亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于網(wǎng)絡(luò)藥理學探究黃連調(diào)控巨噬細胞干預(yù)動脈粥樣硬化斑塊穩(wěn)定性的潛在機制

        2023-09-06 14:41:11劉婷韓慧子向磊趙夢涵俞琦
        右江醫(yī)學 2023年8期

        劉婷 韓慧子 向磊 趙夢涵 俞琦

        【摘要】目的探究黃連調(diào)控巨噬細胞干預(yù)動脈粥樣硬化斑塊穩(wěn)定性的潛在機制。方法對GEO數(shù)據(jù)庫中的動脈斑塊相關(guān)數(shù)據(jù)集進行差異分析得到巨噬細胞干預(yù)動脈粥樣硬化斑塊相關(guān)基因。從TCMSP數(shù)據(jù)庫獲取黃連的有效成分和潛在靶點。對兩者取交集后找出發(fā)揮作用的化學成分和潛在靶點。對潛在靶點進行蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)、基因本體(GO)、京都基因與基因組百科全書(KEGG)分析,探究黃連調(diào)控巨噬細胞干預(yù)動脈粥樣硬化斑塊穩(wěn)定性的作用機制。結(jié)果穩(wěn)定斑塊組和破裂斑塊組差異分析共找到892個差異基因。通過TCMSP共找出黃連中的11個化學成分,251個靶點。兩者取交集后得到16個黃連調(diào)控巨噬細胞的潛在靶點。PPI結(jié)果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1等16個交集基因之間有較強的相互作用關(guān)系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網(wǎng)絡(luò)的樞紐位置。GO結(jié)果表明,生物學過程(BP)與對脂多糖的反應(yīng)、對細菌來源分子的反應(yīng)、對T細胞激活的正向調(diào)節(jié)等有關(guān)。細胞組成(CC)與膜筏、膜微區(qū)、膜區(qū)等細胞器有關(guān)。分子功能(MF)參與肽酶活化劑活性、趨化因子活性等分子功能的調(diào)節(jié)。KEGG結(jié)果與流體剪切應(yīng)力及動脈粥樣硬化、NF-kappa B信號傳導途徑有關(guān)。結(jié)論黃連內(nèi)槲皮素可能通過調(diào)節(jié)DPP4、HMOX1、CAV1等靶點影響斑塊內(nèi)巨噬細胞的信號傳導途徑,進而干預(yù)斑塊穩(wěn)定性。

        【關(guān)鍵詞】黃連;巨噬細胞;動脈粥樣硬化;斑塊穩(wěn)定性;網(wǎng)絡(luò)藥理學

        中圖分類號:R543.5文獻標志碼:ADOI:10.3969/j.issn.1003-1383.2023.08.002

        Exploration on the potential mechanism of Coptis chinensis Franch in regulating macrophages

        to intervene the stability of atherosclerosis plaque based on network pharmacology

        LIU Ting, HAN Huizi, XIANG Lei, ZHAO Menghan, YU Qi

        (School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China)

        【Abstract】ObjectiveTo investigate the potential mechanisms of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. MethodsDifferential analysis of arterial plaque related datasets from GEO database was performed to obtain macrophage intervention in atherosclerotic plaque related genes. The active ingredients and potential targets of Coptis chinensis Franch were obtained from TCMSP database, and the intersection of the two was taken to identify the chemotactic components and potential targets that play a role. Protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the potential targets to investigate the mechanism of action of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. ResultsA total of 892 differential genes were found in the differential analysis of the stable and ruptured plaque groups. 11 chemical components and 251 targets in Coptis chinensis Franch were identified by TCMSP, and 16 potential targets of Coptis chinensis Franch were obtained after taking the intersection of the two. PPI results showed that there were strong interactions between 16 intersecting genes, including DPP4, TNFAIP6, IL6ST, POR, RUNX1T1, HMOX1 and CAV1, etc. And DPP4, HMOX1, CAV1 and VCAM1 were at the pivotal position of the PPI network. GO results showed that biological process (BP) was associated with response to lipopolysaccharide, response to molecules of bacterial origin, and positive regulation of T cell activation. Cell composition (CC) was associated with organelles such as membrane rafts, membrane microregions, and membrane zones. Molecular function (MF) was involved in the regulation of molecular functions such as peptidase activator activity and chemokine activity. KEGG results were related to fluid shear stress and signal transduction of atherosclerosis and NF-kappa B signal transduction pathway. ConclusionQuercetin within Coptis chinensis Franch may affect the intraplaque macrophage signaling pathway by regulating DPP4, HMOX1, CAV1 and other targets, and thus intervene plaque stability.

        【Key words】Coptis chinensis Franch; macrophages; atherosclerosis; plaque stability; network pharmacology

        動脈粥樣硬化(atherosclerosis,AS)是一種慢性炎癥性疾病,是心腦血管疾病、外周動脈疾病等的病理基礎(chǔ)[1]。巨噬細胞是調(diào)控炎癥反應(yīng)、調(diào)節(jié)免疫的重要角色,可通過分泌基質(zhì)金屬蛋白酶,降解斑塊細胞外基質(zhì)中的膠原纖維,導致AS患者斑塊破裂、出血、血栓形成[2],并釋放大量介質(zhì)和酶,影響動脈粥樣硬化患者的預(yù)后[3]。在臨床實踐中,現(xiàn)有治療手段重在改善臨床癥狀及防止不良事件發(fā)生,多采用介入或使用他汀類藥物降低患者血脂水平[4]。但由于介入手術(shù)價格較為昂貴,他汀類藥物有較高的毒副作用,因此患者多傾向于中醫(yī)保守治療。中國傳統(tǒng)醫(yī)學治療AS有獨到的見解和優(yōu)勢,中醫(yī)理論將AS歸于“脈痹”“脫疽”“胸痹”等范疇。治療上秦景明、李中梓等眾多醫(yī)家重視火熱之邪所致胸痹而痛,反復(fù)強調(diào)寒涼之品的使用。黃連(Coptis chinensis Franch)是臨床中治療AS的常見配伍藥材,雖在診治過程中取得了較好的療效,但具體作用機制不清楚[5]。網(wǎng)絡(luò)藥理學可基于“藥物-成分-靶基因-疾病”交互作用網(wǎng)絡(luò),系統(tǒng)性觀察藥物及其有效成分對疾病靶基因的干預(yù)與影響,從而揭示中藥作用于人體的機理。因此,本文采用網(wǎng)絡(luò)藥理分析方法[6]探索黃連作用于AS患者動脈斑塊內(nèi)巨噬細胞所介導的斑塊破裂的分子機制。

        1材料與方法

        1.1活性成分的藥代動力學評價通過中藥系統(tǒng)藥理學分析平臺TCMSP(https://www.tcmsp-e.com/)檢索并收集黃連中各個藥物所含的化學成分,根據(jù)毒藥物動力學(ADME)原理,以TCMSP最新篩選標準:口服利用度(OB)≥30%,類藥性(DL)≥0.18為篩選條件,篩選組方中所含有的有效化學成分[7]?;赥CMSP將篩選得到的有效成分進行靶點蛋白獲取,去重后借助Uniprot數(shù)據(jù)庫(https://www.uniprot.org/)對靶點蛋白標準化處理。

        1.2巨噬細胞在不同狀態(tài)斑塊中的基因表達差異GEO數(shù)據(jù)庫(http://www.ncbi.nlm.nih.gov/geo/)的GSE41571數(shù)據(jù)集含有5個穩(wěn)定斑塊組織和6個破裂斑塊組織內(nèi)巨噬細胞的表達譜數(shù)據(jù)。通過“l(fā)imma”包,找出兩組樣本的差異基因。并繪制火山圖和熱圖。對藥物靶點及差異基因取交集找出黃連影響巨噬細胞介導斑塊穩(wěn)定性的潛在靶點。

        1.3繪制成分-靶點網(wǎng)絡(luò)圖將交集基因與所對應(yīng)的化學成分導入Cytoscape 3.8.1進行可視化。

        1.4蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)通過STRING數(shù)據(jù)庫(https://www.string-db.org/)對交集基因進行蛋白互作分析,找出不同蛋白間的相互作用。

        1.5基因本體(gene ontology,GO)和京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析黃連的潛在作用靶點通過“org.Hs.eg.db”包進行ID轉(zhuǎn)換后,使用“clusterProfiler”包進行GO分析與KEGG富集分析。其中GO分類富集分析包括生物學過程(biological process,BP)、分子功能(molecular function,MF)、細胞組成(cellular component,CC),選取BP、MF、CC排名前20的條目進行可視化,KEGG通路富集根據(jù)富集在通路上基因數(shù)目以及與疾病的相關(guān)性,用“ggplot2”包進行可視化。

        2結(jié)果

        2.1黃連成分和靶點的提取通過TCMSP共找出黃連中的11個化學成分,251個靶點。見表1。

        2.2GEO芯片差異分析通過“l(fā)imma”包對穩(wěn)定斑塊組和破裂斑塊組差異分析,我們共找到892個差異基因。其中,上調(diào)基因376個,下調(diào)基因516個。分別提取上調(diào)基因和下調(diào)基因的前20個基因繪制熱圖(見圖1A),對所有差異基因繪制火山圖(見圖1B)。

        2.3韋恩圖的繪制通過對藥物靶點和巨噬細胞在不同斑塊間的差異基因去交集后,得到16個黃連調(diào)控巨噬細胞的潛在靶點(見圖2)。

        2.4繪制成分-靶點網(wǎng)絡(luò)圖繪制成分-靶點網(wǎng)絡(luò)圖后發(fā)現(xiàn),黃連治療巨噬細胞的潛在成分主要為槲皮素。槲皮素可通過調(diào)節(jié)DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE影響AS患者體內(nèi)斑塊的穩(wěn)定性(見圖3)。

        2.5PPI繪制PPI結(jié)果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE之間有較強的相互作用關(guān)系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網(wǎng)絡(luò)的樞紐位置,表明這些基因可能是影響動脈粥樣硬化斑塊穩(wěn)定性的核心(見圖4)。

        2.6富集分析GO結(jié)果表明,BP與對脂多糖的反應(yīng)、對細菌來源分子的反應(yīng)、對T細胞激活的正向調(diào)節(jié)、對白細胞-細胞黏附的正向調(diào)節(jié)、對營養(yǎng)物質(zhì)的反應(yīng)、氣體穩(wěn)態(tài)、T細胞激活、縫隙連接組裝、白細胞遷移、細胞-細胞黏附的積極調(diào)節(jié)等生物學過程有關(guān)(見圖5A)。CC與膜筏、膜微區(qū)、膜區(qū)、三級顆粒管腔、小窩、早期內(nèi)體、細胞頂端、質(zhì)膜筏等細胞器有關(guān)(見圖5B)。MF參與肽酶活化劑活性、趨化因子活性等分子功能的調(diào)節(jié)(見圖5C)。KEGG結(jié)果與流體剪切應(yīng)力及動脈粥樣硬化、病毒蛋白與細胞因子和細胞因子受體的相互作用、糖尿病并發(fā)癥中的AGE-RAGE信號通路、阿米巴病、NF-kappa B信號傳導途徑、瘧疾、卡波西肉瘤相關(guān)的皰疹病毒感染、軍團菌病、脂質(zhì)和動脈硬化、幽門螺桿菌感染中的上皮細胞信號傳導有關(guān)(見圖5D)。

        3討論

        斑塊由免疫細胞、間充質(zhì)細胞、脂質(zhì)和細胞外基質(zhì)組成,隨著病情的發(fā)展,斑塊會逐漸破壞血管的內(nèi)部彈性層、中膜、外部彈性層和外膜[8]。巨噬細胞在AS斑塊穩(wěn)定性方面有決定性作用[9]。有研究表明,巨噬細胞是動脈粥樣硬化斑塊中炎癥和代謝信號的關(guān)鍵整合者,它可通過巨胞飲作用、吞噬作用和清道夫受體介導脂蛋白的攝取和轉(zhuǎn)運,其內(nèi)部的脂質(zhì)含量通過增加Toll樣受體對其配體的敏感性和激活NLRP3炎性體來促進先天免疫反應(yīng)和炎癥[10]。而易損斑塊具有脆弱的薄纖維帽、擴張的脂質(zhì)核心、斑塊內(nèi)出血、免疫激活、促炎介質(zhì)(細胞因子、趨化因子、金屬蛋白酶)的產(chǎn)生增加,以及某些巨噬細胞亞型的強活性等特性[11-13]。因此,巨噬細胞可通過多種方式影響斑塊的穩(wěn)定性。

        本研究表明,黃連干預(yù)不同狀態(tài)動脈斑塊內(nèi)巨噬細胞的成分為槲皮素(Quercetin)。槲皮素是一種黃酮類化合物,已被證明具有心血管保護作用和抗動脈粥樣硬化作用[15]。槲皮素可通過抑制活性氧(ROS)產(chǎn)生和激活PI3K/AKT信號通路來抑制高果糖喂養(yǎng)的C57BL/6小鼠的動脈粥樣硬化斑塊發(fā)展[15],也可明顯改善高脂肪飲食的APOE-/-小鼠的動脈粥樣硬化斑塊的面積、脂質(zhì)積累水平,并增加了動脈粥樣硬化斑塊中的膠原纖維[16]。此外,槲皮素還可調(diào)節(jié) MST1介導的RAW264.7細胞自噬,抑制氧化型低密度脂蛋白(ox-LDL)誘導的泡沫細胞形成[17]。這些證據(jù)表明,槲皮素不僅對AS的斑塊有改善作用,還對巨噬細胞有較好的調(diào)節(jié)作用。

        PPI顯示,DPP4、HMOX1、CAV1和VCAM1是槲皮素調(diào)節(jié)斑塊內(nèi)巨噬細胞的核心基因。其中二肽基肽酶4(DPP4)是炎癥和代謝的調(diào)節(jié)劑,可能與動脈粥樣硬化疾病的發(fā)展有關(guān)[18]。抑制DPP4可減少單核細胞在TNF-α和可溶性DPP4的作用下向動脈粥樣硬化斑塊遷移[19]。它還上調(diào)發(fā)揮抗炎作用的脂聯(lián)素表達[20]。HMOX1在動脈粥樣硬化中的高表達與鐵死亡的發(fā)生有關(guān),并導致MMP釋放和M0巨噬細胞浸潤[21]。小窩蛋白-1(CAV1)是小窩細胞器的標記蛋白,可直接結(jié)合膽固醇,在小窩功能中起著復(fù)雜的作用[22]。CAV1具有促進腫瘤生長和遷移、脂質(zhì)轉(zhuǎn)運和炎癥調(diào)節(jié)等多種生物學功能[23]。先前的研究確定CAV1是脂肪細胞中主要的質(zhì)膜脂肪酸結(jié)合蛋白,與AS動脈斑塊的形成有關(guān)[24]。VCAM1是參與嗜酸性粒細胞、基底細胞、單核細胞和淋巴細胞黏附的細胞黏附分子,它使單核細胞與內(nèi)皮細胞黏合,單核細胞進入內(nèi)皮下[25]。不僅能加重體內(nèi)的炎癥損傷,還能影響斑塊的狀態(tài),促進AS的發(fā)生和發(fā)展[26]。因此,槲皮素調(diào)節(jié)DPP4、HMOX1、CAV1等基因有利于改善患者的斑塊穩(wěn)定性。KEGG結(jié)果與流體剪切應(yīng)力及動脈粥樣硬化、NF-kappa B信號傳導途徑、脂質(zhì)和動脈硬化等信號傳導有關(guān)。易損AS斑塊是隨時間動態(tài)變化的不穩(wěn)定結(jié)構(gòu)。它們更常發(fā)生在頸動脈或冠狀動脈的分叉處等剪應(yīng)力不均勻的狹窄區(qū)域[27-28],因此流體剪切應(yīng)力會對已經(jīng)生成的斑塊直接施加生物應(yīng)力。NF-κB主要通過調(diào)節(jié)逆向膽固醇轉(zhuǎn)運參與膽固醇穩(wěn)態(tài)和斑塊的炎癥反應(yīng)[29]。故這些通路均對動脈斑塊穩(wěn)定性和患者的炎癥反應(yīng)高度相關(guān)。

        綜上所述,本研究運用網(wǎng)絡(luò)藥理學和生物信息學的方法在一定程度上揭示了AS患者的穩(wěn)定斑塊與破裂斑塊巨噬細胞的相關(guān)基因以及黃連發(fā)揮延緩或抑制這一生物學過程的功效作用機制。未來本課題組將持續(xù)關(guān)注這一學術(shù)領(lǐng)域,開展相關(guān)體內(nèi)體外實驗,對這一結(jié)果進行驗證。總之,黃連內(nèi)部的槲皮素可能通過調(diào)節(jié)DPP4、HMOX1、CAV1等靶點影響斑塊內(nèi)巨噬細胞的信號傳導途徑,進而干預(yù)斑塊穩(wěn)定性。參考文獻[1] FAN J L, WATANABE T. Atherosclerosis:known and unknown[J].Pathol Int, 2022, 72(3):151-160.

        [2] TABARES-GUEVARA J H, VILLA-PULGARIN J A, HERNANDEZ J C. Atherosclerosis:immunopathogenesis and strategies for immunotherapy[J].Immunotherapy, 2021, 13(14):1231-1244.

        [3] KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J].Signal Transduct Target Ther, 2022, 7(1):131.

        [4] LIBBY P, BURING J E, BADIMON L, et al. Atherosclerosis[J].Nat Rev Dis Primers, 2019, 5(1):56.

        [5] 趙立鳳,于紅紅,田維毅.中藥單體調(diào)控血管內(nèi)皮細胞自噬干預(yù)動脈粥樣硬化的研究進展[J].中華中醫(yī)藥學刊,2021,39(11):117-120.

        [6] NOGALES C, MAMDOUH Z M, LIST M, et al. Network pharmacology:curing causal mechanisms instead of treating symptoms[J].Trends Pharmacol Sci, 2022, 43(2):136-150.

        [7] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems harmacology for drug discoveryfrom herbal medicines[J].J Cheminformatics, 2014, 6:13.

        [8] DING H J, WANG C G, MALKASIAN S, et al. Characterization of arterial plaque composition with dual energy computed tomography:a simulation study[J].Int J Cardiovasc Imaging, 2021, 37(1):331-341.

        [9] MUSHENKOVA N V, SUMMERHILL V I, ZHANG D W, et al. Current advances in the diagnostic imaging of atherosclerosis:insights into the pathophysiology of vulnerable plaque[J].Int J Mol Sci, 2020, 21(8):2992.

        [10] MOORE K J, SHEEDY F J, FISHER E A. Macrophages in atherosclerosis:a dynamic balance[J].Nat Rev Immunol, 2013, 13(10):709-721.

        [11] KYRIAKIDIS K, ANTONIADIS P, CHOKSY S, et al. Comparative study of protein expression levels of five plaque biomarkers and relation with carotid plaque type classification in patients after carotid endarterectomy[J].Int J Vasc Med, 2018, 2018:1-8.

        [12] PAPAIOANNOU T G, KALANTZIS C, KATSIANOS E, et al. Personalized assessment of the coronary atherosclerotic arteries by intravascular ultrasound imaging:hunting the vulnerable plaque[J].J Pers Med, 2019, 9(1):8.

        [13] WANG F, LI T W, CONG X F, et al. Association between circulating big endothelin-1 and noncalcified or mixed coronary atherosclerotic plaques[J].Coron Artery Dis, 2019, 30(6):461-466.

        [14] DUAN H, ZHANG Q, LIU J, et al. Suppression of apoptosis in vascular endothelial cell,the promising way for natural medicines to treat atherosclerosis[J].Pharmacol Res, 2021, 168:105599.

        [15] LU X L, ZHAO C H, YAO X L, et al. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway[J].Biomed Pharmacother, 2017, 85:658-671.

        [16] JIA Q L, CAO H, SHEN D Z, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9,CD36,PPARγ,LXRα and ABCA1[J].Int J Mol Med, 2019, 44(6):893-902.

        [17] CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J].Int J Mol Sci, 2019,20(23):6093.

        [18] DUAN L H, RAO X Q, XIA C, et al. The regulatory role of DPP4 in atherosclerotic disease[J].Cardiovasc Diabetol, 2017, 16(1):76.

        [19] SHAH Z, KAMPFRATH T, DEIULIIS J A, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis[J].Circulation,2011,124(21):2338-2349.

        [20] BARBIERI M, MARFELLA R, ESPOSITO A, et al. Incretin treatment and atherosclerotic plaque stability:role of adiponectin/APPL1 signaling pathway[J].J Diabetes Complicat, 2017, 31(2):295-303.

        [21] WU D Q, HU Q A, WANG Y Q, et al. Identification of HMOX1 as a critical ferroptosis-related gene in atherosclerosis[J].Front Cardiovasc Med, 2022, 9:833642.

        [22] GOKANI S, BHATT L K. Caveolin-1:a promising therapeutic target for diverse diseases[J].Curr Mol Pharmacol, 2022, 15(5):701-715.

        [23] RAUDENSKA M, GUMULEC J, BALVAN J, et al.Caveolin-1 in oncogenic metabolic symbiosis[J].Int J Cancer, 2020, 147(7):1793-1807.

        [24] HOU K, LI S, ZHANG M,et al. Caveolin-1 in autophagy: a potential therapeutic target in atherosclerosis[J].Clin Chim Acta,2021,513:25-33.

        [25] THAYSE K, KINDT N, LAURENT S, et al. VCAM-1 target in non-invasive imaging for the detection of atherosclerotic plaques[J].Biology, 2020, 9(11):368.

        [26] TRONCOSO M F, ORTIZ-QUINTERO J, GARRIDO-MORENO V, et al. VCAM-1 as a predictor biomarker in cardiovascular disease[J].Biochim Biophys Acta BBA Mol Basis Dis, 2021, 1867(9):166170.

        [27] CHIEN C S, LI J Y, CHIEN Y, et al. METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium[J].Proc Natl Acad Sci U S A,2021,118(7):e2025070118.

        [28] BRYNIARSKI K L, WANG Z, FRACASSI F, et al. Three-dimensional fibrous cap structure of coronary lipid plaque―ST-elevation myocardial infarction vs.stable angina[J].Circ J, 2019, 83(6):1214-1219.

        [29] SHI S, JI X, SHI J, et al. Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation[J].Biosci Rep, 2022,42(7):BSR20212812.

        (收稿日期:2022-12-01修回日期:2023-02-15)

        (編輯:潘明志)

        午夜不卡无码中文字幕影院| 天天色天天操天天日天天射| 日本高清视频一区二区| 日韩免费高清视频网站| 亚洲不卡av不卡一区二区| 国产一级r片内射视频播放| 麻豆精品国产免费av影片| 国产精品国产自产自拍高清av| 一个人看的视频在线观看| 免费国产黄网站在线观看视频| 97伦伦午夜电影理伦片| 亚洲国产成人精品无码区在线观看 | 人妻久久一区二区三区蜜桃| 中文字幕日韩精品有码视频| 久久婷婷人人澡人人爽人人爱| 欧美交换配乱吟粗大25p| 国产亚洲婷婷香蕉久久精品 | 在线无码精品秘 在线观看| 日日噜噜噜夜夜狠狠久久蜜桃| 日本区一区二区三视频 | 亚洲男人天堂2017| 日本中文字幕一区二区高清在线 | 日本一区二区高清在线观看| 一区二区三区四区黄色av网站| 手机看片久久第一人妻| 亚洲视频在线观看| 中文字幕人妻熟女人妻洋洋| 中文字幕在线亚洲一区二区三区| 免费 无码 国产精品| 亚洲精品一区二区三区日韩 | 一区二区三区在线乱码| 少妇爆乳无码专区| 疯狂撞击丝袜人妻| 色偷偷88888欧美精品久久久| 亚洲视频在线播放免费视频| 国产伦理一区二区久久精品| 亚洲日韩国产av无码无码精品| 精品人妻少妇一区二区三区不卡| 亚洲成在人网av天堂| 韩国日本在线观看一区二区| 国产情侣一区二区三区|