祝子鶴, 張茜茜, 張騫騫, 劉立新△, 徐鈞
基于鐵死亡和自噬研究酒精的致肝臟細胞損傷作用*
祝子鶴1, 張茜茜2,3,4, 張騫騫3,4, 劉立新2,3,4△, 徐鈞4,5△
(1山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,山西 太原 030001;2山西醫(yī)科大學(xué)第一醫(yī)院消化內(nèi)科,山西 太原 030001;3山西醫(yī)科大學(xué)第一醫(yī)院科研實驗中心,山西 太原 030001;4肝損傷與消化道腫瘤防治委級重點實驗室,山西 太原 030001;5山西醫(yī)科大學(xué)第一醫(yī)院肝膽胰外科,山西 太原 030001)
探索不同濃度酒精作用不同時間對肝細胞、肝星狀細胞和肝母細胞瘤細胞鐵死亡和自噬的作用及機制。采用不同濃度(0~800 mmol/L)酒精處理AML12小鼠肝細胞株24、48和72 h,處理JS-1小鼠肝星狀細胞株和HepG2人肝母細胞瘤細胞株24和48 h;CCK-8法檢測細胞活力;油紅O染色檢測細胞脂質(zhì)沉積;乳酸脫氫酶(LDH)釋放測定細胞損傷水平;Western blot檢測細胞活化相關(guān)蛋白α-平滑肌肌動蛋白(α-SMA),細胞因子轉(zhuǎn)化生長因子β1(TGF-β1),膠原沉積相關(guān)蛋白I型膠原(Col I),鐵死亡相關(guān)蛋白溶質(zhì)載體家族7成員11(SLC7A11)、谷胱甘肽過氧化物酶4(GPX4)和鐵蛋白重鏈1(FTH1),以及自噬相關(guān)蛋白微管相關(guān)蛋白1輕鏈3(LC3)蛋白水平。(1)酒精抑制AML12細胞活力與時間的延長和濃度的升高相關(guān),脂質(zhì)沉積呈濃度和時間依賴性增加(<0.05),酒精作用24 h后LDH釋放顯著增多(<0.01),F(xiàn)TH1和SLC7A11蛋白表達在24 h顯著下調(diào)(<0.01),LC3-II/LC3-I比值隨時間延長而升高(<0.01)。(2)50、100和150 mmol/L酒精處理24 h后JS-1細胞活力增強,而酒精處理48 h后細胞活力則受到顯著抑制;50和100 mmol/L酒精處理JS-1細胞24和48 h后TGF-β1、α-SMA和SLC7A11蛋白表達均顯著上調(diào)(<0.05),各濃度酒精處理后Col I蛋白表達均顯著上調(diào)(<0.01),GPX4和FTH1表達及LC3-II/LC3-I比值隨時間延長而降低(<0.01)。(3)酒精對HepG2細胞活力的抑制作用隨時間延長而增強,細胞脂質(zhì)沉積呈濃度和時間依賴性增加(<0.01),F(xiàn)TH1和GPX4蛋白表達隨時間延長而下調(diào)(<0.01),隨酒精濃度增加而下調(diào)(<0.05),酒精處理組SCL7A11蛋白表達和LC3-II/LC3-I比值與對照組相比均顯著降低。(1)酒精抑制AML12細胞活力時,鐵死亡減弱,自噬增強。(2)低濃度酒精通過增強自噬促進JS-1細胞的活化增殖,而高濃度酒精抑制其活化增殖,且增強SLC7A11下調(diào)所致的鐵死亡;酒精處理的JS-1細胞自噬強度隨時間延長而減弱,鐵死亡則依賴時間積累而增強。(3)酒精通過鐵死亡增強和自噬受損而抑制HepG2細胞活力和促進脂質(zhì)沉積。
酒精;肝細胞;肝星狀細胞;肝母細胞瘤細胞;鐵死亡;自噬
酒精性肝病(alcoholic liver disease, ALD)是指長期持續(xù)性酒精攝入引起的肝臟一系列慢性病理改變過程[1]。ALD發(fā)病率和死亡率較高,但其發(fā)病機制復(fù)雜,治療方法有限,療效欠佳,因此探索酒精對肝臟細胞損傷的方式和關(guān)鍵生物標志物至關(guān)重要[2]。
鐵死亡是一種依賴鐵和活性氧(reactive oxygen species, ROS)的新型細胞死亡方式,在ALD中發(fā)揮重要作用[3]。ALD患者常伴有肝臟鐵過載,引起肝臟氧化應(yīng)激加重、免疫因子釋放及肝細胞腫脹[4]。溶質(zhì)載體家族7成員11(solute carrier family 7 member 11, SLC7A11)、谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)和鐵蛋白重鏈1(ferritin heavy chain 1, FTH1)是鐵死亡發(fā)生的關(guān)鍵蛋白,是鐵死亡關(guān)鍵的抑制因子[5-6]。過度自噬可導(dǎo)致細胞發(fā)生鐵死亡[7]。自噬是一種由溶酶體介導(dǎo)的對細胞內(nèi)異常蛋白質(zhì)或脂滴等進行降解的過程,微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1 light chain 3, LC3)是其關(guān)鍵分子。有證據(jù)表明自噬在ALD病理過程中起重要作用,但酒精對肝臟自噬激活的影響仍不清楚。
酒精通過破壞機體脂質(zhì)平衡使肝細胞脂質(zhì)過度沉積,從而推進氧化應(yīng)激、炎癥反應(yīng)和纖維化病程[8]。肝星狀細胞(hepatic stellate cells, HSCs)活化是肝纖維化的關(guān)鍵?;罨腍SCs分泌大量肝纖維化因子,如轉(zhuǎn)化生長因子β1(transforming growth factor-β1, TGF-β1),α-平滑肌肌動蛋白(α-smooth muscle protein, α-SMA)及細胞外基質(zhì)(extracellular matrix, ECM)成分,如I型膠原(collagen type I, Col I)。人肝母細胞瘤細胞系HepG2維持了一定的肝功能,表型穩(wěn)定,是替代原代肝細胞研究藥物誘導(dǎo)的肝毒性和藥物代謝合適的模型[9-10]。所以本研究以AML12(小鼠肝細胞系)、JS-1(小鼠HSCs系)和HepG2細胞為研究對象,探討不同濃度酒精對多種肝臟細胞在多時間點的鐵死亡與自噬的作用。
無水乙醇購自國藥集團化學(xué)試劑有限公司;胎牛血清(fetal bovine serum, FBS)購自Biological Industries;DMEM高糖培養(yǎng)液等細胞培養(yǎng)試劑購自賽文創(chuàng)新(北京)生物科技有限公司;所需抗體購自Abcam。
2.1細胞培養(yǎng)及分組AML12細胞購自中國科學(xué)院上海細胞庫,JS-1細胞和HepG2細胞為課題組原有細胞。AML12、JS-1和HepG2細胞分別使用完全DMEM/F12、DMEM低糖和DMEM高糖培養(yǎng)液培養(yǎng)。AML12和HepG2細胞實驗組用100和200 mmol/L酒精處理,JS-1細胞實驗組用100、150和200 mmol/L酒精處理,處理時間24~72 h。
2.2CCK-8法檢測細胞活力將(1~2)×103mL-1的AML12、JS-1和HepG2細胞懸液,以每孔100 μL鋪到96孔板中,每組3個復(fù)孔,次日換用不同濃度(0~800 mmol/L)酒精處理24~72 h,棄舊培養(yǎng)液,每孔加入含10% CCK-8的完全培養(yǎng)液100 μL,孵育2 h,酶標儀測定450 nm處吸光度,比較不同組間的細胞活力。
2.3油紅O染色檢測細胞脂質(zhì)沉積AML12和HepG2細胞接種于24孔板中(每孔0.5×105個細胞),每組6個復(fù)孔,按照實驗分組處理細胞后,固定液固定25 min,60%異丙醇浸洗5 min,油紅O染色液浸染15 min,Mayer蘇木素染色液復(fù)染1 min。
2.4乳酸脫氫酶(lactate dehydrogenase, LDH)釋放測定肝細胞損傷水平同油紅O染色處理AML12細胞,取各組上清按照說明書指示進行處理,室溫放置5 min,波長450 nm,酶標儀測定吸光度。
2.5Western blot檢測蛋白表達提取各組細胞總蛋白,BCA法測定蛋白濃度。100 ℃煮沸使蛋白變性??偟鞍捉?jīng)電泳分離,冰浴轉(zhuǎn)膜,5%脫脂奶粉室溫封閉2 h。加入Ⅰ抗4 ℃孵育過夜、Ⅱ抗室溫孵育2 h后,增強化學(xué)發(fā)光法曝光檢測相應(yīng)蛋白的表達信號。用ImageJ軟件分析蛋白條帶灰度值。
采用SPSS和GraphPad Prism 8軟件進行統(tǒng)計分析及作圖,結(jié)果以均數(shù)±標準差(mean±SD)表示。組間均數(shù)比較采用單因素方差分析,兩兩比較采用LSD-檢驗。以<0.05為差異有統(tǒng)計學(xué)意義。
CCK-8實驗結(jié)果顯示,與對照組比較,酒精抑制AML12細胞活力與時間的延長和濃度的升高相關(guān),見圖1A; 50、100和150 mmol/L酒精處理24 h后JS-1細胞活力顯著增強,而酒精處理48 h細胞活力則隨濃度升高而顯著受到抑制,見圖1B;50和100 mmol/L酒精處理24 h,HepG2細胞活力增強,200、400和800 mmol/L酒精處理24 h,HepG2細胞活力減弱,但酒精處理48 h,HepG2細胞活力比24 h顯著減弱,且呈濃度依賴性抑制,見圖1C。
Figure 1. Effect of ethyl alcohol (EtOH) on the viability of AML12 (A), JS-1 (B) and HepG2 (C) cells. Mean±SD. n=3. *P<0.05 vs 0 mmol/L.
酒精可使肝細胞產(chǎn)生脂質(zhì)沉積,油紅O染色液能夠通過最先浸染脂質(zhì)來體現(xiàn)出極其微小的脂滴。染色結(jié)果顯示,與對照組相比,AML12細胞脂質(zhì)沉積隨酒精濃度升高而沉積增多(<0.01),并且隨酒精作用時間延長而沉積增多(<0.05),見圖2A;酒精處理的HepG2細胞較對照組脂質(zhì)沉積明顯(<0.01),隨酒精作用時間延長而沉積增多(<0.01),見圖2B。
Figure 2. Effect of ethyl alcohol (EtOH) on the lipid accumulation of AML12 (A) and HepG2 (B) cells (oil red O staining, scale bar=20 μm). Mean±SD. n=6. *P<0.05, **P<0.01 vs control group.
不同濃度酒精干預(yù)AML12細胞24~72 h,LDH釋放結(jié)果顯示,與對照組比較,各組細胞LDH釋放有不同程度地增加,但酒精作用24 h有顯著差異(<0.01),100 mmol/L酒精處理后細胞LDH釋放量比200 mmol/L組有增多的趨勢,見圖3。
Figure 3. Effect of ethyl alcohol (EtOH) on lactate dehydrogenase (LDH) release by AML12 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
JS-1細胞以不同濃度的酒精處理24和48 h,Western blot結(jié)果顯示,α-SMA和TGF-β1在50和100 mmol/L酒精處理下顯著升高(<0.05),且隨時間延長有下降的趨勢,而TGF-β1在150 mmol/L酒精處理下顯著下降(<0.05),α-SMA在150 mmol/L酒精處理下有下降的趨勢,經(jīng)各濃度酒精處理不同時間后Col I均顯著升高(<0.01),見圖4。
Figure 4. Effect of ethyl alcohol (EtOH) on the expression of α-smooth muscle protein (α-SMA), transforming growth factor-β1 (TGF-β1) and collagen type I (Col I) in JS-1 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
Western blot結(jié)果顯示,AML12細胞中SCL7A11、FTH1和GPX4蛋白表達在酒精處理48和72 h組均顯著上調(diào)(<0.01),除GPX4外在酒精處理24 h組顯著下調(diào)(<0.01),見圖5。
Figure 5. Effect of ethyl alcohol (EtOH) on the expression of ferroptpsis-related proteins in AML12 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
JS-1細胞中,SLC7A11蛋白表達在50和100 mmol/L酒精處理后顯著上調(diào)(<0.01),在150 mmol/L酒精處理后顯著下調(diào)(<0.05),F(xiàn)TH1和GPX4蛋白表達隨酒精處理時間的延長而下調(diào)(<0.01),見圖6。
Figure 6. Effect of ethyl alcohol (EtOH) on the expression of ferroptpsis-related proteins in JS-1 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
HepG2細胞中,F(xiàn)TH1和GPX4蛋白表達隨酒精處理時間的延長而下調(diào)(<0.01),隨處理濃度的增加而下調(diào)(<0.05);200 mmol/L酒精處理48 h,SCL7A11蛋白表達顯著低于100 mmol/L組,亦顯著低于24 h(<0.01),見圖7。
Figure 7. Effect of ethyl alcohol (EtOH) on the expression of ferroptpsis-related proteins in HepG2 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
Western blot結(jié)果顯示,與對照組相比,AML12細胞LC3-II/LC3-I比值顯著升高(<0.05),且隨酒精作用時間延長而升高(<0.01),見圖8A;JS-1細胞LC3-II/LC3-I比值除50和100 mmol/L酒精處理48 h有升高趨勢,其余組均顯著升高(<0.01),且隨酒精作用時間延長而降低(<0.01),隨酒精作用濃度增加而升高(<0.05),見圖8B;與對照組相比,HepG2細胞LC3-II/LC3-I比值均降低,尤其酒精處理48 h顯著降低(<0.05),見圖8C。
Figure 8. Effect of ethyl alcohol (EtOH) on the expression of autophagy-related proteins in AML12 (A), JS-1 (B) and HepG2 (C) cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
酒精主要在肝細胞中代謝,促進甘油三酯合成和外源性脂肪的攝取,刺激肝細胞脂質(zhì)沉積。以往研究表明,200 mmol/L酒精處理AML12細胞24 h,脂質(zhì)沉積明顯[11];50 mmol/L酒精處理HepG2細胞,亦出現(xiàn)明顯的脂質(zhì)沉積[12]。本研究進一步表明,酒精作用后,AML12和HepG2細胞脂質(zhì)沉積呈濃度和時間依賴性增多。研究表明,酒精代謝物乙醛(25~200 μmol/L)處理LX2細胞(人HSCs)24 h,細胞被顯著激活[13];200 mmol/L酒精處理原代HSCs 48 h,細胞中α-SMA和Col I蛋白表達升高[11]。本研究中,低濃度(50和100 mmol/L)酒精處理JS-1細胞24 h,細胞被活化,釋放致纖維化因子,而150 mmol/L酒精處理使細胞活化和釋放TGF-β1程度明顯減弱。
鐵死亡是一種細胞應(yīng)激,涉及異常的代謝包括鐵代謝和脂肪代謝等[14]。據(jù)報道,小鼠ALD模型總鐵和二價鐵明顯增多且GPX4和SLC7A11表達下調(diào)[15]。本研究顯示,AML12經(jīng)酒精處理24 h后,SLC7A11和FTH1蛋白表達下調(diào),但酒精處理48和72 h后結(jié)果逆轉(zhuǎn)。由于細胞死亡是存在多種形式的,所以鐵死亡的消減可能有其它細胞死亡方式的添補。也有研究顯示,300 mmol/L酒精處理HepG2細胞12 h,GPX4表達水平降低[16]。本研究更加全面地顯示鐵死亡是隨時間延長和濃度升高而增強的,與根據(jù)酒精動物模型而預(yù)想的結(jié)果相一致。據(jù)報道,四氯化碳致肝纖維化小鼠模型中,誘導(dǎo)SLC7A11介導(dǎo)的鐵死亡可抑制HSCs激活和ECM積累而減輕肝纖維化[17]。在本研究中,GPX4和FTH1蛋白所致鐵死亡對JS-1細胞的抑制作用依賴時間延長而增強,而SLC7A11蛋白則僅在150 mmol/L酒精處理下表達下調(diào),與α-SMA和TGF-β1蛋白變化一致。
自噬具有細胞特異性,在肝細胞可調(diào)節(jié)穩(wěn)態(tài),但在HSCs則促進其激活[18]。研究表明,在慢性酒精暴露模型中自噬減弱[19],但急性酒精作用下AML12細胞通過ROS生成誘導(dǎo)自噬增強[20]。本研究中AML12細胞自噬隨酒精作用時間延長而增加,這可能是肝細胞為緩解急性酒精損傷而產(chǎn)生的細胞應(yīng)激反應(yīng)。研究顯示,隨著酒精濃度的升高(0、50和100 mmol/L),HepG2細胞自噬受損更加嚴重[21]。本研究進一步表明,HepG2細胞由于酒精所致的自噬受損,不僅隨濃度增加,而且也隨時間增加。HSCs的激活依賴于自噬降解細胞內(nèi)的脂滴來提供能量[22],而本研究中JS-1細胞經(jīng)不同濃度的酒精處理不同時間后自噬水平均升高,但更引人注意的是,自噬強度隨酒精作用時間延長而降低。AML12和HepG2細胞均被作為肝臟細胞中的肝細胞進行研究,但二者的結(jié)果卻相反,HepG2細胞呈現(xiàn)的結(jié)果與動物模型相一致,這其中的原因可能是AML12細胞受急性酒精作用更為敏感[20],所以HepG2細胞更合適作為研究鐵死亡的酒精細胞模型??傊狙芯拷Y(jié)果顯示,不同酒精濃度及酒精作用時間對肝臟不同細胞鐵死亡和自噬的影響是不同的,為臨床上針對不同發(fā)展階段ALD的診治提供了新思路。但是,具體的相關(guān)通路仍需要進一步實驗加以闡明。
[1] Buko V, Zavodnik I, Budryn G, et al. Chlorogenic acid protects against advanced alcoholic steatohepatitis in rats via modulation of redox homeostasis, inflammation, and lipogenesis[J]. Nutrients, 2021, 13(11):4155.
[2] Kirpich IA, Warner DR, Feng W, et al. Mechanisms, biomarkers and targets for therapy in alcohol-associated liver injury: from genetics to nutrition: summary of the ISBRA 2018 symposium[J]. Alcohol, 2020, 83:105-114.
[3] Miyata T, Nagy LE. Programmed cell death in alcohol-associated liver disease[J]. Clin Mol Hepatol, 2020, 26(4):618-625.
[4]秦源, 郭永紅, 王亞寧, 等. 鐵調(diào)素調(diào)控與肝臟疾病引起的鐵代謝紊亂[J]. 肝臟, 2016, 21(6):509-512.
Qin Y, Guo YH, Wang YN, et al. Regulation of hepcidin and iron metabolism disorder induced by liver diseases[J]. Chin Hepatol, 2016, 21(6):509-512.
[5] Tian Y, Lu J, Hao X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson's disease[J]. Neurotherapeutics, 2020, 17(4):1796-1812.
[6] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3):409-422.e421.
[7] Liu J, Kuang F, Kroemer G, et al. Autophagy-dependent ferroptosis: machinery and regulation[J]. Cell Chem Biol, 2020, 27(4):420-435.
[8] Kisseleva T, Brenner DA. The crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells facilitates alcoholic liver disease[J]. Cell Metab, 2019, 30(5):850-852.
[9] López-Terrada D, Cheung SW, Finegold MJ, et al. Hep G2 is a hepatoblastoma-derived cell line[J]. Hum Pathol, 2009, 40(10):1512-1515.
[10] Li X, Xu Z, Bai J, et al. Umbilical cord tissue-derived mesenchymal stem cells induce T lymphocyte apoptosis and cell cycle arrest by expression of indoleamine 2, 3-dioxygenase[J]. Stem Cells Int, 2016, 2016:7495135.
[11] An T, Zhang J, Lv B, et al. Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA[J]. PeerJ, 2019, 7:e6506.
[12] Shang Y, Jiang M, Chen N, et al. Inhibition of HMGB1/TLR4 signaling pathway by digitoflavone: a potential therapeutic role in alcohol-associated liver disease[J]. J Agric Food Chem, 2022, 70(9):2968-2983.
[13] Lestari N, Louisa M, Soetikno V, et al. Alpha mangostin inhibits the proliferation and activation of acetaldehyde induced hepatic stellate cells through TGF-β and ERK 1/2 pathways[J]. J Toxicol, 2018, 2018:5360496.
[14] Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9):2054-2081.
[15] Zhou Z, Ye TJ, DeCaro E, et al. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis[J]. Am J Pathol, 2020, 190(1):82-92.
[16] Zhao Y, Lu J, Mao A, et al. Autophagy inhibition plays a protective role in ferroptosis induced by alcohol via the p62-Keap1-Nrf2 pathway[J]. J Agric Food Chem, 2021, 69(33):9671-9683.
[17] Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway[J]. Cell Prolif, 2022, 55(1):e13158.
[18] Weiskirchen R, Tacke F. Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease[J]. Cells, 2019, 8(1):16.
[19] Thomes PG, Trambly CS, Fox HS, et al. Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB[J]. Alcohol Clin Exp Res, 2015, 39(12):2354-2363.
[20] Chen C, Wang S, Yu L, et al. H2O2-mediated autophagy during ethanol metabolism[J]. Redox Biol, 2021, 46:102081.
[21] Guo X, Cui R, Zhao J, et al. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy[J]. Eur J Pharmacol, 2016, 791:578-588.
[22] Thoen LF, Guimar?es EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation[J]. J Hepatol, 2011, 55(6):1353-1360.
Roles of ferroptosis and autophagy in ethanol-induced liver cell injury
ZHU Zihe1, ZHANG Qianqian2,3,4, ZHANG Qianqian3,4, LIU Lixin2,3,4△, XU Jun4,5△
(1,,,030001,;2,,030001,;3,,030001,;4,030001,;5,,030001,)
To investigate the effect of ferroptosis and autophagy on liver cell injury induced by ethyl alcohol (EtOH).Mouse hepatocyte cell line AML12 was treated by various concentrations (0 to 800 mmol/L) of EtOH for 24, 48 and 72 h. Meanwhile, mouse hepatic stellate cell line JS-1 and human hepatoblastoma cell line HepG2 were treated with different concentrations of EtOH for 24 and 48 h. The cell viability was measured by CCK-8 assay. The lipid deposition was detected by oil red O staining. The cells injury level was measured by lactate dehydrogenase (LDH) release. The expression levels of cell activation-related protein α-smooth muscle protein (α-SMA), transforming growth factor-β1 (TGF-β1), collagen deposition-related protein collagen type I (Col I), ferroptosis-related proteins solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1), and autophagy-related protein microtubule-associated protein 1 light chain 3 (LC3) were determined by Western blot.(1) Treatment with EtOH reduced the viability of AML12 cells in a concentration- and time-dependent manner. The lipid deposition was increased in a concentration- and time-dependent manner (<0.05). The LDH level was significantly increased 24 h after EtOH treatment (<0.01). The protein levels of FTH1 and SLC7A11 were significantly decreased 24 h after EtOH treatment (<0.01), while the ratio of LC3-II/LC3-I was increased with increasing EtOH treatment time (<0.01). (2) The viability of JS-1 cells was significantly increased 24 h after treatment with 50, 100 and 150 mmol/L EtOH. In contrast, the activity of JS-1 cells was substantially reduced 48 h after EtOH treatment. The protein levels of TGF-β1, α-SMA, and SLC7A11 were increased (<0.05) in JS-1 cells 24 h and 48 h after treatment with 50 and 100 mmol/L EtOH. Additionally, the protein expression of Col I was significantly increased (<0.01) across all EtOH treatment concentrations. The protein levels of GPX4 and FTH1, and the ratio of LC3-II/LC3-I were decreased with increasing EtOH treatment time (<0.01). (3) The activity of HepG2 cells was significantly reduced after EtOH treatment in a time-dependent manner. Moreover, the lipid deposition was increased in a concentration- and time-dependent manner (<0.01). The protein levels of FTH1 and GPX4 were decreased with increasing EtOH treatment time (<0.01) and concentration (<0.05). The protein level of SLC7A11 and the ratio of LC3-II/LC3-I in EtOH treatment groups were lower than those in control group.(1) Ferroptosis is decreased and autophagy is increased when the viability of AML12 cells is inhibited by EtOH. (2) Low concentration of EtOH promotes the activation and proliferation of JS-1 cells through the enhancement of autophagy, while high concentration of EtOH inhibits the activation and proliferation of JS-1 cells, and promotes the ferroptosis induced by down-regulation of SLC7A11. The autophagy of JS-1 cells is reduced and the ferroptosis is increased after EtOH treatment with increasing time. (3) The viability of HepG2 cells is inhibited and the lipid deposition is promoted through ferroptosis activation and autophagy inhibition.
ethyl alcohol; hepatocytes; hepatic stellate cells; hepatoblastoma cells; ferroptosis; autophagy
1000-4718(2023)07-1265-08
2022-05-18
2023-05-10
劉立新 Tel: 13834238858; E-mail: lixinliu6@hotmail.com;徐鈞 Tel: 15103513388; E-mail: xujun@sxmu.edu.cn
R575.1; R363.2
A
10.3969/j.issn.1000-4718.2023.07.013
[基金項目]國家自然科學(xué)基金資助項目(No. 81670559);山西省省科技廳自然科學(xué)基金項目(No. 202103021224392)
(責(zé)任編輯:盧萍,羅森)