王語(yǔ)晴,劉欣欣,侯志濤,陳晶
〔摘要〕 神經(jīng)炎癥是卒中后認(rèn)知障礙(post-stroke cognitive impairment, PSCI)神經(jīng)損傷、空間和記憶能力下降的主要機(jī)制之一。當(dāng)中樞神經(jīng)系統(tǒng)受到刺激時(shí),小膠質(zhì)細(xì)胞作為免疫效應(yīng)細(xì)胞被激活,并通過(guò)自身表型轉(zhuǎn)換啟動(dòng)免疫級(jí)聯(lián)反應(yīng),釋放細(xì)胞因子等參與神經(jīng)炎癥反應(yīng)。誘導(dǎo)小膠質(zhì)細(xì)胞從促炎性M1表型向抗炎性M2表型極化,能夠促進(jìn)組織神經(jīng)功能的修復(fù)再生,減輕腦卒中損傷后的炎癥反應(yīng)和認(rèn)知損害。中藥單體、活性成分及復(fù)方可以靶向調(diào)節(jié)小膠質(zhì)細(xì)胞表型轉(zhuǎn)化,保護(hù)大腦神經(jīng)元免受炎癥影響,通過(guò)減少神經(jīng)元凋亡來(lái)調(diào)節(jié)學(xué)習(xí)記憶能力?;诖?,本文就小膠質(zhì)細(xì)胞極化在PSCI神經(jīng)炎癥損傷中的作用及中醫(yī)藥潛在的調(diào)控機(jī)制進(jìn)行綜述,以期為中醫(yī)藥治療PSCI提供新的研究思路。
〔關(guān)鍵詞〕 小膠質(zhì)細(xì)胞極化;神經(jīng)炎癥;卒中后認(rèn)知障礙;中藥;作用機(jī)制
〔中圖分類(lèi)號(hào)〕R255? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ? 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2023.08.027
Research progress on the mechanism of action for microglial polarization in neuroinflammatory injury in post-stroke cognitive impairment and pharmacological actions of related Chinese medicines
WANG Yuqing, LIU Xinxin, HOU Zhitao, CHEN Jing*
School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
〔Abstract〕 Neuroinflammation is one of the main mechanisms of neurological injury and spatial and memory decline in post-stroke cognitive impairment (PSCI). When the central nervous system is stimulated, microglia are activated as immune effector cells and participate in neuroinflammatory responses by switching their own phenotypes to initiate the immune cascade and releasing cytokines. Inducing microglia to polarize from proinflammatory M1 phenotype to anti-inflammatory M2 phenotype can promote repair and regeneration of tissue neurological function, and reduce post-stroke inflammatory responses and cognitive impairment. Single herbs and their active ingredients, as well as compound formulas of Chinese medicine can target and regulate microglial phenotypic transformation, protect brain neurons from inflammation, and modulate learning and memory ability by reducing neuronal apoptosis. Based on this, this paper reviews the role of microglial polarization in neuroinflammatory injury in PSCI and the potential regulatory mechanism of Chinese medicine, with the aim of providing new research ideas for the treatment of PSCI with Chinese medicine.
〔Keywords〕 microglial polarization; neuroinflammation; post-stroke cognitive impairment; Chinese medicines; mechanism of action
卒中后認(rèn)知障礙(post-stroke cognitive impairment, PSCI)是指由腦卒中引起的從輕度認(rèn)知障礙到癡呆的一系列綜合征,是腦卒中的主要并發(fā)癥之一[1]。流行病學(xué)資料顯示,腦卒中是導(dǎo)致患者發(fā)生血管性死亡的主要原因,新發(fā)病例以缺血性腦卒中為主,且超過(guò)1/3的中風(fēng)患者可能會(huì)出現(xiàn)PSCI[2]。腦卒中發(fā)生后導(dǎo)致的認(rèn)知功能障礙會(huì)持續(xù)存在,并可呈加速式下降[3]。因此,記憶和認(rèn)知評(píng)估對(duì)于中風(fēng)后的恢復(fù)具有重要意義。PSCI的潛在機(jī)制尚不清楚,可能是腦血管性機(jī)制和腦神經(jīng)退行性機(jī)制相互作用的結(jié)果。病理學(xué)研究發(fā)現(xiàn),當(dāng)腦血管發(fā)生破裂或堵塞引發(fā)相應(yīng)供血區(qū)腦灌注不足時(shí),海馬CA1區(qū)內(nèi)的小膠質(zhì)細(xì)胞(microglia, MG)會(huì)被激活并誘導(dǎo)神經(jīng)炎癥反應(yīng),導(dǎo)致大量神經(jīng)元細(xì)胞凋亡,進(jìn)而誘發(fā)相關(guān)認(rèn)知功能障礙[4]。BACK等[5]建立急性缺血性癡呆大鼠模型,通過(guò)組織學(xué)檢查發(fā)現(xiàn),大鼠同側(cè)皮質(zhì)中的星形膠質(zhì)細(xì)胞激活顯著增加,局部MG活化明顯,提示PSCI的發(fā)生可能與海馬CA1區(qū)神經(jīng)炎癥反應(yīng)、MG被激活有關(guān),而非梗死體積本身。在腦組織發(fā)生缺血、低氧或在炎癥微環(huán)境的影響下,MG常常會(huì)被激活為功能狀態(tài)、基因表達(dá)模式與表面標(biāo)志物迥異的兩種表型,即M1表型(經(jīng)典激活型)與M2表型(替代激活型),這一過(guò)程即小膠質(zhì)細(xì)胞極化[6]。目前,對(duì)于中樞炎癥反應(yīng)的研究已不局限于廣泛地抑制MG活化,而是傾向于誘導(dǎo)MG從促炎性M1表型轉(zhuǎn)化為抗炎性M2表型,即調(diào)節(jié)M1與M2的比率[7],以MG表型為靶點(diǎn)有助于了解PSCI的病理過(guò)程。腦卒中在中醫(yī)學(xué)中又稱為“中風(fēng)”,氣血逆亂,陰陽(yáng)失衡,上犯于腦則發(fā)為中風(fēng)。中醫(yī)文獻(xiàn)中并無(wú)有關(guān)PSCI的病名記載,但就反應(yīng)遲緩、遇事善忘、呆傻愚笨等臨床癥狀而言,可將其歸屬于“癡呆”的范疇?!峨s病源流犀燭·中風(fēng)》中就有“中風(fēng)后善忘”之論。中醫(yī)藥以其多靶點(diǎn)、多成分、多通路的作用特點(diǎn)參與調(diào)控卒中后MG表型的早期轉(zhuǎn)變,以實(shí)現(xiàn)MG極化平衡,發(fā)揮靶向抑制炎癥反應(yīng)、促進(jìn)卒中后神經(jīng)元和腦組織損傷的修復(fù)作用[8]?;诖耍恼戮蚆G極化在PSCI中的作用及機(jī)制進(jìn)行綜述,通過(guò)探討中藥調(diào)控相關(guān)信號(hào)因子和信號(hào)通路加快M2型極化的藥理作用,以期對(duì)阿爾茨海默?。ˋlzheimer's disease, AD)前期狀態(tài)PSCI提供一種新的靶向治療方法。
1 MG在PSCI中的作用及機(jī)制
1.1? MG介導(dǎo)PSCI的神經(jīng)炎癥反應(yīng)
神經(jīng)炎癥屬于神經(jīng)系統(tǒng)的炎癥反應(yīng),涉及卒中的所有階段,包括腦組織前期神經(jīng)元損傷及后期修復(fù)。腦卒中后炎癥級(jí)聯(lián)反應(yīng)的增加可加劇包括學(xué)習(xí)記憶、思維能力在內(nèi)的認(rèn)知水平衰退。NARASIMHALU等[9]在研究炎癥水平與PSCI的關(guān)聯(lián)時(shí)發(fā)現(xiàn),白細(xì)胞介素(interleukin, IL)(IL-8、IL-12等)炎癥水平與患者的認(rèn)知狀態(tài)密切相關(guān)。神經(jīng)炎癥反應(yīng)是一個(gè)漸進(jìn)發(fā)展的級(jí)聯(lián)過(guò)程,主要表現(xiàn)為神經(jīng)膠質(zhì)細(xì)胞的活化和增生、相關(guān)炎癥因子的表達(dá)以及神經(jīng)元的凋亡和壞死。MG屬于神經(jīng)膠質(zhì)細(xì)胞的一種,占中樞神經(jīng)系統(tǒng)(central nervous system, CNS)細(xì)胞總數(shù)的5%~10%,能夠向神經(jīng)元發(fā)送信號(hào),通過(guò)高頻的交流溝通,加強(qiáng)對(duì)神經(jīng)元的支持和監(jiān)測(cè)以調(diào)節(jié)大腦行為反應(yīng)。有研究發(fā)現(xiàn),神經(jīng)元與MG之間通過(guò)IL-33來(lái)調(diào)節(jié)神經(jīng)元突觸的形成和重塑,在海馬區(qū)驅(qū)動(dòng)經(jīng)驗(yàn)依賴性突觸重塑有助于小鼠記憶的鞏固,從而維持神經(jīng)回路的正常功能與發(fā)育[10]。MG作為腦內(nèi)的主要免疫細(xì)胞,其活化被認(rèn)為是CNS促炎和抗炎環(huán)境的主要來(lái)源,其介導(dǎo)的神經(jīng)炎癥反應(yīng)影響著認(rèn)知功能。由缺血誘導(dǎo)的神經(jīng)炎癥反應(yīng)過(guò)程中,激活的MG會(huì)釋放IL-12、白細(xì)胞介素-1β(interleukin-1β, IL-1β)、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)等多種損傷性炎癥因子,這將顯著降低神經(jīng)干細(xì)胞分化成功能性神經(jīng)元,特別是膽堿能神經(jīng)元的能力,引發(fā)認(rèn)知障礙[11];另外研究還發(fā)現(xiàn),激活的MG會(huì)加重血腦屏障損傷,血腦屏障功能受損時(shí),其表面的葡萄糖轉(zhuǎn)運(yùn)蛋白數(shù)量減少或重新分布,導(dǎo)致腦能量代謝不足,引起腦組織受損,出現(xiàn)認(rèn)知障礙[12]。當(dāng)抑制MG激活后,受損的程度則會(huì)減輕。梔子的天然提取物GJ-4能夠顯著改善腦功能障礙,研究發(fā)現(xiàn)這與抑制MG的激活,減少炎癥蛋白的表達(dá)密切相關(guān)[13]。因此,抑制腦卒中后MG介導(dǎo)的神經(jīng)炎癥的激活,可以有效緩解認(rèn)知功能的損傷。
1.2? MG極化對(duì)神經(jīng)炎癥的雙向調(diào)節(jié)作用
MG作為大腦神經(jīng)炎癥的主要參與者,在病理?xiàng)l件下具有經(jīng)典激活的促炎M1型和替代激活的抗炎M2型兩種不同的激活狀態(tài),且二者之間存在表型轉(zhuǎn)換,介導(dǎo)神經(jīng)炎癥或神經(jīng)保護(hù)效應(yīng)。比如,在脊髓損傷中,增加鐵離子和TNF的濃度可以使MG由M1轉(zhuǎn)變?yōu)镸2表型[14]。MG存在的這種矛盾的雙向極化狀態(tài),既參與腦卒中損傷后“炎性損傷”導(dǎo)致的認(rèn)知功能下降,也參與“促進(jìn)修復(fù)”后的認(rèn)知能力的改善[15]。在腦卒中損傷后早期,MG會(huì)迅速到達(dá)損傷部位,在脂多糖(lipopolysaccharide, LPS)、γ干擾素(interferon-γ, IFN-γ)等促炎分子誘導(dǎo)下,通過(guò)Toll樣受體(Toll-like receptor, TLR)等釋放大量炎癥因子,極化為M1型[16]。M1型MG可以上調(diào)誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase, iNOS)、表面受體(CD16/32)、主要組織相容性復(fù)合體Ⅱ(major histocompatibility complex-Ⅱ, MHC-Ⅱ)的表達(dá),還能釋放IFN-γ、IL-1β、TNF-α、IL-6、IL-12、IL-23等大量的炎癥因子以及趨化因子CC族趨化因子配體(CC chemokine ligand, CCL)(CCL2、CCL4、CCL5、CCL8等),提高CNS對(duì)傷害性刺激的防御清除能力[17]。但同時(shí)又會(huì)出現(xiàn)神經(jīng)炎癥反應(yīng)導(dǎo)致神經(jīng)元損傷、丟失或脫髓鞘,發(fā)揮細(xì)胞毒性作用,所以M1型又被稱為促炎/神經(jīng)毒性型。在腦卒中損傷后期,MG則會(huì)向M2表型轉(zhuǎn)換。M2型MG能夠被IL-4/IL-3誘導(dǎo),分泌IL-10、轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β, TGF-β)等高水平的抗炎細(xì)胞因子、胰島素生長(zhǎng)因子(insulin-like growth factors, IGF)、腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factors, VEGF)等神經(jīng)營(yíng)養(yǎng)因子,并表達(dá)與免疫分解相關(guān)的因子CD206和精氨酸酶-1(arginase-1, Arg-1來(lái)降解神經(jīng)毒性蛋白,最終阻斷促炎反應(yīng),促進(jìn)組織愈合和神經(jīng)元修復(fù),故M2型又稱抗炎/神經(jīng)保護(hù)型[18]。常用的M1表型MG特異性表面標(biāo)志物包括MHC-Ⅱ、CD16/32/80/86/40等,M2表型表面標(biāo)志物為Ym1、Arg-1、CD206/68等[19]。M1/M2表型細(xì)胞標(biāo)志物的變化是機(jī)體腦卒中損傷后最早出現(xiàn)的炎癥表現(xiàn)。既往研究顯示,腦缺血模型腦組織中iNOS信號(hào)在3~4 d內(nèi)增加約為正常水平的3倍,達(dá)到峰值,隨后在第7天時(shí)開(kāi)始降低,而Ym1在第11~13天才達(dá)到峰值[20]。觀察早期膠原酶誘導(dǎo)的小鼠腦出血模型發(fā)現(xiàn),M1表型MG占主導(dǎo)地位,此時(shí)小鼠體內(nèi)炎癥因子水平處于升高狀態(tài)且加劇了認(rèn)知損傷,隨后被M2型所取代,起到改善中樞炎性損傷、抑制神經(jīng)元凋亡及修復(fù)損傷神經(jīng)等作用[21]。上述證據(jù)將MG極化與腦卒中后的炎癥反應(yīng)聯(lián)系起來(lái),理論上,如果維持正常的M2激活狀態(tài),減少M(fèi)1的過(guò)度激活,不失為一種有效干預(yù)PSCI病理過(guò)程的研究策略。
1.3? M1/M2表型轉(zhuǎn)換的作用機(jī)制
炎癥因子、膜受體、轉(zhuǎn)錄因子、離子通道蛋白等表達(dá)水平是神經(jīng)疾病的重要調(diào)節(jié)靶標(biāo),能夠發(fā)出表型轉(zhuǎn)換信號(hào)。另外,不同信號(hào)轉(zhuǎn)導(dǎo)途徑也能靶向調(diào)控MG的極化過(guò)程。下文對(duì)調(diào)控MG表型轉(zhuǎn)換的相關(guān)信號(hào)因子以及遷移率族蛋白B1(high mobility group box 1, HMGB1)/TLR4/核轉(zhuǎn)錄因子κB(nuclear factor kappa-B, NF-κB)、Janus酪氨酸蛋白激酶/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子蛋白(Janus kinase/signal transducers and activators of transcription, JAK/STAT)、白細(xì)胞介素-33/生長(zhǎng)刺激表達(dá)基因2蛋白(interleukin-33/growth stimulation expressed gene 2, IL-33/ST2)等信號(hào)通路的作用和機(jī)制進(jìn)行探討。
1.3.1? 相關(guān)信號(hào)因子對(duì)MG表型的調(diào)控? 腦缺血早期,受損神經(jīng)元會(huì)誘導(dǎo)大量谷氨酸釋放,介導(dǎo)Ca2+通道開(kāi)放,引起Ca2+超載性損傷,誘導(dǎo)神經(jīng)元凋亡[22]。缺血腦損傷后期,內(nèi)流的Ca2+激活鈣調(diào)磷酸酶/活化T細(xì)胞核因子信號(hào)通路,促使缺血半暗帶存活的神經(jīng)元大量分泌IL-4。IL-4通過(guò)進(jìn)一步誘導(dǎo)IL-4R和過(guò)氧化物酶體增殖物激活的受體-γ(peroxisome proliferators-activated receptor γ, PPAR-γ)的活化,導(dǎo)致MG從促炎表型極化為抗炎表型,促進(jìn)腦缺血損傷修復(fù)及認(rèn)知記憶的形成[4]。既往研究在認(rèn)知功能損害的衰老動(dòng)物體內(nèi)觀察到了IL-4的降低及炎癥因子的增加,而IL-4基因敲除的腦缺血小鼠則認(rèn)知、感覺(jué)運(yùn)動(dòng)障礙加重,并伴有M2型極化障礙[23]。β淀粉樣蛋白(amyloid β-protein, Aβ)寡聚體是AD發(fā)病機(jī)制中的核心致病物質(zhì),在PSCI患者腦組織中,也發(fā)現(xiàn)了Aβ的沉積[24]。NOD樣受體蛋白3(NOD-like receptor protein 3, NLRP3)作為Aβ的感受器,參與炎癥MG的活化[25]。缺血性腦卒中發(fā)生后,MG內(nèi)NLRP3、凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis-associated speck-like protein containing a card domain, ASC)、procaspase-1效應(yīng)蛋白會(huì)組裝成NLRP3炎癥小體,觸發(fā)pro-Caspase-1向Caspase-1轉(zhuǎn)化并催化IL-1β和IL-18的成熟與分泌,導(dǎo)致慢性神經(jīng)毒性,加重腦損傷[26]。研究發(fā)現(xiàn),下調(diào)NLRP3炎癥小體有助于誘導(dǎo)M2表型分化,減少APP/PS1小鼠體內(nèi)Aβ沉積[27]。髓系細(xì)胞觸發(fā)受體2(triggering receptor expressed on myeloid cells 2, TREM2)是一種主要表達(dá)于MG中的跨膜受體,TREM2的過(guò)表達(dá)可以通過(guò)降低iNOS和促炎細(xì)胞因子表達(dá)水平抑制M1活化,并通過(guò)增加Arg-1和抗炎細(xì)胞因子表達(dá)水平增強(qiáng)M2表達(dá)[28]。miR-124是一種在MG中高度表達(dá)的腦特異性miRNA,在神經(jīng)退行性功能方面發(fā)揮著重要作用[29]。病理?xiàng)l件下,miR-124下調(diào)可導(dǎo)致小膠質(zhì)細(xì)胞M1極化增加,加劇神經(jīng)炎癥損傷[30]。YANG等[31]研究發(fā)現(xiàn),通過(guò)上調(diào)腦損傷小鼠體內(nèi)的miR-124表達(dá)水平,可以抑制M1極化相關(guān)的TLR4信號(hào)傳導(dǎo)途徑,減少炎癥因子釋放,增加M2標(biāo)志物表達(dá),從而減輕神經(jīng)炎癥反應(yīng)。CCAAT增強(qiáng)子結(jié)合蛋白-α(CCAAT/enhancer-binding protein-alpha, C/EBP-α)在M1型MG中存在高度表達(dá),研究腦出血小鼠模型時(shí)發(fā)現(xiàn),miR-124可與C/EBP-α的3個(gè)非翻譯區(qū)結(jié)合并下調(diào)C/EBP-α表達(dá)水平,促進(jìn)MG發(fā)生M2極化,有助于神經(jīng)元修復(fù)[32]。
1.3.2? HMGB1/TLR4/NF-κB信號(hào)通路對(duì)MG表型的調(diào)控? HMGB1/TLR4/NF-κB信號(hào)通路是目前被研究較多且明確與MG表型轉(zhuǎn)化相關(guān)的通路。HMGB1廣泛表達(dá)于CNS中,是真核細(xì)胞廣泛表達(dá)的一種高度保守的細(xì)胞核非組蛋白,HMGB1可作為炎癥因子,激活MG并加劇腦損傷,腦中HMGB1水平升高也會(huì)引起記憶異常[33]。腦損傷狀況下,HMGB1由核進(jìn)入細(xì)胞漿內(nèi),與TLR結(jié)合[34]。TLR是一類(lèi)主要表達(dá)于免疫細(xì)胞上的跨膜受體,TLR4活化會(huì)招募下游的適配器蛋白髓樣分化因子88(myeloid differentiation factor 88, MyD88)快速激活NF-κB,促進(jìn)TNF-α、iNOS、IFN-γ等炎癥介質(zhì)表達(dá),引起細(xì)胞M1活化明顯增加,發(fā)生炎癥反應(yīng)[35]。另外,核因子紅系相關(guān)因子2(nuclear factor erythroid 2 related factor 2, Nrf2)可以通過(guò)下調(diào)NF-κB促進(jìn)抗炎表型轉(zhuǎn)化[36]。Nrf2是近年來(lái)發(fā)現(xiàn)的腦卒中和神經(jīng)退行性疾病中調(diào)節(jié)MG的重要靶點(diǎn),影響腦出血后血腫清除、水腫形成,以及繼發(fā)性神經(jīng)功能缺損[37]。
1.3.3? JAK2/STAT3信號(hào)通路對(duì)MG表型的調(diào)控? JAK/STAT信號(hào)通路由酪氨酸激酶相關(guān)受體、JAK和STAT組成。STATs是JAK的下游靶點(diǎn),STAT3與JAK2結(jié)合后可導(dǎo)致STAT3磷酸化并發(fā)生核轉(zhuǎn)移,隨后啟動(dòng)編碼促炎細(xì)胞因子和趨化因子靶基因的轉(zhuǎn)錄。YANG等[38]發(fā)現(xiàn)激活JAK2/STAT3信號(hào)通路可通過(guò)增加IL-1β的表達(dá),誘發(fā)缺血性腦病鼠腦部損傷和認(rèn)知行為異常。STAT3在AD小鼠的腦組織中的表達(dá)增高,可能與AD的慢性炎性損傷有關(guān)[39]。細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子SOCS1、SOCS3通過(guò)與JAK結(jié)合能夠抑制STAT1及STAT3的促炎反應(yīng),增強(qiáng)SOCS信號(hào)來(lái)緩解炎癥反應(yīng)并促使M2表型極化[40]。
1.3.4? IL-33/ST2信號(hào)通路對(duì)MG表型的調(diào)控? IL-33/ST2信號(hào)通路能夠通過(guò)影響神經(jīng)功能、腦梗死體積和調(diào)節(jié)卒中后炎癥反應(yīng)等來(lái)影響卒中嚴(yán)重程度。大腦中動(dòng)脈阻塞改善后的小鼠IL-33 mRNA和ST2表達(dá)水平顯著升高[41]。研究還發(fā)現(xiàn),MG通過(guò)吞噬作用可以清除Aβ以及修剪突觸來(lái)影響AD的發(fā)生,Aβ的過(guò)度刺激會(huì)使M1型大量表達(dá),而M2型卻受到抑制,造成M1/M2穩(wěn)態(tài)失衡[42]。IL-33能夠抑制腦內(nèi)Aβ的分泌并加強(qiáng)MG的清除作用[43]。此外,IL-33通過(guò)誘導(dǎo)MG增殖上調(diào)促炎因子IL-1β和TNF-α的同時(shí),對(duì)抗炎因子IL-10的表達(dá)也起到了上調(diào)作用[44]。通過(guò)激活I(lǐng)L-33/ST2信號(hào)通路,可以上調(diào)MG中IL-10及其他M2型基因的表達(dá),有助于減輕腦卒中后的神經(jīng)炎癥反應(yīng)和神經(jīng)元損傷;而IL-33的受體ST2缺乏將向M1型狀態(tài)轉(zhuǎn)變,加劇急性腦缺血再灌注損傷后的腦梗死面積[41]。但也有數(shù)據(jù)表明,IL-33對(duì)M1/M2表型轉(zhuǎn)換的調(diào)節(jié)作用以及延緩腦缺血損傷的有效期可能在24~72 h內(nèi),且IL-33的過(guò)表達(dá)也可能加劇中風(fēng)小鼠的肺部感染和死亡[45]。
1.3.5? 其他信號(hào)通路對(duì)MG表型的調(diào)控? p38是促分裂原活化的蛋白激酶(mitogen-activated protein kinase, MAPK)的一個(gè)經(jīng)典分支,激活p38 MAPK途徑會(huì)產(chǎn)生促炎效應(yīng),促進(jìn)MG向M1型極化[46]。研究顯示,IL、LPS、TNF-α的刺激可以激活p38而活化MG,促進(jìn)炎癥因子和趨化因子的產(chǎn)生以及NLRP3炎癥小體的激活[47]。Notch與細(xì)胞內(nèi)炎性表達(dá)密切相關(guān),是參與調(diào)控MG功能、活化炎癥相關(guān)因子的重要信號(hào)通路之一。Notch通路比較復(fù)雜,主要由Notch受體、Notch配體、CSLDNA結(jié)合蛋白、下游靶基因4部分組成。缺血性腦卒中后損傷發(fā)生后,MG中Notch信號(hào)通路的表達(dá)增強(qiáng),Notch受體被切割,釋放出Notch胞內(nèi)結(jié)構(gòu)域NICD,誘導(dǎo)下游靶基因如Hes家族成員和NF-κB發(fā)生活化,其中炎癥因子TNF-α、IL-1β,M1表型標(biāo)志物iNOS以及Notch1、Hes1蛋白表達(dá)水平顯著升高[48]。此外,MG激活與PPAR通路也相關(guān),在缺血缺氧環(huán)境中,PPARγ蛋白和M2表型標(biāo)志物CD206表達(dá)會(huì)上調(diào)[49]。研究發(fā)現(xiàn),安腦平?jīng)_方可能通過(guò)激活PPARγ信號(hào)通路發(fā)生M2型極化,減輕氯化血紅素干預(yù)BV2細(xì)胞的炎癥反應(yīng)[50]。上述研究表明,促進(jìn)M2表型極化,發(fā)揮M2型小膠質(zhì)細(xì)胞的修復(fù)抗炎特性,對(duì)腦卒中后的損傷及PSCI的防治具有重要意義。
2 中藥調(diào)控MG表型轉(zhuǎn)化改善PSCI的藥理作用
2.1? 單味中藥及有效成分作用機(jī)制
雷公藤紅素為雷公藤根莖的提取物,具有良好的抗炎活性[51]。JIANG等[52]研究腦缺血模型大鼠時(shí)發(fā)現(xiàn),雷公藤紅素能夠有效調(diào)節(jié)IL-33/ST2信號(hào)通路,介導(dǎo)MG向M2表型極化,顯著抑制大鼠體內(nèi)炎癥反應(yīng),減少神經(jīng)元壞死,改善顱腦損傷。此外,積雪草提取物積雪草酸改善大鼠蛛網(wǎng)膜下腔出血后細(xì)胞凋亡的作用機(jī)制可能也與激活I(lǐng)L-33/ST2信號(hào)通路相關(guān)[53]。楊云方等[30]發(fā)現(xiàn),五味子能夠上調(diào)miR-124,促進(jìn)TLR4下游蛋白MyD88的表達(dá),抑制TLR4信號(hào)通路,阻止NF-κB入核,減少炎癥因子的表達(dá)。白藜蘆醇能夠激活JAK/STAT/SOCS3信號(hào)通路,釋放抗炎因子IL-10,限制MG活化[54]。姜黃素通過(guò)JAK/STAT/SOCS1信號(hào)通路誘導(dǎo)M2樣MG表型,改善神經(jīng)功能[55],還能激活磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳動(dòng)物雷帕霉素蛋白(phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, PI3K/AKT/mTOR)信號(hào)通路[56],促進(jìn)短暫性腦缺血小鼠體內(nèi)發(fā)生M2型極化,減少小鼠腦梗死體積,減輕神經(jīng)炎癥[57]。此外,研究還發(fā)現(xiàn),姜黃素的有效物質(zhì)苯丙?;梢砸种芅otch信號(hào)通路的激活,減少白三烯、前列腺素等炎癥因子的釋放[58]。Tau蛋白的過(guò)度磷酸化在胞內(nèi)形成神經(jīng)元纖維結(jié),誘導(dǎo)MG激活并釋放促炎因子是AD的發(fā)病機(jī)制之一,也是PSCI的重要影響因素[59]。遠(yuǎn)志皂苷具有消除神經(jīng)炎癥的作用,可以抑制MG中的NLRP3炎性體活化,保護(hù)大腦神經(jīng)元免受炎癥影響,減少Aβ和磷酸化Tau蛋白的異常聚集[60]。同時(shí),遠(yuǎn)志皂苷可以調(diào)節(jié)多條神經(jīng)信號(hào)通路,通過(guò)下調(diào)NF-κB信號(hào)通路來(lái)保護(hù)SH-SY5Y細(xì)胞免受Aβ42寡聚體誘導(dǎo)的MG所介導(dǎo)的炎癥[61],也能夠以激活Nrf2介導(dǎo)的血紅素加氧酶-1(heme oxygenase-1, HO-1)信號(hào)通路的方式來(lái)減輕MG炎癥反應(yīng),抑制TNF-α、IL-1β、IL-6的釋放[62],即增加Nrf2活性,可降低M1型MG的活化和增殖。研究顯示,Nrf2/HO-1信號(hào)通路負(fù)調(diào)控IL-6、IL-1β、TNF-α和Cleaved Caspase-3表達(dá),發(fā)揮抗炎、抗氧化、抗凋亡、抑制細(xì)胞毒性的作用,而Caspase-3水平升高會(huì)增加缺血再灌注后的腦損傷[63]。此外,在缺血性腦卒中模型中,人參皂苷Rg1[64]、青蒿提取物異澤蘭黃素[65]、紅景天苷[66]等可以調(diào)節(jié)MG介導(dǎo)的細(xì)胞因子和相關(guān)介質(zhì),誘導(dǎo)M1促炎向M2抗炎表型轉(zhuǎn)變,發(fā)揮保護(hù)神經(jīng)元活性、促進(jìn)神經(jīng)可塑性以及改善認(rèn)知功能的作用,但具體機(jī)制尚不明確。
2.2? 中藥復(fù)方作用機(jī)制
大量動(dòng)物實(shí)驗(yàn)證實(shí),補(bǔ)陽(yáng)還五湯對(duì)腦缺血后的炎癥反應(yīng)具有保護(hù)和修復(fù)作用,有助于腦神經(jīng)功能恢復(fù)。甘海燕等[67]認(rèn)為,補(bǔ)陽(yáng)還五湯通過(guò)抑制大腦中動(dòng)脈阻塞模型大鼠M1型MG表面標(biāo)志物iNOS及其分泌的促炎因子TNF-α、IL-6和IL-1β的mRNA表達(dá),促進(jìn)M2型MG表面標(biāo)志物CD206、Arg-1及其分泌的抗炎因子IL-10和TGF-β mRNA表達(dá)以實(shí)現(xiàn)M1型向M2型轉(zhuǎn)化。蘇合香丸也可以降低血清中IL-6、TNF-α等炎癥因子的表達(dá),抑制Aβ誘導(dǎo)的p38 MAPK、JNK、Tau蛋白磷酸化水平,提高神經(jīng)遞質(zhì)轉(zhuǎn)運(yùn)活性,保持大腦興奮性[68]。龍血通絡(luò)膠囊通過(guò)靶向JAK1/STAT3信號(hào)通路的磷酸化,下調(diào)iNOS、環(huán)氧合酶-2(cyclooxygenase-2, COX-2)蛋白的表達(dá)來(lái)治療恢復(fù)期的缺血性中風(fēng)[69]。戴建業(yè)等[34]發(fā)現(xiàn),加味溫膽湯能夠升高M(jìn)2型MG比例,增加血清中抗炎因子IL-4、IL-10、IL-13的表達(dá),并下調(diào)海馬區(qū)HMGB1、TLR4、NF-κB蛋白的表達(dá)水平,其作用機(jī)制可能是通過(guò)抑制HMGB1/TLR4/NF-κB通路,使MG由M1型向M2型轉(zhuǎn)化,從而加速神經(jīng)元修復(fù)。
3 總結(jié)與展望
神經(jīng)炎癥對(duì)腦卒中后腦神經(jīng)元的影響作用,取決于炎癥反應(yīng)的持續(xù)時(shí)間和MG激活的表型,通過(guò)干預(yù)MG極化,啟動(dòng)M1向M2表型轉(zhuǎn)化,被認(rèn)為是治療神經(jīng)退行性疾病的一種有效策略。綜上所述,MG激活所介導(dǎo)的神經(jīng)炎癥反應(yīng)是PSCI發(fā)病的關(guān)鍵作用機(jī)制,其中NLRP3、HMGB1/TLR4/NF-κB、JAK2-STAT3、p38 MAPK和Notch信號(hào)通路可以促進(jìn)MG表型極化為M1,發(fā)生炎癥反應(yīng)。而IL-4、TREM2、miR-124、IL-33/ST2、PPAR信號(hào)通路則與M2抗炎表型相關(guān)。中藥單體、活性成分及復(fù)方可以靶向調(diào)節(jié)MG表型轉(zhuǎn)化,在防治PSCI方面發(fā)揮了神經(jīng)保護(hù)以及促進(jìn)腦損傷修復(fù)的作用。陰陽(yáng)學(xué)說(shuō)是中醫(yī)學(xué)理論體系的研究基礎(chǔ),任何陰陽(yáng)的偏盛、偏衰均會(huì)造成機(jī)體的病理性表現(xiàn)。腦卒中損傷發(fā)生后,MG發(fā)生極化,其中M1型較M2型占優(yōu)勢(shì),此時(shí)促炎與抗炎之間的平衡被打破,并在一定條件下發(fā)生表型轉(zhuǎn)化。因此,從中藥治療的角度通過(guò)一系列信號(hào)轉(zhuǎn)導(dǎo)途徑靶向調(diào)節(jié)MG極化狀態(tài)的平衡,探討中藥對(duì)腦卒中后神經(jīng)炎癥的影響,協(xié)調(diào)兩種表型在腦損傷微環(huán)境中促炎與抗炎的關(guān)系,才能達(dá)到陰陽(yáng)平衡的目的。但M1/M2型極化方向不能完整地顯示MG的作用,對(duì)于其免疫功能的認(rèn)識(shí)也并不全面,臨床研究較少。另外,目前中醫(yī)藥對(duì)MG表型轉(zhuǎn)化的調(diào)控機(jī)制研究尚淺,今后中醫(yī)藥干預(yù)PSCI的研究應(yīng)主要集中于表型極化的具體調(diào)控機(jī)制。
參考文獻(xiàn)
[1] MIJAJLOVI M D, PAVLOVI A, BRAININ M, et al. Post-stroke dementia-a comprehensive review[J]. BMC Medicine, 2017, 15(1): 11.
[2] SEMINOG O O, SCARBOROUGH P, WRIGHT F L, et al. Determinants of the decline in mortality from acute stroke in England: Linked national database study of 795 869 adults[J]. British Medical Journal, 2019, 365: l1778.
[3] LEVINE D A, GALECKI A T, LANGA K M, et al. Trajectory of cognitive decline after incident stroke[J]. JAMA, 2015, 314(1): 41-51.
[4] 李倩倩, 李小黎, 陳雨菲, 等. IL-4調(diào)控小膠質(zhì)細(xì)胞極化在血管性認(rèn)知障礙中的作用機(jī)制研究進(jìn)展[J]. 中國(guó)實(shí)用神經(jīng)疾病雜志, 2022, 25(6): 785-788.
[5] BACK D B, KWON K J, CHOI D H, et al. Chronic cerebral hypoperfusion induces post-stroke dementia following acute ischemic stroke in rats[J]. Journal of Neuroinflammation, 2017, 14(1): 216.
[6] XUE Y M, NIE D, WANG L J, et al. Microglial polarization: Novel therapeutic strategy against ischemic stroke[J]. Aging and Disease, 2021, 12(2): 466-479.
[7] 李? 瑤, 陳? 旖, 朱丹妮, 等. 重組人神經(jīng)生長(zhǎng)因子抑制小膠質(zhì)細(xì)胞炎癥反應(yīng)發(fā)揮神經(jīng)保護(hù)作用[J/OL].中國(guó)藥理學(xué)與毒理學(xué)雜志:1-9[2023-03-25].http://kns.cnki.net/kcms/detail/11.1155.R.20220427.1620.002.html.
[8] 安蘭花, 胡家力, 劉雪曼, 等. 中醫(yī)藥調(diào)控微環(huán)境促進(jìn)缺血性卒中后腦功能重塑的關(guān)鍵信號(hào)通路[J]. 中華中醫(yī)藥學(xué)刊, 2022, 40(6): 192-196.
[9] NARASIMHALU K, LEE J, LEONG Y L, et al. Inflammatory markers and their association with post stroke cognitive decline[J]. International Journal of Stroke, 2015, 10(4): 513-518.
[10] NGUYEN P T, DORMAN L C, PAN S, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity[J]. Cell, 2020, 182(2): 388-403.
[11] 徐家歡, 王? 瑋. 小膠質(zhì)細(xì)胞在慢性間歇低氧相關(guān)認(rèn)知障礙中的作用[J]. 中國(guó)病理生理雜志, 2022, 38(3): 566-571.
[12] V?魣ZQUEZ-ROSA E, SHIN M K, DHAR M, et al. P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27667-27675.
[13] LIU H, ZHANG Z H, ZANG C X, et al. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation[J]. Journal of Ethnopharmacology, 2021, 267: 113491.
[14] BURGUILLOS M A, SVENSSON M, SCHULTE T, et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation[J]. Cell Reports, 2015, 10(9): 1626-1638.
[15] GANT J C, BLALOCK E M, CHEN K C, et al. FK506-binding protein 12.6/1b, a negative regulator of[Ca2+], rescues memory and restores genomic regulation in the Hippocampus of aging rats[J]. The Journal of Neuroscience, 2018, 38(4): 1030-1041.
[16] YANG Z Y, LIU B P, YANG L E, et al. Platycodigenin as potential drug candidate for Alzheimer's disease via modulating microglial polarization and neurite regeneration[J]. Molecules, 2019, 24(18): 3207.
[17] ZHOU X, ZHANG J Y, LI Y X, et al. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p[J]. Life Sciences, 2021, 267: 118943.
[18] GUO S R, WANG H, YIN Y F. Microglia polarization from M1 to M2 in neurodegenerative diseases[J]. Frontiers in Aging Neuroscience, 2022, 14: 815347.
[19] XU H Z, WANG Z J, LI J R, et al. The polarization states of microglia in TBI: A new paradigm for pharmacological intervention[J]. Neural Plasticity, 2017, 2017: 5405104.
[20] COLLMANN F M, PIJNENBURG R, HAMZEI-TAJ S, et al. Individual in vivo profiles of microglia polarization after stroke, represented by the genes iNOS and Ym1[J]. Frontiers in Immunology, 2019, 10: 1236.
[21] LAN X, HAN X N, LI Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia[J]. Brain, Behavior, and Immunity, 2017, 61: 326-339.
[22] PAOLETTI P, BELLONE C, ZHOU Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease[J]. Nature Reviews Neuroscience, 2013, 14(6): 383-400.
[23] TING S M, ZHAO X R, ZHENG X P, et al. Excitatory pathway engaging glutamate, calcineurin, and NFAT upregulates IL-4 in ischemic neurons to polarize microglia[J]. Journal of Cerebral Blood Flow & Metabolism, 2020, 40(3): 513-527.
[24] ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circulation Research, 2022, 130(8): 1252-1271.
[25] HALLE A, HORNUNG V, PETZOLD G C, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta[J]. Nature Immunology, 2008, 9(8): 857-865.
[26] LIU X, LEI Q. TRIM62 knockout protects against cerebral ischemic injury in mice by suppressing NLRP3-regulated neuroinflammation[J]. Biochemical and Biophysical Research Communications, 2020, 529(2): 140-147.
[27] HENEKA M T, KUMMER M P, STUTZ A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493(7434): 674-678.
[28] WANG Q, YANG W X, ZHANG J M, et al. TREM2 overexpression attenuates cognitive deficits in experimental models of vascular dementia[J]. Neural Plasticity, 2020, 2020: 8834275.
[29] 施昌勝, 孫彩霞, 胡? 琪, 等. 微小RNA在缺血性腦卒中的研究進(jìn)展[J]. 南京醫(yī)科大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 43(4): 582-588.
[30] 楊云方, 張? 悅, 彭? 景, 等. 五味子基于miR-124調(diào)控TLR4通路介導(dǎo)小膠質(zhì)細(xì)胞表型轉(zhuǎn)化機(jī)制[J]. 藥學(xué)學(xué)報(bào), 2023, 58(2): 377-385.
[31] YANG Y X, YE Y Q, KONG C G, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced Hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochemical Research, 2019, 44(4): 811-828.
[32] YU A Y, ZHANG T X, DUAN H Z, et al. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage[J]. Immunology Letters, 2017, 182: 1-11.
[33] 韓莉花, 袁? 欣, 楊真兒, 等. 葛根知母藥對(duì)調(diào)控HMGB1/RAGE/NF-κB通路改善糖尿病大鼠認(rèn)知障礙[J]. 中藥藥理與臨床, 2020, 36(1): 124-130.
[34] 戴建業(yè), 張? 齊, 張? 曼, 等. 加味溫膽湯對(duì)抑郁大鼠HMGB1/TLR4/NF-κB通路及小膠質(zhì)細(xì)胞極化的影響[J]. 中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志, 2022, 28(5): 723-727.
[35] TABETA K, GEORGEL P, JANSSEN E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(10): 3516-3521.
[36] WANG Y J, HUANG Y, XU Y Z, et al. A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization[J]. Antioxidants & Redox Signaling, 2018, 28(2): 141-163.
[37] 包霜謹(jǐn), 劉麗榮, 要振佳, 等. Nrf2調(diào)控小膠質(zhì)細(xì)胞功能轉(zhuǎn)化在腦出血后血腫清除中的作用機(jī)制[J]. 中國(guó)現(xiàn)代醫(yī)學(xué)雜志, 2022, 32(17): 38-47.
[38] YANG X L, WANG X, SHAO L, et al. TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI)[J]. Journal of Neuroinflammation, 2019, 16(1): 114.
[39] WAN J, FU A K Y, IP F C F, et al. Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: Implications in Alzheimer's disease[J]. The Journal of Neuroscience, 2010, 30(20): 6873-6881.
[40] BOSCO J, RUGANZU. TREM2 overexpression rescues cognitive deficits in APP/PS1 transgenic mice by reducing neuroinflammation via the JAK/STAT/SOCS signaling pathway[J]. Experimental Neurology, 2021, 336: 113506.
[41] YANG Y Y, LIU H, ZHANG H Y, et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury[J]. The Journal of Neuroscience, 2017, 37(18): 4692-4704.
[42] JIE F, YANG X, YANG B W, et al. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation[J]. Biomedecine & Pharmacotherapie, 2022, 153: 113317.
[43] 李虹瑩, 沈? 緣, 謝璐霜, 等. 艾灸通過(guò)IL-33/ST2通路促進(jìn)阿爾茨海默病海馬小膠質(zhì)細(xì)胞向M2方向極化[J/OL]. 針刺研究:1-10[2023-03-25].https://doi.org/10.13702/j.1000-0607.20220877.
[44] YASUOKA S, KAWANOKUCHI J, PARAJULI B, et al. Production and functions of IL-33 in the central nervous system[J]. Brain Research, 2011, 1385: 8-17.
[45] 李虹瑩, 沈? 緣, 吳巧鳳, 等. 小膠質(zhì)細(xì)胞極化信號(hào)通路在神經(jīng)炎癥中的研究進(jìn)展[J]. 實(shí)用醫(yī)學(xué)雜志, 2022, 38(14): 1838-1841.
[46] ZHOU L, WANG D S, QIU X J, et al. DHZCP modulates microglial M1/M2 polarization via the p38 and TLR4/NF-κB signaling pathways in LPS-stimulated microglial cells[J]. Frontiers in Pharmacology, 2020, 11: 1126.
[47] 楊樹(shù)升, 林? 麗. 大承氣湯對(duì)腦出血模型大鼠小膠質(zhì)細(xì)胞的作用及機(jī)制探討[J]. 華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2021, 50(6): 728-733.
[48] LI Q Q, DING D H, WANG X Y, et al. Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway[J]. Experimental Neurology, 2021, 339: 113645.
[49] ZHOU D D, JI L, CHEN Y G. TSPO modulates IL-4-induced microglia/macrophage M2 polarization via PPAR-γ pathway[J]. Journal of Molecular Neuroscience, 2020, 70(4): 542-549.
[50] 張? 瑛, 高曉峰, 郭? 純, 等. 基于PPARγ信號(hào)通路探討安腦平?jīng)_方極化M2型小膠質(zhì)細(xì)胞減輕腦出血后神經(jīng)炎癥的作用機(jī)制[J]. 湖南中醫(yī)藥大學(xué)學(xué)報(bào), 2023, 43(3): 405-412.
[51] 徐資怡, 石金鳳, 鮮? 靜, 等. 雷公藤紅素單用和聯(lián)用抗腫瘤作用機(jī)制的研究進(jìn)展[J]. 中草藥, 2021, 52(14): 4372-4385.
[52] JIANG M, LIU X H, ZHANG D H, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization[J]. Journal of Neuroinflammation, 2018, 15(1): 78.
[53] 胡? 煒, 劉建敏, 金海濤, 等. 積雪草酸對(duì)大鼠蛛網(wǎng)膜下腔出血后IL-33/ST2信號(hào)通路及小膠質(zhì)細(xì)胞的影響[J]. 山西醫(yī)科大學(xué)學(xué)報(bào), 2021, 52(10): 1319-1324.
[54] CIANCIULLI A, CALVELLO R, PORRO C, et al. Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts[J]. Cytokine & Growth Factor Reviews, 2017, 37: 67-79.
[55] PORRO C, CIANCIULLI A, TROTTA T, et al. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells[J]. Biology, 2019, 8(3): 51.
[56] YANG S L, WANG H G, YANG Y L, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage[J]. Biomedicine & Pharmacotherapy, 2019, 117: 109102.
[57] LIU Z J, RAN Y Y, HUANG S, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization[J]. Frontiers in Aging Neuroscience, 2017, 9: 233.
[58] 吳? 非, 周長(zhǎng)甫, 黎紅華, 等. 姜黃素對(duì)BV2小膠質(zhì)細(xì)胞Notch信號(hào)通路的調(diào)控作用[J]. 華南國(guó)防醫(yī)學(xué)雜志, 2015, 29(7): 499-502, 522.
[59] TANG S C, YANG K C, CHEN C H, et al. Plasma β-amyloids and tau proteins in patients with vascular cognitive impairment[J]. Neuromolecular Medicine, 2018, 20(4): 498-503.
[60] FAN Z, LIANG Z G, YANG H, et al. Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia[J]. Journal of Neuroinflammation, 2017, 14(1): 256.
[61] CHEN S Q, JIA J P. Tenuifolin attenuates amyloid-β42-induced neuroinflammation in microglia through the NF-κB signaling pathway[J]. Journal of Alzheimer's Disease, 2020, 76(1): 195-205.
[62] WANG X K, LI M, CAO Y Z, et al. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway[J]. European Journal of Pharmacology, 2017, 809: 196-202.
[63] WANG X J, REN J L, ZHANG A H, et al. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence[J]. Mass Spectrometry Reviews, 2019, 38(4/5): 380-402.
[64] SHI D D, HUANG Y H, LAI C S W, et al. Ginsenoside Rg1 prevents chemotherapy-induced cognitive impairment: Associations with microglia-mediated cytokines, neuroinflammation, and neuroplasticity[J]. Molecular Neurobiology, 2019, 56(8): 5626-5642.
[65] QIAO H B, LI J, LV L J, et al. Eupatilin inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage[J]. Experimental and Therapeutic Medicine, 2018, 16(5): 4005-4009.
[66] XIE Z P, LU H, YANG S X, et al. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis[J]. Frontiers in Pharmacology, 2020, 11: 568423.
[67] 甘海燕, 李? 琳, 楊? 琰, 等. 補(bǔ)陽(yáng)還五湯調(diào)控小膠質(zhì)細(xì)胞/巨噬細(xì)胞極化抑制大鼠腦缺血后炎癥反應(yīng)研究[J]. 浙江中醫(yī)藥大學(xué)學(xué)報(bào), 2019, 43(1): 1-6.
[68] 丁志敏, 高? 靜, 蘇凱奇, 等. p38 MAPK信號(hào)通路在腦卒中后認(rèn)知障礙中的作用及在中藥防治中的藥理研究進(jìn)展[J]. 中國(guó)藥房, 2022, 33(8): 1014-1020.
[69] HONG Q, YANG Y, WANG Z H, et al. Longxuetongluo capsule alleviates lipopolysaccharide-induced neuroinflammation by regulating multiple signaling pathways in BV2 microglia cells[J]. Journal of the Chinese Medical Association, 2020, 83(3): 255-265.
(本文編輯? 周? 旦)
湖南中醫(yī)藥大學(xué)學(xué)報(bào)2023年8期