Environmental Science, 2020,40:1106-1115.
[4] Beauchamp R O, Bus J S, Popp J A, et al. A critical review of the literature on hydrogen sulfide toxicity [J]. Critical Reviews In Toxicology, 1984,13(1):25-97.
[5] 王 亙,翟增秀,耿 靜,等.40種典型惡臭物質(zhì)嗅閾值測(cè)定 [J]. 安全與環(huán)境學(xué)報(bào), 2015,15(6):348-351. Wang G, Zhai Z H, Geng J, et al. Testing and determination of the olfactory thresholds of the 40kinds of typical malodorous substances [J]. Journal of Safety and Environment, 2015,15:348-351.
[6] Masi A d, Ascenzi P. H2S: a "double face" molecule in health and disease [J]. Biofactors, 2013,39(2):186-196.
[7] Garcia-Arriaga V, Alvarez-Ramirez J, Amaya M, et al. H2S and O2influence on the corrosion of carbon steel immersed in a solution containing 3M diethanolamine [J]. Corrosion Science, 2010,52(7): 2268-2279.
[8] Xu Z Y, Zhao W B, Xie X H, et al. Liquid-liquid phase-change absorption of hydrogen sulfide by superbase 1,8-diazabicyclo [5.4.0] undec-7-ene and its chemical regeneration [J]. Separation and Purification Technology, 2020,250:117244.
[9] Gu J, Shao P, Luo L, et al. Microporous triazine-based ionic hyper- crosslinked polymers for efficient and selective separation of H2S/ CH4/N2[J]. Separation and Purification Technology, 2022,285:120377.
[10] Hao J, Rice P A, Stem S A. Upgrading low-quality natural gas with H2S and CO2selective polymer membranes Part I. Process design and economics of membrane stages without recycle streams [J]. Journal of Membrane Science, 2002,209(1):177-206.
[11] Dobslaw D, Ortlinghaus O. Biological waste air and waste gas treatment: Overview, challenges, operational efficiency, and current trends [J]. Sustainability, 2020,12(20):8577.
[12] Yang C, Yang S, Fan H L, et al. A sustainable design of ZnO-based adsorbent for robust H2S uptake and secondary utilization as hydrogenation catalyst [J]. Chemical Engineering Journal, 2020,382.
[13] Zheng X H, Li Y L, Zheng Y, et al. Highly efficient porous FexCe1- xO2-delta with three-dimensional hierarchical nanoflower morphology for H2S-selective oxidation [J]. ACS Catalysis, 2020, 10(7):3968-3983.
[14] Khabazipour M, Anbia M. Removal of hydrogen sulfide from gas streams using porous materials: A review [J]. Industrial & Engineering Chemistry Research, 2019,58(49):22133-22164.
[15] Adib F, Bagreev A, Bandosz T J. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide [J]. Journal of Colloid and Interface Science, 1999,214(2):407-415.
[16] Adib F, Bagreev A, Bandosz T J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons [J]. Langmuir, 1999, 16(4):1980-1986.
[17] Adib F, Bagreev A, Bandosz T J. Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons [J]. Environmental Science & Technology, 2000, 34(4):686-692.
[18] Zhang Z X, Wang J T, Li W C, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature [J]. Carbon, 2016,96:608-615.
[19] Yang C, Yang S, Fan H, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H(2)S removal capacity [J]. Journal of Colloid and Interface Science, 2019, 555:548-557.
[20] Yu Z F, Wang X Z, Song X D, et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal [J]. Carbon, 2015,95:852-860.
[21] Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S [J]. ACS Catalysis, 2013,3(5):862-870.
[22] Wang X T, Ouyang T, Wang L, et al. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis [J]. Angewandte Chemie International Edition, 2020,59(16):6492-6499.
[23] Ren J T, Wan C Y, Pei T Y, et al. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms [J]. Applied Catalysis B: Environmental, 2020,266.
[24] Dlamini M W, Phaahlamohlaka T N, Kumi D O, et al. Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer-Tropsch catalysts [J]. Catalysis Today, 2020,342:99-110.
[25] 王 瑩,魏成耀,黃天寅,等.氮摻雜碳納米管活化過(guò)一硫酸鹽降解酸性橙AO7 [J]. 中國(guó)環(huán)境科學(xué), 2017,37(7):2583-2590. Wang Y, Wei C Y, Huang T Y, et al. Activation of peroxymonosulfate by nitrogen-doped carbon nanotubes to decolorize acid orange 7 [J]. China Environmental Science, 2017,37:2583-2590.
[26] 陳愛(ài)俠,關(guān)娟娟,衛(wèi) 瀟,等.同步活化氮摻雜海藻酸鈉基多孔碳制備及對(duì)雙酚A的高效吸附 [J]. 中國(guó)環(huán)境科學(xué), 2002,42(1):160-171. Chen A X, Guan J J, Wei X, et al. Efficient adsorption of BPA by alginate-based porous carbon with the preparation of synchronous activation and nitrogen doping [J]. China Environmental Science, 2002,42:160-171.
[27] Wu J, Chen W, Chen L, et al. Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H2S over biomass derived activated carbon [J]. Journal of Hazardous Materials, 2022,424(Pt D):127648.
[28] Chen W H, Zhang G C, Li D, et al. Preparation of nitrogen-doped porous carbon from waste polyurethane Foam by hydrothermal carbonization for H2S adsorption [J]. Industrial & Engineering Chemistry Research, 2020,59(16):7447-7456.
[29] Xiao Y, Pudasainee D, Gupta R, et al. Bromination of petroleum coke for elemental mercury capture [J]. Journal of Hazardous Materials, 2017,336:232-239.
[30] Wu J, Montes V, Virla L D, et al. Impacts of amount of chemical agent and addition of steam for activation of petroleum coke with KOH or NaOH [J]. Fuel Processing Technology, 2018,181:53-60.
[31] 鐘悅之,宋曉暉,王彥超,等.中國(guó)平板玻璃行業(yè)大氣污染物排放特征研究 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(12):4451-4459.Zhong Y Z, Song X H, Wang Y C, et al. Emission characteristics from flat-glass industry in China [J]. China Environmental Science, 2018, 38(12):4451-4459.
[32] Yang M L, Guo L P, Hu G S, et al. Adsorption of CO2by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation [J]. Industrial & Engineering Chemistry Research, 2016,55(3):757-765.
[33] Yang J, Yue L M, Lin B B, et al. CO2adsorption of nitrogen-doped carbons prepared from nitric acid preoxidized petroleum Coke [J]. Energy & Fuels, 2017,31(10):11060-11068.
[34] Zhu W, Wang Y, Yao F, et al. One-pot synthesis of N-doped petroleum coke-based microporous carbon for high-performance CO2adsorption and supercapacitors [J]. Journal of Environmental Sciences, 2024, 139:93-104.
[35] Chen L, Yuan J, Li T, et al. A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H2S removal at room temperature [J]. Science of the Total Environment, 2021,768:144452.
[36] Kazmierczak-Razna J, Gralak-Podemska B, Nowicki P, et al. The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2and H2S [J]. Chemical Engineering Journal, 2015,269:352-358.
[37] Chen L, Jiang X, Chen W, et al. H2O2-assisted self-template synthesis of N-doped biochar with interconnected mesopore for efficient H2S removal [J]. Separation and Purification Technology, 2022.
[38] Surra E, Costa Nogueira M, Bernardo M, et al. New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas [J]. Waste Management, 2019,94:136-145.
[39] Sun M, Wang X, Li Y, et al. Integration of desulfurization and lithium–sulfur batteries enabled by amino-functionalized porous carbon nanofibers [J]. Energy & Environmental Materials, 2023,6(2): e12349.
[40] Klein J, Henning K-D. Catalytic oxidation of hydrogen sulphide on activated carbons [J]. Fuel, 1984,63(8):1064-1067.
[41] Le Leuch L M, Subrenat A, Le Cloirec P. Hydrogen sulfide adsorption and oxidation onto activated carbon cloths: Applications to odorous gaseous emission treatments [J]. Langmuir, 2003,19(26):10869- 10877.
[42] Huang Y, Wang J, Ma S, et al. A confined MoN2@N-rich carbon catalyst derived from β-cyclodextrin encapsulating phosphomolybdic acid for oxidative removal of H2S [J]. Chemical Engineering Journal, 2023,457.
[43] Bandosz T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures [J]. Journal of Colloid and Interface Science, 2002,246(1):1-20.
[44] Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism [J]. Carbon, 2003,41(2):267-275.
[45] Lin G, Ma R, Zhou Y, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction [J]. Electrochimica Acta, 2018,261:49-57.
[46] Zhu X, Zhang L, Zhang M, et al. Effect of N-doping on NO2adsorption and reduction over activated carbon: An experimental and computational study [J]. Fuel, 2019,258:116109.
[47] Li S Y, Liu Y F, Gong H M, et al. N-doped 3D mesoporous carbon/ carbon nanotubes monolithic catalyst for H2S selective oxidation [J]. ACS Applied Nano Materials, 2019,2(6):3780-3792.
[48] Chen Q J, Wang Z, Long D H, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S [J]. Industrial & Engineering Chemistry Research, 2010,49(7):3152-3159.
[49] Wang S, Wang Y, Zhang S L, et al. Supporting ultrathin ZnIn2S4nanosheets on Co/N-doped graphitic carbon Nanocages for efficient photocatalytic H2generation [J]. Advanced Materials, 2019,31(41): e1903404.
[50] Wu Y, Cao J P, Zhuang Q Q, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte [J]. Electrochimica Acta, 2021,371.
[51] Ning H, Guo D L, Wang X S, et al. Efficient CO2electroreduction over N-doped hieratically porous carbon derived from petroleum pitch [J]. Journal of Energy Chemistry, 2021,56:113-120.
[52] 孫 鵬,柳佳鵬,王維大,等.活性炭強(qiáng)化熱活化過(guò)硫酸鹽降解對(duì)硝基苯酚 [J]. 中國(guó)環(huán)境科學(xué), 2020,40(11):4779-4785. Sun P, Liu J P, Wang W D, et al. Active carbon enhanced thermal activation of persulfate for degradation of p-nitrophenol [J]. China Environmental Science, 2020,40:4779-4785.
[53] Zhang W L, Sun H X, Zhu Z Q, et al. N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction [J]. Renewable Energy, 2020,146:2270-2280.
[54] Li D, Chen W H, Wu J P, et al. The preparation of waste biomass- derived N-doped carbons and their application in acid gas removal: focus on N functional groups [J]. Journal of Materials Chemistry A, 2020,8(47):24977-24995.
[55] Xiong W, Wang Z N, He S L, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation [J]. Applied Catalysis B: Environmental, 2020,260.
[56] Leng L, Xu S, Liu R, et al. Nitrogen containing functional groups of biochar: An overview [J]. Bioresource Technology, 2020,298:122286.
[57] Yu W, Lian F, Cui G, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution [J]. Chemosphere, 2018,193:8-16.
[58] Zhang J, Xia Z, Dai L. Carbon-based electrocatalysts for advanced energy conversion and storage [J]. Science Advances, 2015,1(7): e1500564.
[59] Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J]. Science, 2016,351(6271):361-365.
[60] Li J, Yin S, Dong F, et al. Tailoring active sites via synergy between graphitic and pyridinic N for enhanced catalytic efficiency of a Carbocatalyst [J]. ACS Applied Materials & Interfaces, 2017,9(23): 19861-19869.
[61] Adib F, Bagreev A, Bandosz T J. On the possibility of water regeneration of unimpregnated activated carbons used as hydrogen sulfide adsorbents [J]. Industrial & Engineering Chemistry Research, 2000,39(7):2439-2446.
[62] Bagreev A, Bandosz T J. H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification [J]. Carbon, 2001,39(15):2303-2311.
[63] Tuerhong T, Kuerban Z. Preparation and characterization of cattle manure-based activated carbon for hydrogen sulfide removal at room temperature [J]. Journal of Environmental Chemical Engineering, 2022,10(2):107177.
Preparation of nitrogen-doped petroleum coke based activated carbon and its performance in catalytic oxidation of hydrogen sulfide at room temperature.
ZHENG Hao-ming1, ZHU Wen-fu1, LUO Ying-hong1, WANG Zi-kun1, LIU Mei-yin1, HUANG Hao-min1,2, YE Dai-qi1,2, LI Hong-xiang3*, WU Jun-liang1,2**
(1.School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2.National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China;3.Shanxi Xinhua Chemical CO., LTD., Taiyuan 030008, China)., 2023,43(9):4550~4560
A novel nitrogen-doped porous carbon was successfully prepared using petroleum coke as the carbon source and the solid waste from melamine production as the nitrogen source. The catalyst exhibited excellent H2S catalytic oxidation capacity in room temperature with a breakthrough sulfur capacity of 398.4mg/g. Three process parameters, namely, the amount of activator, nitrogen doping temperature and nitrogen source, changed the specific surface, N configuration and N content of the catalysts, respectively, during the preparation process. By optimizing the process conditions, the highest reactive center, pyridine N, could be achieved at 2.88at.%. Compared with the catalyst prepared using traditional raw material, it achieves waste utilization and green preparation. The results of this paper provide a new approach for the preparation of porous carbon materials with low cost and high breakthrough sulfur capacity.
hydrogen sulfide;nitrogen doping;activated carbon;catalytic oxidation;petroleum coke
X701
A
1000-6923(2023)09-4550-11
鄭皓鳴(1997-),男,廣東廣州人,華南理工大學(xué)碩士研究生,主要從事活性炭材料催化氧化硫化氫研究.發(fā)表論文3篇.a120425853@163.com.
鄭皓鳴,朱文富,羅穎鴻,等.摻氮石油焦基活性炭常溫催化氧化硫化氫研究 [J]. 中國(guó)環(huán)境科學(xué), 2023,43(9):4550-4560.
Zheng H M, Zhu W F, Luo Y H, et al. Preparation of nitrogen-doped petroleum coke based activated carbon and its performance in catalytic oxidation of hydrogen sulfide at room temperature [J]. China Environmental Science, 2023,43(9):4550-4560.
2023-02-22
廣東省自然科學(xué)基金資助項(xiàng)目(2023A1515010193)
* 責(zé)任作者, 高級(jí)工程師, 765942610@qq.com; ** 責(zé)任作者,教授, ppjl@scut.edu.cn