郭敬雨,左鴻銘,龔曉鵬,郭文飛,辜聲峰,趙齊樂
不同電離層改正的PPP時(shí)間傳遞性能評(píng)估
郭敬雨,左鴻銘,龔曉鵬,郭文飛,辜聲峰,趙齊樂
(武漢大學(xué) 衛(wèi)星導(dǎo)航定位技術(shù)研究中心,武漢 430079)
精密單點(diǎn)定位(PPP);單向授時(shí);時(shí)間傳遞;區(qū)域電離層格網(wǎng)圖(RIM);阿倫方差
高精度時(shí)間傳遞是時(shí)間實(shí)驗(yàn)室建立和維持標(biāo)準(zhǔn)時(shí)間尺度和時(shí)間同步的基礎(chǔ)。隨著空間技術(shù)的發(fā)展,時(shí)間傳遞精度不斷提高。文獻(xiàn)[1]提出了全球定位系統(tǒng)(global positioning system,GPS)衛(wèi)星共視(common view,CV)時(shí)間傳遞技術(shù)。文獻(xiàn)[2]提出了GPS衛(wèi)星全視(all in view,AV)時(shí)間傳遞技術(shù),并指出其比CV具有更遠(yuǎn)的時(shí)間傳遞距離和更好的性能。然而,GPS CV和GPS AV均采用偽距觀測(cè)值,受偽距觀測(cè)噪聲影響,精度只能達(dá)到納秒水平。近年來基于精密單點(diǎn)定位(precise point positioning,PPP)的時(shí)間傳遞方法在精度和覆蓋范圍方面表現(xiàn)出優(yōu)越的性能,使其成為全球衛(wèi)星導(dǎo)航系統(tǒng)(global navigation satellite system,GNSS)時(shí)間傳遞最常用方法之一,并于2009年應(yīng)用于國(guó)際原子時(shí)(international atomic time,TAI)服務(wù)[3-5]。文獻(xiàn)[6]開展了基于GPS的PPP時(shí)間傳遞研究,結(jié)果表明靜態(tài)模式下PPP時(shí)間傳遞精度為0.3 ns。
傳統(tǒng)PPP時(shí)間傳遞模型通?;跓o電離層PPP(ionosphere-free PPP,IF-PPP)展開,隨著多頻率多系統(tǒng)數(shù)據(jù)處理技術(shù)的發(fā)展,非差非組合PPP(undifferenced and uncombined PPP,UDUC-PPP)模型成為GNSS數(shù)據(jù)處理研究熱點(diǎn)[7]。文獻(xiàn)[8]對(duì)非組合PPP精密授時(shí)的性能進(jìn)行了研究分析,結(jié)果表明非差非組合PPP算法授時(shí)精度優(yōu)于傳統(tǒng)PPP算法。文獻(xiàn)[9]分析了以電離層延遲為參數(shù)、以全球電離層格網(wǎng)圖(global ionosphere map,GIM)獲得的電離層延遲為約束的單頻PPP時(shí)間傳遞精度,并指出在截止高程角為10°、20°和30°時(shí),電離層約束模型時(shí)間傳遞的標(biāo)準(zhǔn)差(standard deviation,STD)均能達(dá)到0.5 ns水平。值得注意的是,電離層延遲參數(shù)的處理策略顯著影響非差非組合模型解算性能[10-11],進(jìn)而影響PPP時(shí)間傳遞性能。文獻(xiàn)[12]提出了GNSS電離層參數(shù)化模型(deterministic plus stochastic ionospheric delay modeling for GNSS,DESIGN),該模型中電離層參數(shù)化同時(shí)顧及電離層確定性與隨機(jī)性,并將先驗(yàn)電離層模型作為虛擬觀測(cè)值,提升了非差非組合PPP定位性能[13-14];然而其在時(shí)間傳遞中的應(yīng)用性能還有待進(jìn)一步分析。
為驗(yàn)證DESIGN參數(shù)化模型,及不同精度電離層改正產(chǎn)品在非差非組合PPP時(shí)間傳遞中的應(yīng)用效果,本文基于歐洲區(qū)域觀測(cè)網(wǎng)進(jìn)行實(shí)驗(yàn)。首先給出PPP單向授時(shí)及時(shí)間傳遞技術(shù)的基本原理,重點(diǎn)對(duì)比無電離層組合PPP與非差非組合PPP的區(qū)別;然后,基于5個(gè)外接氫原子鐘(hydrogen maser,H-MASER)的GNSS觀測(cè)站連續(xù)21 d的數(shù)據(jù),分析不同PPP模型的時(shí)間傳遞性能。
GNSS PPP單向授時(shí)使用載波相位和偽距觀測(cè)值,結(jié)合國(guó)際GNSS服務(wù)組織(International GNSS Service,IGS)提供的高精度衛(wèi)星軌道和鐘差等產(chǎn)品,由用戶通過PPP方式解算出本地接收機(jī)鐘差。由于IGS鐘差文件對(duì)應(yīng)的是IGS時(shí)間基準(zhǔn)(IGS time,IGST)[15],因此通過改正本地接收機(jī)鐘差,即可使得本地時(shí)間與IGST同步。GNSS偽距和載波相位的非差非組合觀測(cè)量[16]一般表示為
IF-PPP模型將不同頻率的偽距和相位觀測(cè)值通過線性組合消除電離層延遲一階項(xiàng)[13],即
偽距觀測(cè)中的電離層硬件延遲將被接收機(jī)鐘差通過無電離層組合充分吸收,即
UCUD-PPP模型基本觀測(cè)模型即由式(1)表示,同時(shí)進(jìn)一步引入DESIGN模型實(shí)現(xiàn)電離層參數(shù)化估計(jì)[12,14],即
此外,為了消除接收機(jī)鐘差和碼偏差的線性相關(guān)性,將其合并為
將式(4)和式(5)代入式(1),則基于DESIGN的非差非組合PPP模型為
比較式(4)和式(6),可得到IF-PPP與UCUD-PPP模型的接收機(jī)鐘差關(guān)系為
則PPP中估計(jì)的接收機(jī)鐘差可表示為
為驗(yàn)證無電離層組合與非差非組合對(duì)PPP時(shí)間傳遞服務(wù)性能的影響,我們基于復(fù)興軟件(fusing in GNSS,F(xiàn)USING)實(shí)現(xiàn)了上述IF-PPP、UCUD-PPP時(shí)間傳遞算法。此外,本文不僅分析了GIM改正模型,也采用FUSING軟件構(gòu)建了區(qū)域電離層模型(regional ionosphere map,RIM),對(duì)比了二者在非差非組合PPP時(shí)間傳遞中的應(yīng)用效果。目前,F(xiàn)USING能夠?qū)崿F(xiàn)實(shí)時(shí)GNSS多系統(tǒng)精密定軌(precise orbit determination,POD)[21]、衛(wèi)星鐘差估計(jì)[22-23]、信號(hào)偏差解算[22,24]、多傳感器導(dǎo)航[24]和大氣建模[25]。
由式(10)可知,為準(zhǔn)確評(píng)估不同PPP模型時(shí)間傳遞噪聲,本地時(shí)鐘應(yīng)盡可能穩(wěn)定。因此本文實(shí)驗(yàn)采用歐洲永久觀測(cè)網(wǎng)(Euref permanent network,EPN)的BRUX、IENG、PTBB、SPT0和WAB2共5個(gè)跟蹤站數(shù)據(jù),此外選擇了202個(gè)站用于區(qū)域電離層建模RIM[26]。5個(gè)跟蹤站的詳細(xì)信息如表1所示,這些站均參與了國(guó)際計(jì)量局(Bureau International des Poids et Mesures,BIPM)的TAI維護(hù),并配備了外接H-MASER。表1中:ORB(Observatoire Royal de Belgique)為比利時(shí)皇家天文臺(tái);IT(Istituto Nazionale di Ricerca Metrologica)為意大利國(guó)家計(jì)量研究所;PTB(Physikalisch-Technische Bundesanstalt)為德國(guó)物理技術(shù)聯(lián)邦研究院;RISE(Research Institutes of Sweden AB)為瑞典國(guó)家研究院;METAS(Federal Institute of Metrology)為瑞士聯(lián)邦計(jì)量科學(xué)研究院。
表1 測(cè)站信息
表2列出了PPP處理策略。表中:GPTS(GPS time)為GPS時(shí)間;GPT2(global pressure and temperature 2)為全球氣溫氣壓模型;PCO(phase center offset)為天線相位中心偏差;PCV(phase center variation)為天線相位中心變化。實(shí)驗(yàn)時(shí)段為2020年年積日(day of year,DOY)第11—31天,觀測(cè)值采樣間隔為30 s。軌道和鐘差選取IGS最終精密產(chǎn)品。此外,本文區(qū)域電離層建模以及PPP時(shí)間傳遞均采用前向平方根信息濾波器實(shí)現(xiàn)。
表2 PPP處理策略
如圖1所示,以BRUX測(cè)站2020年年積日第11天為例,固定測(cè)站坐標(biāo),反算電離層延遲作為參考值,并將其與RIM內(nèi)插得到的電離層延遲作差,獲得其差值時(shí)間序列。如圖2所示,GPS衛(wèi)星的電離層延遲差值大部分小于0.2 m。圖2給出了BRUX、IENG、PTBB、SPT0和WAB25個(gè)測(cè)站的GPS衛(wèi)星G01至G32連續(xù)21 d的電離層延遲差值均方根統(tǒng)計(jì)值(root mean square,RMS)的均值,作為RIM模型的精度評(píng)估指標(biāo)。除測(cè)站SPT0部分衛(wèi)星外,其余衛(wèi)星的天頂電離層延遲精度均優(yōu)于0.14 m,其平均精度分別為0.05、0.06、0.07、0.08、0.05 m,顯著優(yōu)于GIM模型標(biāo)稱精度。
圖1 BRUX測(cè)站L1信號(hào)區(qū)域電離層產(chǎn)品與后處理模式下反算天頂電離層延遲差值時(shí)間序列(2020,DOY 011)
圖2 5個(gè)測(cè)站L1信號(hào)區(qū)域電離層產(chǎn)品與后處理模式下反算天頂電離層延遲差值的RMS統(tǒng)計(jì)值
由式(6)可知,IF-PPP與UCUD-PPP解算獲得的接收機(jī)鐘差受DCB影響。為此,圖3給出了全球基于全球電離層格網(wǎng)圖的非差非組合PPP(global ionosphere map PPP,GIM-PPP)和基于區(qū)域電離層格網(wǎng)圖的非差非組合PPP(regional ionosphere map PPP,RIM-PPP)解算獲得的DCB序列,其中:GIM-PPP解算的DCB波動(dòng)較小,這主要是由電離層延遲與DCB強(qiáng)相關(guān);而GIM-PPP相對(duì)于RIM-PPP電離層模型精度較低,其對(duì)電離層延遲參數(shù)施加的約束較弱,同時(shí)DCB作為單天常數(shù)估計(jì),因此GIM-PPP解算的DCB時(shí)域上更穩(wěn)定。此外,GIM-PPP與RIM-PPP中DCB單天平均穩(wěn)定性STD分別為0.023和0.052 ns,都明顯高于PPP鐘差解算穩(wěn)定性;因此可以認(rèn)為其對(duì)PPP單向授時(shí)及時(shí)間傳遞噪聲穩(wěn)定性評(píng)估影響較小。
目前IGS提供的事后跟蹤站鐘差以IGST為基準(zhǔn),標(biāo)稱精度RMS為75 ps[27],可將其作為參考真值進(jìn)行對(duì)比。表3給出了以IGS最終精密鐘差文件中測(cè)站接收機(jī)鐘差產(chǎn)品為參考,連續(xù)21 d的IF-PPP、GIM-PPP和RIM-PPP模型單向授時(shí)的標(biāo)準(zhǔn)差和均方根統(tǒng)計(jì)值。從表3中可以看出:GIM-PPP和RIM-PPP模型鐘差解算精度均優(yōu)于IF-PPP模型;BRUX、IENG、PTBB、SPT0、WAB25個(gè)測(cè)站的單向授時(shí)RMS分別提高了21%、25%、10%、17%、49%和47%、47%、45%、29%、51%;2種模型的RMS相對(duì)IF-PPP平均分別提升了24%和44%。
(續(xù))
圖5 IF-PPP、GIM-PPP和RIM-PPP模型的PPP估計(jì)噪聲重疊Allan方差
本文對(duì)比分析了無電離層組合PPP和非差非組合PPP時(shí)間傳遞模型,給出了二者接收機(jī)鐘差參數(shù)轉(zhuǎn)換關(guān)系。在此基礎(chǔ)上,結(jié)合2020年年積日第11—31天EPN跟蹤站數(shù)據(jù),采用重疊Allan方差等指標(biāo)評(píng)估了IF-PPP及不同電離層改正的UCUD-PPP時(shí)間傳遞性能。
實(shí)驗(yàn)結(jié)果表明,基于全球電離層格網(wǎng)圖的非差非組合PPP相比IF-PPP在單向授時(shí)精度及時(shí)間傳遞穩(wěn)定性方面具有明顯優(yōu)勢(shì),當(dāng)采用202個(gè)EPN站構(gòu)建的區(qū)域電離層模型增強(qiáng)非差非組合PPP時(shí),其性能進(jìn)一步提升。相較于IF-PPP模型,GIM-PPP和RIM-PPP模型單向授時(shí)的精度平均分別提高24%和44%。在時(shí)間傳遞穩(wěn)定度方面,與傳統(tǒng)IF-PPP模型相比,GIM-PPP和RIM-PPP模型在短期項(xiàng)穩(wěn)定度上表現(xiàn)出明顯的改善。RIM-PPP模型的短期項(xiàng)穩(wěn)定度明顯提高,提高了約45%。
[1] ALLAN D W, WEISS M A. Accurate time and frequency transfer during common-view of a GPS satellite[C]// The Institute of Electrical and Electronic Engineers (IEEE). Proceedomgs of the 34th Annual Symposium on Frequency Control. Philadelphia: IEEE, 1980: 334-346[2022-07-26].
[2] JIANG Z. Time transfer with GPS satellites all in view[C]// The Technical Committee of Time and Frequency (APMP). Proceedomgs of Asia Pacific Workshop on Time and Frequency. Beijing: APMP, 2004: 236-243[2022-07-26].
[3] PETIT G. The TAIPPP pilot experiment[C]// The Institute of Electrical and Electronic Engineers (IEEE). Proceedings of International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum. Besancon: IEEE, 2009: 116-119[2022-07-26].
[4] PETIT G, JIANG Z. Precise point positioning for TAI computation[C]// The Institute of Electrical and Electronic Engineers (IEEE). Proceedings of International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. Geneva: IEEE, 2007: 395-398[2022-07-26].
[5] YAO J, SKAKU I, JIANG Z, et al. A detailed comparison of two continuous GPS carrier-phase time transfer techniques[J]. Metrologia, 2015, 52(5): 666-676.
[6] PETIT G, HARMEGNIES A, MERCIER F, et al. The time stability of PPP links for TAI[C]// The Institute of Electrical and Electronic Engineers (IEEE). Proceedings of Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings. San Francisco: IEEE, 2011: 1-5[2022-07-26].
[7] ZHOU F, DONG D, LI W, et al. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations[J]. GPS Solutions, 2018, 22(2):1-10.
[8] 閆偉, 袁運(yùn)斌, 歐吉坤, 等. 非組合精密單點(diǎn)定位算法精密授時(shí)的可行性研究[J]. 武漢大學(xué)學(xué)報(bào)(信息科學(xué)版), 2011, 36(6): 648-651.
[9] GE Y L, ZHOU F, DAI P, et al. Precise point positioning time transfer with multi-GNSS single-frequency observations[J]. Measurement, 2019, 146: 628-642.
[10] ROSE J A R, WATSON R J, ALLAIN D J, et al. Ionospheric corrections for GPS time transfer[J]. Radio Science, 2014, 49(3): 196-206.
[11] SU K, JIN S, HOQUE M M. Evaluation of ionospheric delay effects on multi-GNSS positioning performance[J]. Remote Sensing, 2019, 11(2):171.
[12] SHI C, GU S F, LOU Y D, et al. An improved approach to model ionospheric delays for single-frequency precise point positioning[J]. Advance in Space Research, 2012, 49(12): 1698-1708.
[13] ZHAO Q L, WANG Y T, GU S F, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4): 545-560.
[14] LOU Y D, ZHENG F, GU S F, et al. Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models[J]. GPS Solutions, 2016, 20(4): 849-862.
[15] SENIOR K L, RAY J R, BEARD R L. Characterization of periodic variations in the GPS satellite clocks[J]. GPS Solutions, 2008, 12(3): 211-225.
[16] LEICK A, RAPOPORT L, TATARNIKOV D. GPS satellite surveying[M]. San Francisco: John Wiley & Sons, 2015: 404-405.
[17] LI X, ZHANG X, GE M. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution[J]. Journal of Geodesy, 2011, 85(3): 151-158.
[18] KOUBA J. A guide to using International GNSS Service (IGS) products[EB/OL]. (2009-05-01)[2022-07-26]. http://acc.igs.org/UsingIGSProductsVer21.pdf.
[19] YANG X H, GU S F, GONG X P, et al. Regional BDS satellite clock estimation with triple-frequency ambiguity resolution based on undifferenced observation[J]. GPS Solutions, 2019, 23(2): 1-11.
[20] GUO W F, ZUO H M, MAO F Y, et al. On the satellite clock datum stability of RT-PPP product and its application in one-way timing and time synchronization[J]. Journal of Geodesy, 2022, 96(8): 1-14.
[21] LOU Y D, DAI X L, GONG X P, et al. A review of real-time multi-GNSS precise orbit determination based on the filter method[J]. Satellite Navigation, 2022, 3(1): 1-15.
[22] GONG X P, GU S F, LOU Y D, et al. An efficient solution of real-time data processing for multi-GNSS network[J]. Journal of Geodesy, 2018, 92(7): 797-809.
[23] SHI C, GUO S, GU S F, et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528.
[24] GU S F, DAI C Q, FANG W, et al. Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation[J]. Journal of Geodesy, 2021, 95(6): 64.
[25] LUO X, GU S F, LOU Y D, et al. Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1 Hz[J]. Journal of Geodesy, 2020, 94(2): 27.
[26] SONG W W, HE C P, Gu S F. Performance analysis of ionospheric enhanced PPP-RTK in different latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842.
[27] 李征航, 黃勁松. GPS測(cè)量與數(shù)據(jù)處理[M]. 武漢: 武漢大學(xué)出版社, 2010: 95-96.
Performance evaluation of PPP time transfer by different ionospheric correction strategies
GUO Jingyu, ZUO Hongming, GONG Xiaopeng, GUO Wenfei, GU Shengfeng, ZHAO Qile
(Research Center of GNSS, Wuhan University, Wuhan 430079, China)
precise point positioning (PPP); one-way timing; time transfer; regional ionosphere map (RIM); Allan deviation
郭敬雨, 左鴻銘, 龔曉鵬, 等. 不同電離層改正的PPP時(shí)間傳遞性能評(píng)估[J]. 導(dǎo)航定位學(xué)報(bào), 2023, 11(3): 53-62.(GUO Jingyu, ZUO Hongming, GONG Xiaopeng, et al. Performance evaluation of PPP time transfer by different ionospheric correction strategies[J]. Journal of Navigation and Positioning, 2023, 11(3): 53-62.)
10.16547/j.cnki.10-1096.20230308.
P228
A
2095-4999(2023)03-0053-10
2022-08-24
國(guó)家自然科學(xué)基金項(xiàng)目(42174029,41904016)。
郭敬雨(1991—),男,河南周口人,碩士研究生,研究方向?yàn)镻PP高精度時(shí)間傳遞。