張創(chuàng), 余孝君, 唐波, 江威, 謝君
胱天蛋白酶11介導(dǎo)的Hippo信號(hào)通路在腦缺血再灌注小鼠血腦屏障破壞中的作用和機(jī)制*
張創(chuàng), 余孝君△, 唐波, 江威, 謝君
(長(zhǎng)沙市第一醫(yī)院神經(jīng)內(nèi)科,湖南 長(zhǎng)沙 410000)
探討胱天蛋白酶11(caspase-11)在腦缺血再灌注小鼠血腦屏障(blood-brain barrier, BBB)破壞中的作用和機(jī)制。將72只小鼠[包括36只(編碼caspase-11的基因)敲減(knockdown, KD)小鼠和36只野生型(wild-type, WT)小鼠]分為4組(每組18只):WT組、KD組、大腦中動(dòng)脈閉塞/再灌注損傷(middle cerebral artery occlusion/reperfusion injury, MCAO/R)組和KD+MCAO/R組。其中,MCAO/R組和KD+MCAO/R組分別采用WT小鼠和KD小鼠建立MCAO/R模型,其他組在不干擾動(dòng)脈的情況下進(jìn)行了相同的外科手術(shù)。此外,將腦微血管內(nèi)皮細(xì)胞系bEnd.3分為4組:正常對(duì)照(normal control, NC)組、KD組、氧糖剝奪/再灌注損傷(oxygen-glucose deprivation/reperfusion injury, OGD/R)組和KD+OGD/R組。其中,KD組和KD+OGD/R組bEnd.3細(xì)胞進(jìn)行敲減轉(zhuǎn)染,OGD/R組和KD+OGD/R組細(xì)胞建立OGD/R模型。通過(guò)TTC、HE和尼氏染色分析腦損傷的程度。通過(guò)伊文思藍(lán)染料滲漏、緊密連接(tight junction, TJ)蛋白的表達(dá)和經(jīng)內(nèi)皮電阻(transendothelial electrical resistance, TEER)的測(cè)量來(lái)研究BBB的破壞情況。MCAO/R后,caspase-11在小鼠腦內(nèi)皮細(xì)胞中表達(dá)上調(diào)(<0.05)。KD+MCAO/R組小鼠較MCAO/R組腦梗死體積減少,內(nèi)皮屏障通透性降低,TJ蛋白ZO-1和occludin表達(dá)增加(<0.05)。在體外,OGD/R顯著增加了bEnd.3細(xì)胞caspase-11的蛋白水平(<0.05),并降低了TJ蛋白ZO-1和occludin的蛋白水平(<0.05)。敲減通過(guò)促進(jìn)TJ蛋白表達(dá)和增加TEER來(lái)保護(hù)BBB完整性。敲減逆轉(zhuǎn)了MCAO/R和OGD/R誘導(dǎo)的腦內(nèi)皮細(xì)胞中Hippo信號(hào)通路哺乳動(dòng)物不育系20樣激酶1(mammalian sterile 20-like kinase 1, MST1)磷酸化水平的升高(<0.05)。此外,用p-MST1抑制劑XMU-MP-1治療可減輕caspase-11對(duì)BBB分解的影響(<0.05)。抑制caspase-11至少部分通過(guò)調(diào)節(jié)Hippo信號(hào)通路來(lái)保持腦缺血再灌注小鼠BBB的完整性。
胱天蛋白酶11;缺血性卒中;血腦屏障;Hippo信號(hào)通路;哺乳動(dòng)物不育系20樣激酶1
缺血性卒中是一種危及生命的疾病,具有高死亡率、高殘疾率和高復(fù)發(fā)率。卒中急性期的能量和氧氣損失會(huì)導(dǎo)致神經(jīng)元凋亡、炎癥、活性氧積累、興奮性毒性和血腦屏障(blood-brain barrier, BBB)損傷,從而進(jìn)一步加劇神經(jīng)功能缺損[1-2]。由于卒中治療窗口期很窄,大量患者錯(cuò)過(guò)了最佳治療期。因此,尋找新的靶點(diǎn)和方法來(lái)治療卒中,特別是在急性期,是必要和關(guān)鍵的。胱天蛋白酶11(caspase-11)作為一種非經(jīng)典炎癥小體,最初在腫瘤相關(guān)研究中被發(fā)現(xiàn),據(jù)報(bào)道可促進(jìn)多種類(lèi)型的腫瘤進(jìn)展[3-4]。caspase-11可招募凋亡斑點(diǎn)樣蛋白和caspase-1,形成多蛋白復(fù)合物,以支持白細(xì)胞介素(interleukin, IL)-1β和IL-18的成熟和分泌,從而誘導(dǎo)炎癥細(xì)胞中的炎癥反應(yīng)[5]。最近的一項(xiàng)研究表明,caspase-11主要定位于腦卒中后認(rèn)知障礙小鼠的內(nèi)皮細(xì)胞[6]。此外,先前研究表明,caspase-11的選擇性抑制劑wedelolactone通過(guò)抑制星形膠質(zhì)細(xì)胞中caspase-11的激活,防止甲基苯丙胺誘導(dǎo)的神經(jīng)炎癥發(fā)生[7]。盡管如此,caspase-11在缺血性卒中損傷中的作用,尤其是在BBB破壞中的作用尚不清楚。在本研究中,我們通過(guò)建立大腦中動(dòng)脈閉塞/再灌注(middle cerebral artery occlusion/reperfusion, MCAO/R)小鼠模型來(lái)研究caspase-11在急性期缺血性卒中中的作用。同時(shí)我們?cè)谀X微血管內(nèi)皮細(xì)胞系bEnd.3中使用了氧糖剝奪/再灌注損傷(oxygen-glucose deprivation/reperfusion injury, OGD/R)模型以進(jìn)一步驗(yàn)證caspase-11的潛在機(jī)制。
使用CRISPR/Cas9技術(shù)制作的(編碼caspase-11的基因)敲減(knockdown, KD)小鼠36只,54只年齡匹配的C57BL/6J同窩小鼠用作野生型(wild-type, WT)對(duì)照,以上小鼠均為SPF級(jí),購(gòu)自南京大學(xué)模式動(dòng)物研究所[生產(chǎn)許可證號(hào):SCXK(蘇)2018-0008]。在平均體重為22~25 g的8周齡雄性小鼠上進(jìn)行實(shí)驗(yàn)。小鼠在12 h明暗循環(huán)中每籠飼養(yǎng)6只,并在適當(dāng)?shù)臏囟龋?2±2) ℃和濕度55%±5%條件下獲得充足的食物和水供應(yīng)。為了確定caspase-11在MCAO/R損傷后大腦中的表達(dá)情況,將18只WT小鼠分為6組,每組3只:假手術(shù)(sham)組、MACO 0.5 h組、MACO 1 h組、MCAO 1 h/R 1 h組、MCAO 1 h/R 6 h組和MCAO 1 h/R 24 h組。將72只小鼠(包括36只KD小鼠和36只WT小鼠)分為4組,每組18只:WT組、KD組、MCAO/R組和KD+MCAO/R組,其中MCAO/R組和KD+MCAO/R組分別采用WT小鼠和KD小鼠建立MCAO/R模型,其他組在不干擾動(dòng)脈的情況下進(jìn)行相同的外科手術(shù)。
2.1MCAO/R模型的建立參照文獻(xiàn)方法[8],使用基于腔內(nèi)細(xì)絲的方法誘導(dǎo)MCAO/R。在構(gòu)建模型之前用1.5%異氟醚麻醉小鼠。為了阻斷小鼠大腦同側(cè)半球的血液供應(yīng),通過(guò)將4-0尼龍單絲縫合線插入右側(cè)頸內(nèi)動(dòng)脈來(lái)阻斷右側(cè)大腦中動(dòng)脈。動(dòng)物接受MCAO相應(yīng)時(shí)間,然后通過(guò)小心撤出細(xì)絲進(jìn)行再灌注。假手術(shù)組小鼠,在不干擾動(dòng)脈的情況下進(jìn)行相同的外科手術(shù)。在整個(gè)過(guò)程中,小鼠放置在加熱毯上維持體溫。
2.22,3,5-三苯基氯化四唑(2,3,5-triphenyl tetrazolium chloride, TTC)染色再灌注后24 h迅速取出大腦,進(jìn)行TTC染色以評(píng)估組織活力并測(cè)量梗死面積。在ImageJ軟件中測(cè)量梗死面積。梗死面積=對(duì)側(cè)正常腦組織半球面積-患側(cè)正常腦組織面積。梗死體積=每個(gè)切片上的梗死面積×切片厚度。梗死體積表示為每個(gè)同側(cè)半球梗死的百分比。
2.3神經(jīng)功能缺損評(píng)估參照文獻(xiàn)方法[9],采用Longa測(cè)試對(duì)實(shí)驗(yàn)動(dòng)物的神經(jīng)功能缺損按18分制進(jìn)行分級(jí)。在再灌注后24 h對(duì)小鼠進(jìn)行測(cè)試。Longa測(cè)試的指標(biāo)包括:自發(fā)活動(dòng),運(yùn)動(dòng)對(duì)稱(chēng)性,前肢對(duì)稱(chēng)性,攀爬,對(duì)觸摸的反應(yīng),以及對(duì)觸須觸摸的反應(yīng)。所有6項(xiàng)單項(xiàng)測(cè)試均以3、2、1或0分的四分制評(píng)分。通過(guò)將每個(gè)單項(xiàng)測(cè)試記錄的分?jǐn)?shù)相加獲得最終分?jǐn)?shù),在健康動(dòng)物中觀察到的最高分?jǐn)?shù)為18。
2.4組織病理學(xué)評(píng)估MCAO/R后處死小鼠,用生理鹽水從心臟灌注至體循環(huán),直至肝臟呈白色,再灌注4 ℃的4%多聚甲醛溶液。將大腦取出,在4 ℃的4%甲醛溶液中浸泡過(guò)夜。之后,大腦通過(guò)分級(jí)乙醇和二甲苯進(jìn)行處理。通過(guò)使用腦基質(zhì),前腦被冠狀切開(kāi)成兩個(gè)等距的切片,并在分離后腦后嵌入石蠟塊中。將位于冠狀平面中前囟后面1.5 mm的腦切片用vibratome (Leica)切成5 μm切片并置于載玻片上。切片在二甲苯中脫蠟并在100%至70%梯度乙醇中再水化。最后進(jìn)行蘇木精-伊紅染色(HE染色),切片用雙蒸水洗滌,乙醇脫水,二甲苯清洗,使用BX-51光學(xué)顯微鏡(Olympus)檢查。對(duì)于尼氏染色,將切除的腦組織用4%甲醛固定,切成薄片并用甲苯啶藍(lán)染色,光學(xué)顯微鏡用于圖像捕獲,神經(jīng)元中圓形和輕微染色的細(xì)胞核被稱(chēng)為存活細(xì)胞。
2.5伊文思藍(lán)(Evans blue, EB)分析通過(guò)尾靜脈注射EB染色劑滲漏到大腦中來(lái)評(píng)估BBB滲透性。在對(duì)動(dòng)物實(shí)施安樂(lè)死前2 h,將含2% EB(Sigma Aldrich)的生理鹽水以劑量為0.01 mL/ g體重注射到每只動(dòng)物中。再灌注后24 h處死小鼠,快速取出大腦。然后將小鼠用生理鹽水灌注。對(duì)于EB泄漏進(jìn)行定量測(cè)量,取出同側(cè)半球并在1 mL三氯乙酸中均質(zhì)化,然后以12 000×離心20 min。通過(guò)用分光光度計(jì)測(cè)量上清液在620 nm處的吸光度()來(lái)定量測(cè)定EB濃度。使用標(biāo)準(zhǔn)曲線將EB含量量化為每克組織的微克EB。
2.6免疫熒光染色在再灌注后24 h用PBS和4%多聚甲醛灌注3 min后,取出腦組織并置于4 ℃的4%多聚甲醛中。1 d后,腦組織用40%蔗糖脫水5 d,包埋在OTC中,-70 ℃冷凍。使用冷凍切片機(jī)(Leica)將腦組織切成10 μm厚的切片,然后放置在粘附顯微鏡載玻片上。將腦切片或培養(yǎng)細(xì)胞固定在4%多聚甲醛中,用0.3% Triton X-100滲透,5%正常驢血清封閉,并在4 ℃下用特異性Ⅰ抗(caspase-11,1∶200, Abcam;p-MST1,1∶200, CST;CD31、GFAP、Iba1和NeuN,1∶200, Santa Cruz)孵育過(guò)夜。然后,將切片與相應(yīng)的Ⅱ抗在室溫下孵育。DAPI 用于染色細(xì)胞核。對(duì)于免疫染色分析,使用FV1000共聚焦顯微鏡(Olympus)或IX73熒光顯微鏡(Olympus)拍攝圖像以檢查染色的腦切片。
2.7細(xì)胞培養(yǎng)腦微血管內(nèi)皮細(xì)胞系bEnd.3購(gòu)自中國(guó)科學(xué)院上海細(xì)胞生物學(xué)研究所,接種在含有10%胎牛血清、1×105U/L青霉素和100 mg/L鏈霉素的DMEM培養(yǎng)基中37 ℃培養(yǎng)。培養(yǎng)環(huán)境為5% CO2和95%空氣。將細(xì)胞分為4組:正常對(duì)照(normal control,NC)組、KD組、OGD/R組和KD+OGD/R組。其中,KD組和KD+OGD/R組bEnd.3細(xì)胞進(jìn)行敲減(shCASP11轉(zhuǎn)染24 h)。然后,OGD/R組和KD+OGD/R組細(xì)胞建立OGD/R模型。
2.8OGD/R模型建立參照文獻(xiàn)方法[8],在體外復(fù)制OGD/R。為了在體外通過(guò)OGD/R產(chǎn)生I/R樣條件,將bEnd.3細(xì)胞置于37 ℃厭氧室(0.2% O2、5% CO2、95% N2)中并在無(wú)葡萄糖培養(yǎng)液中培養(yǎng)6 h。在氧-葡萄糖剝奪后,將細(xì)胞置于含有10%胎牛血清和葡萄糖的DMEM中,然后在常氧條件下孵育24 h以模擬再灌注。對(duì)照組取自在正常條件下培養(yǎng)的細(xì)胞。根據(jù)先前的報(bào)道[10],選擇性哺乳動(dòng)物不育系20樣激酶1(mammalian sterile 20-like kinase 1, MST1)抑制劑XMU-MP-1(上海藍(lán)木化工有限公司)的有效劑量為50 nmol/L,用于受損的內(nèi)皮細(xì)胞。
2.9Western blot再灌注后24 h處死小鼠,快速取出大腦。在OGD/R后迅速收集細(xì)胞。將細(xì)胞或組織置于玻璃勻漿器中在1∶107 (/)冰冷的蛋白質(zhì)提取緩沖液中勻漿。收集可溶性蛋白,4 ℃、12 000×離心10 min,取上清液檢測(cè)caspase-11、MST1、p-MST1、ZO-1、occludin和總蛋白質(zhì)。采用BCA蛋白檢測(cè)試劑盒測(cè)定蛋白質(zhì)濃度。每組等量的蛋白裂解物(50 μg)用8%和12% SDS-PAGE分離。隨后將凝膠上的蛋白質(zhì)轉(zhuǎn)移到硝酸纖維素膜上(260 mA,2 h)。將膜用含5%脫脂牛奶的PBST室溫封閉2 h,然后分別與兔Ⅰ抗(caspase-11,1∶800, Abcam;MST1和p-MST1,1∶500, CST;ZO-1和occludin,1∶500,Abcam)4 ℃孵育過(guò)夜。然后洗滌膜并與Ⅱ抗(抗兔IgG,1∶3 000,Proteintech)室溫下孵育1.5 h。抗GAPDH抗體(1∶1 000,Proteintech)作為對(duì)照。用增強(qiáng)的化學(xué)發(fā)光試劑觀察蛋白質(zhì)條帶,并使用蛋白質(zhì)印跡檢測(cè)系統(tǒng)(Bio-Rad)量化信號(hào)密度。
2.10經(jīng)內(nèi)皮電阻(transendothelial electrical resistance, TEER)的測(cè)量使用上皮伏歐計(jì)(EVOM, World Precision Instruments)測(cè)量培養(yǎng)的單層bEnd.3細(xì)胞的TEER。實(shí)驗(yàn)進(jìn)行3次,記錄平均值。
所有計(jì)量數(shù)據(jù)均使用SPSS 18.0軟件進(jìn)行分析,并表示為平均值±標(biāo)準(zhǔn)誤(mean±SEM)。通過(guò)Shapiro-Wilk 檢驗(yàn)分析數(shù)據(jù)分布的正態(tài)性。為了比較兩組之間的差異,正態(tài)分布的連續(xù)變量通過(guò)Student's檢驗(yàn)進(jìn)行比較,而非正態(tài)分布的變量通過(guò)Mann-Whitney檢驗(yàn)進(jìn)行比較。對(duì)于3組或多組之間的多重比較,使用單因素方差分析,如果數(shù)據(jù)呈正態(tài)分布,則使用Bonferroni事后檢驗(yàn);如果數(shù)據(jù)非正態(tài)分布,則使用Kruskal-Wallis檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
為了確定caspase-11在缺血性卒中的具體作用,我們首先使用Western blot和免疫熒光分析測(cè)量了MCAO/R損傷后大腦中caspase-11的表達(dá)。結(jié)果顯示,與假手術(shù)組相比,MCAO 1 h/R 1 h組caspase-11表達(dá)顯著增加(<0.05),并且高表達(dá)一直保持到再灌注后24 h(圖1A)。細(xì)胞分布研究表明,caspase-11在MCAO 1 h/R 1 h后主要分布在腦微血管內(nèi)皮細(xì)胞(brain microvascular endothelium cells, BMECs)中,在小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元中分布較少(圖1B)。為了證實(shí)caspase-11在腦MCAO/R損傷早期主要在BMECs中表達(dá),我們?cè)隗w外OGD/R模型中評(píng)估了caspase-11在腦源性?xún)?nèi)皮細(xì)胞系bEnd.3細(xì)胞中的表達(dá)。在OGD 6 h/R 1 h后caspase-11表達(dá)逐漸增加(<0.05),見(jiàn)圖1C。免疫熒光分析顯示caspase-11的高表達(dá)發(fā)生在OGD 6 h/R 1 h (圖1D),這與體內(nèi)研究的結(jié)果一致。
Figure 1. Expression of caspase-11 in cerebral microvascular endothelial cells with ischemia/reperfusion injury. A: time course of brain MCAO/R-induced total protein expression of caspase-11 in mice detected by Western blot; B: anti-caspase-11 (green), anti-CD31 (red, to label endothelial cells), anti-GFAP (red, to label astrocytes), anti-Iba1 (red, to label microglia), anti-NeuN (red, to label neurons) antibodies, and DAPI (blue) were combined to detect MCAO/R-induced total caspase-11 protein expression; C: bEnd.3 cells were exposed to 6 h of OGD, and 1 h, 3 h, 6 h and 18 h of reoxygenation, and time course of OGD/R-induced caspase-11 total protein expression in bEnd.3 cells was detected by Western blot; D: bEnd.3 cells underwent 6 h of OGD and 1 h of reoxygenation, and OGD/R-induced total protein expression of caspase-11 was detected (scale bar=20 μm). Mean±SEM. n=3. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs NC group.
根據(jù)Western blot結(jié)果,caspase-11在KD小鼠中的敲減效率約為50%~60%(圖2A)。在KD小鼠中構(gòu)建MACO/R模型后,我們檢測(cè)了梗死體積。與WT組相比,MACO/R組小鼠腦梗死體積顯著增加(<0.05),KD+MACO/R組小鼠腦梗死體積顯著降低(<0.05),見(jiàn)圖2B。HE染色和和尼氏染色顯示,KD+MACO/R組小鼠腦組織中的空泡形成、死亡神經(jīng)元數(shù)量較MACO/R組小鼠減少,神經(jīng)功能缺損評(píng)分顯著增加(<0.05),見(jiàn)圖2C~E。
Figure 2. Effect of CASP11 knockdown on brain injury induced by MCAO/R in mouse brain. A: Western blot verification of CASP11 knockdown efficiency in KD group; B: representative photos of mouse brains stained with TTC [the tissue was stained red to indicate no infarction, and unstained (white) to indicate the infarct area], and quantitative analysis of infarct volume in different groups; C: morphological changes of MCAO/R mouse brains under light microscope (HE staining, scale bar=50 μm; normal tissue was purple-red, with round and full nuclei and dense texture; the damaged tissue was whitish, pyknosis, numerous holes, and signs of hemorrhage); D: Nissl staining showing neuronal death in the MCAO/R mouse brain (scale bar=50 μm); E: neurological deficit scores in different groups (the lower the score, the more serious the damage). Mean±SEM. n=5. ##P<0.01 vs WT group; *P<0.05, **P<0.01 vs MCAO/R group.
與MCAO/R組相比,KD+MACO/R組小鼠EB滲漏顯著減少(<0.05),腦組織中ZO-1和occludin表達(dá)顯著升高(<0.05),見(jiàn)圖3。
Figure 3. Effects of CASP11 knockdown on blood-brain barrier disruption induced by MCAO/R in mouse brain. A: representative gross appearance of Evans blue-stained brains in mice of different groups; B: representative Western blot pictures of ZO-1 and occludin expression in mouse brain tissues of different groups. Mean±SEM. n=5. ##P<0.01 vs WT group; *P<0.05, **P<0.01 vs MCAO/R group.
在體外用慢病毒在內(nèi)皮細(xì)胞中沉默CASP11表達(dá)。通過(guò)Western blot評(píng)估shCASP11的轉(zhuǎn)染效率,顯示被成功敲減(圖4A)。TEER測(cè)定用于評(píng)估體外BBB完整性,如圖4B所示,與NC組相比,OGD/R組TEER顯著降低(<0.05),但OGD/R+KD組TEER顯著高于OGD/R組(<0.05)。此外,OGD/R組ZO-1和occludin表達(dá)較NC組顯著降低(<0.05),而OGD/R+KD組OGD/R組ZO-1和occludin表達(dá)顯著升高(<0.05),見(jiàn)圖4C。
Figure 4. The effect of CASP11 knockdown on OGD/R-induced blood-brain barrier decomposition. A: Western blot was used to verify the efficiency of CASP11 knockdown in endothelial cells of KD group; B: quantification of transendothelial permeability by TEER assay; C: Western blot analysis of ZO-1, occludin and GAPDH after OGD/R. Mean±SEM. n=3. ##P<0.01 vs NC group; *P<0.05, **P<0.01 vs OGD/R group.
與WT組相比,MCAO/R組腦組織中p-MST1水平顯著提高(<0.05),但MCAO/R+KD組p-MST1水平顯著低于MCAO/R組(<0.05),見(jiàn)圖5A。為了進(jìn)一步研究?jī)?nèi)皮細(xì)胞中p-MST1的水平是否發(fā)生變化,我們?cè)贛CAO/R后小鼠大腦的完整和同側(cè)半影區(qū)進(jìn)行了p-MST1和CD31雙重染色來(lái)標(biāo)記。與WT組相比,MCAO/R組的p-MST1和CD31的共定位數(shù)量顯著增加(<0.05),但MCAO/R+KD組p-MST1和CD31的共定位數(shù)量顯著低于MCAO/R組(<0.05),見(jiàn)圖5B。此外,與體內(nèi)觀察到的模式相似,OGD/R組p-MST1表達(dá)顯著提高(<0.05),而OGD/R+KD組則顯著降低(<0.05),見(jiàn)圖5C。與NC組相比,OGD/R組p-MST1和caspase-11水平顯著增加(<0.05)。然而,XMU-MP-1預(yù)處理逆轉(zhuǎn)了OGD/R后p-MST1表達(dá)的增加(<0.05),而不影響caspase-11的水平(圖5D)。此外,OGD/R+XMU-MP-1組的TEER顯著高于OGD/R組(<0.05),見(jiàn)圖5E。
Figure 5. The effect of CASP11 knockdown on Hippo signaling pathway in vivo and in vitro. A: representative Western blot pictures of MST1 and p-MST1 expression in mouse brain tissues of different groups (n=5); B: MCAO/R induced CD31+ p-MST1+ vessel length versus total CD31+ vessel length detected by immunofluorescence in mice using a combination of anti-p-MST1 (green), CD31 (red) and DAPI (blue) (n=5); C: Western blot analysis of MST1, p-MST1 and GAPDH after OGD/R (n=3); D: Western blot analysis of the effect of XMU-MP-1 on the expression of caspase-11, MST1, p-MST1 and GAPDH after OGD/R (n=3); E:the effect of XMU-MP-1 (p-MST1 inhibitor) on transendothelial permeability after OGD/R was determined by TEER analysis (n=3). Mean±SEM. ##P<0.01 vs WT group; *P<0.05 vs MCAO/R group; △△P<0.01 vs NC group; $P<0.05 vs OGD/R.
本研究旨在探討caspase-11對(duì)缺血性卒中后BBB完整性的影響,并在小鼠腦缺血再灌注損傷后觀察到caspase-11在腦微血管中的表達(dá)增加。的敲減改善了小鼠腦缺血再灌注損傷誘導(dǎo)的BBB功能障礙。研究證實(shí),caspase-11參與調(diào)節(jié)腦缺血再灌注損傷中Hippo信號(hào)傳導(dǎo),并通過(guò)促進(jìn)緊密連接(tight junction, TJ)蛋白降解來(lái)破壞腦BBB完整性。因此,在小鼠腦缺血再灌注期間抑制caspase-11表達(dá)是促進(jìn)缺血性卒中恢復(fù)的新策略。
BBB是一個(gè)復(fù)雜的多維網(wǎng)狀屏障,可阻止有害物質(zhì)進(jìn)入中樞神經(jīng)系統(tǒng),腦缺血可破壞其結(jié)構(gòu)和功能[11-12]。最近,越來(lái)越多的證據(jù)表明,炎癥小體參與許多疾病中的BBB損傷。caspase-11被證明是革蘭氏陰性細(xì)菌脂多糖(lipopolysaccharide, LPS)的直接傳感器,其通過(guò)和LPS的脂質(zhì)A部分之間的相互作用形成LPS-caspase-11復(fù)合物,進(jìn)而導(dǎo)致caspase-11非正常炎癥體的激活和隨后誘導(dǎo)的炎癥反應(yīng)[13]。研究顯示,caspase-11非經(jīng)典炎性體誘導(dǎo)的K+流出是NLRP3炎性體通過(guò)細(xì)胞膜損傷和細(xì)菌成孔毒素以及膜孔激活的必要步驟[14]。此外,caspase-11非經(jīng)典炎癥小體的激活還誘導(dǎo)下游效應(yīng)分子caspase-1的蛋白水解活化,導(dǎo)致caspase-1介導(dǎo)的蛋白水解成熟和促炎細(xì)胞因子IL-1β和IL-18通過(guò)膜孔[15]。然而到目前為止,缺血性卒中條件下caspase-11表達(dá)變化的時(shí)間過(guò)程、具體作用以及維持BBB完整性的調(diào)節(jié)機(jī)制仍不清楚。本研究顯示,在腦缺血再灌注損傷時(shí),BMECs中caspase-11的表達(dá)變化最早,并在再灌注期間達(dá)到最高水平。此外,caspase-11在小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元中分布較少,因此我們假設(shè)BMECs是caspase-11在缺血性卒中BBB損傷中的主要靶細(xì)胞。為了進(jìn)一步探索caspase-11在腦缺血再灌注損傷誘導(dǎo)的BMECs中的功能,我們構(gòu)建了敲減小鼠。在約50%至60%的敲減效率下,敲減減少了腦梗死體積和死亡神經(jīng)元數(shù)量,改善了神經(jīng)功能缺損。我們的結(jié)果表明敲減改善了MCAO/R誘導(dǎo)的小鼠腦損傷。
BBB內(nèi)皮細(xì)胞通過(guò)TJ蛋白連接,在MCAO/R后TJ相關(guān)蛋白的mRNA和蛋白水平顯著降低[16]。許多增加TJ蛋白表達(dá)的藥物已被證明可以減少卒中后BBB滲漏[1-2]。相反,TJ的分解和重新分布導(dǎo)致BBB高滲透性,并誘導(dǎo)液體和小分子從血液外滲到中樞神經(jīng)系統(tǒng),進(jìn)一步破壞BBB并允許大分子最終滲漏[17]。本研究中,敲減可以降低伊文思藍(lán)滲漏,并增加TJ蛋白(ZO-1和occludin)的表達(dá)。此外,體外實(shí)驗(yàn)也得到類(lèi)似的結(jié)果,表明敲減可以通過(guò)促進(jìn)TJ保存來(lái)維持內(nèi)皮屏障的完整性。因此,caspase-11可能是維持MCAO/R小鼠BBB完整性的重要靶分子。
最近的研究證明,Hippo信號(hào)通路參與了腦缺血再灌注損傷誘導(dǎo)的BBB的破壞[11]。MST1是Hippo信號(hào)通路中的主要成員,其通過(guò)和Sav1激酶形成復(fù)合物,抑制了Hippo通路中的主要下游效應(yīng)子YAP/TAZ[18]。許多研究表明,MST1參與炎癥、應(yīng)激反應(yīng)和細(xì)胞凋亡的進(jìn)展[19]。在神經(jīng)疾病方面,基因敲除通過(guò)調(diào)節(jié)抑郁樣小鼠的神經(jīng)活動(dòng)來(lái)防止工作記憶受損[20]。此外,MST1抑制通過(guò)逆轉(zhuǎn)相關(guān)的有絲分裂吞噬作用減輕非酒精性脂肪肝損傷[21]。研究顯示,MST1與腦缺血引起的神經(jīng)炎癥有關(guān),并且的基因敲減可減少神經(jīng)元死亡并改善創(chuàng)傷性腦損傷的神經(jīng)損傷[22]?;谶@些觀察,我們假設(shè)CASP11缺失通過(guò)影響MST1激活促進(jìn)了BBB完整性,并通過(guò)體內(nèi)、體外實(shí)驗(yàn)證實(shí)了的敲減通過(guò)調(diào)節(jié)Hippo/MST1信號(hào)通路減輕MCAO/R、OGD/R誘導(dǎo)的BBB通透性增加。這些觀察豐富了我們對(duì)TJ信號(hào)傳導(dǎo)調(diào)控機(jī)制的認(rèn)識(shí),并為T(mén)J在病理過(guò)程中的潛在作用提供了證據(jù)。然而,caspase-11影響MST1磷酸化的具體機(jī)制需要進(jìn)一步研究。
綜上所述,抑制caspase-11表達(dá)在一定程度上有利于拮抗MCAO/R小鼠腦損傷誘導(dǎo)的內(nèi)皮高通透性。作為一種非經(jīng)典炎癥小體,敲減通過(guò)調(diào)節(jié)Hippo信號(hào)通路的啟動(dòng)并維持MCAO/R小鼠腦內(nèi)皮屏障的完整性。此外,我們的研究結(jié)果擴(kuò)展了目前對(duì)TJ調(diào)控機(jī)制的理解,并為開(kāi)發(fā)有效的預(yù)防和治療藥物提供了潛在的新靶點(diǎn)。
[1] Zhao B, Zhu J, Fei Y, et al. JLX001 attenuates blood-brain barrier dysfunction in MCAO/R rats via activating the Wnt/β-catenin signaling pathway[J]. Life Sci, 2020, 260:118221.
[2] Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood-brain barrier function in ischemia-reperfusion injury[J]. Mol Neurobiol, 2020, 57(3):1594-1606.
[3] Wu M, Shi J, He S, et al. cGAS promotes sepsis in radiotherapy of cancer by up-regulating caspase-11 signaling[J]. Biochem Biophys Res Commun, 2021, 551:86-92.
[4] Flood B, Manils J, Nulty C, et al. caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis[J]. Oncogene, 2019, 38(14):2658-2674.
[5] Wang J, Sahoo M, Lantier L, et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18[J]. PLoS Pathog, 2018, 14(5):e1007105.
[6] Liu C, Fu Q, Mu R, et al. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-caspase-11 pathway[J]. Brain Res, 2018, 1701:246-254.
[7] Du SH, Qiao DF, Chen CX, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes[J]. Front Mol Neurosc, 2017, 10:409.
[8] Qu XY, Zhang YM, Tao LN, et al. XingNaoJing injections protect against cerebral ischemia/reperfusion injury and alleviate blood-brain barrier disruption in rats, through an underlying mechanism of NLRP3 inflammasomes suppression[J]. Chin J Nat Med, 2019, 17(7):498-505.
[9] Wu KW, Lv LL, Lei Y, et al. Endothelial cells promote excitatory synaptogenesis and improve ischemia-induced motor deficits in neonatal mice[J]. Neurobiol Dis, 2019, 121:230-239.
[10] Zhang P, Wang T, Zhang D, et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway[J]. Transl Stroke Res, 2019, 10(6):729-743.
[11] Gong P, Zou Y, Zhang W, et al. The neuroprotective effects of insulin-like growth factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury[J]. Brain Res Bull, 2021, 177:373-387.
[12] 袁俊亮, 李卓然, 胡文立. 應(yīng)加強(qiáng)生物學(xué)標(biāo)志物在腦小血管病發(fā)病機(jī)制中的研究[J]. 中華醫(yī)學(xué)雜志, 2020, 100(43):3381-3384.
Yuan JL, Li ZR, Hu WL. Research on biological markers in the pathogenesis of cerebral small vessel disease should be strengthened [J]. Chin J Med Sci, 2020, 100(43):3381-3384.
[13] Finethy R, Dockterman J, Kutsch M, et al. Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock[J]. EMBO Rep, 2020, 21(11):e50830.
[14] Yi YS. Caspase-11 non-canonical inflammasome: emerging activator and regulator of infection-mediated inflammatory responses[J]. Int J Mol Sci, 2020, 21(8):2736.
[15] Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity, 2018, 49(4):740-753.e7.
[16] Zhao Y, Ma X, Zhou Y, et al. DDAH-1, via regulation of ADMA levels, protects against ischemia-induced blood-brain barrier leakage[J]. Lab Invest, 2021, 101(7):808-823.
[17] Yong YX, Yang H, Lian J, et al. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis[J]. Cell cycle, 2019, 18(16):1868-1881.
[18] Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4):211-226.
[19] Tian Y, Song H, Jin D, et al. MST1-Hippo pathway regulates inflammation response following myocardial infarction through inhibiting HO-1 signaling pathway[J]. J Recept Signal Transduct Res, 2020, 40(3):231-236.
[20] Chen B, Zhang Q, Yan Y, et al. MST1-knockdown protects against impairment of working memory via regulating neural activity in depression-like mice[J]. Genes Brain Behav, 2022, 21(2):e12782.
[21] Zhou T, Chang L, Luo Y, et al. MST1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy[J]. Redox Biol, 2019, 21:101120.
[22] Li D, Ni H, Rui Q, et al. Deletion of MST1 attenuates neuronal loss and improves neurological impairment in a rat model of traumatic brain injury[J]. Brain Res, 2018, 1688:15-21.
Role and mechanism of caspase-11-mediated Hippo signaling pathway in disruption of blood-brain barrier in mice with cerebral ischemia-reperfusion
ZHANG Chuang, YU Xiaojun△, TANG Bo, JIANG Wei, XIE Jun
(,,410000,)
To explore the role and mechanism of caspase-11 in the disruption of blood-brain barrier (BBB) in mice with cerebral ischemia-reperfusion.Seventy-two mice, including 36(caspase-11-encoding gene) knockdown (KD) mice and 36 wild-type (WT) mice, were divided into 4 groups: WT group, KD group, middle cerebral artery occlusion/reperfusion injury (MCAO/R) group and KD+MCAO/R group,with 18 mice in each group. The MCAO/R model was established in MCAO/R group and KD+MCAO/R group using WT mice and KD mice, respectively, while the mice in the other groups underwent the same surgical operation without disturbing the arteries. Brain microvascular endothelial cell line bEnd.3 was divided into 4 groups: normal control (NC) group, KD group, oxygen glucose deprivation/reperfusion injury (OGD/R) group and KD+OGD/R group. Thein bEnd.3 cells was knocked down in KD group and KD+OGD/R group, and the OGD/R model of the cells was established in OGD/R group and KD+OGD/R group. The degree of brain injury was analyzed using 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining and Nissl staining. The BBB breakdown was investigated with leakage of Evans blue dye, expression of tight junction (TJ) proteins, and measurement of transendothelial electrical resistance (TEER).Caspase-11 expression was up-regulated in endothelial cells after MCAO/R (<0.05). Reduced infarct volume and endothelial barrier permeability, and increased expression levels of TJ proteins ZO-1 and occludin after MCAO/R were observed in KD mice (<0.05)., OGD/R significantly increased the protein level of caspase-11 and decreased the protein levels of TJ proteins ZO-1 and occludin in bEnd.3 cells (<0.05).knockdown protected BBB integrity by promoting TJ protein expression and increasing TEER (<0.05).knockdown reversed MCAO/R and OGD/R-induced increases in mammalian sterile 20-like kinase 1 (MST1) phosphorylation of the Hippo signaling pathway in brain endothelial cells (<0.05). Furthermore, treatment with p-MST1 inhibitor XMU-MP-1 attenuated the effect of caspase-11 on BBB breakdown (<0.05).Inhibition of caspase-11 preserves the integrity of the BBB in cerebral ischemia-reperfusion mice at least in part by modulating the Hippo signaling pathway.
caspase-11; ischemic stroke; blood-brain barrier; Hippo signaling pathway; mammalian sterile line 20-like kinase 1
R743.31; R363.2
A
10.3969/j.issn.1000-4718.2023.02.007
1000-4718(2023)02-0250-09
2022-04-18
2022-09-27
[基金項(xiàng)目]湖南省創(chuàng)新型省份建設(shè)專(zhuān)項(xiàng)資助項(xiàng)目(No. S2021JJKWLH0160)
Tel: 15700761995; E-mail: sgyhy987@163.com
(責(zé)任編輯:李淑媛,余小慧)