王瑤, 陳士坤, 段晨陽(yáng), 梁筱晗, 周成富, 秦珺, 侯東堯, 杜權(quán),2△
Sirt6通過(guò)調(diào)控P53/SLC7A11/GPX4通路抑制骨骼肌細(xì)胞鐵死亡*
王瑤1, 陳士坤1, 段晨陽(yáng)1, 梁筱晗1, 周成富1, 秦珺1, 侯東堯1, 杜權(quán)1,2△
(1重慶醫(yī)科大學(xué)附屬第二醫(yī)院麻醉科,重慶 400010;2重慶市老年醫(yī)學(xué)臨床研究中心,重慶 400010)
探討骨骼肌細(xì)胞鐵死亡的發(fā)生及sirtuin 6 (Sirt6)對(duì)其調(diào)控的分子機(jī)制。將C2C12小鼠成肌細(xì)胞分為對(duì)照組、erastin(Era;鐵死亡誘導(dǎo)劑)組、Era+ferrostatin-1(鐵死亡拮抗劑)組、Era+MDL-800(Sirt6激動(dòng)劑)組和Era+OSS-128167(Sirt6抑制劑)組;通過(guò)細(xì)胞活力和C2C12成肌細(xì)胞肌源性分化情況觀察鐵死亡誘導(dǎo)劑及拮抗劑的影響;RT-qPCR和Western blot測(cè)定成肌細(xì)胞及肌管中Sirt6、肌萎縮標(biāo)志物、鐵死亡標(biāo)志物的mRNA及蛋白表達(dá)水平;進(jìn)一步檢測(cè)P53蛋白乙?;?、胞內(nèi)亞鐵離子(Fe2+)、活性氧(ROS)、谷胱甘肽(GSH)及脂質(zhì)過(guò)氧化指標(biāo)Liperfluo;免疫熒光法檢測(cè)肌管分化標(biāo)志物肌球蛋白重鏈(MHC)熒光信號(hào)。Era降低成肌細(xì)胞活力和肌管分化質(zhì)量,伴有Sirt6的mRNA和蛋白水平下降(<0.05),肌萎縮標(biāo)志物肌肉環(huán)指蛋白1(MuRF1)和肌萎縮F盒蛋白(MAFbx)表達(dá)增加(<0.05)。激活Sirt6可抑制P53蛋白第381位賴(lài)氨酸乙?;档蚉53表達(dá)水平,提高溶質(zhì)載體家族7成員11(SLC7A11)和谷胱甘肽過(guò)氧化物酶4(GPX4)水平,改善ROS、GSH、Fe2+和脂質(zhì)過(guò)氧化等鐵死亡特異性指標(biāo)(<0.05),逆轉(zhuǎn)鐵死亡導(dǎo)致的肌肉負(fù)性變化。反之,抑制Sirt6將進(jìn)一步加重鐵死亡。Sirt6可抑制P53蛋白乙酰化使其活性降低,通過(guò)調(diào)控P53/SLC7A11/GPX4信號(hào)通路抑制成肌細(xì)胞鐵死亡,進(jìn)而改善肌肉質(zhì)量。
肌肉減少癥;sirtuin 6;鐵死亡;去乙?;?/p>
隨著老齡化社會(huì)的到來(lái),年齡相關(guān)的進(jìn)行性骨骼肌變化引發(fā)的一系列負(fù)面影響越發(fā)突出。肌肉減少癥(sarcopenia;簡(jiǎn)稱(chēng)肌少癥)作為一種以骨骼肌質(zhì)量降低、力量下降、功能退化為特征的全身性肌肉綜合征,是衰老的特征性表現(xiàn)[1-2]?;疾±夏耆后w自主活動(dòng)能力下降、術(shù)后并發(fā)癥增加及住院時(shí)間延長(zhǎng)[3],給個(gè)人、家庭及社會(huì)帶來(lái)巨大的心理壓力和醫(yī)療經(jīng)濟(jì)負(fù)擔(dān)。肌少癥雖然已經(jīng)被WHO定義為一種疾病,但對(duì)它的認(rèn)識(shí)還遠(yuǎn)不清楚,值得我們進(jìn)一步探索。
氧化應(yīng)激、炎癥反應(yīng)、肌蛋白合成與代謝失調(diào)等均被認(rèn)為是肌少癥發(fā)生的原因[4-5]。骨骼肌是機(jī)體質(zhì)量最大的組織,通過(guò)有氧代謝維持生命活動(dòng),其鐵元素含量豐富并隨年齡增長(zhǎng)不斷累積[6-8]。這一特性讓鐵死亡(ferroptosis)這種鐵依賴(lài)的、胞內(nèi)脂質(zhì)過(guò)氧化物和活性氧簇(reactive oxygen species, ROS)急劇增加為特征的全新細(xì)胞死亡方式也參與到肌少癥發(fā)生中[9-11]。鐵死亡涉及多種基因信號(hào)表達(dá)變化,腫瘤抑制因子P53不僅參與腫瘤調(diào)控,近來(lái)也被發(fā)現(xiàn)在鐵死亡誘導(dǎo)劑erastin (Era)作用后表達(dá)增強(qiáng)[12],抑制下游胱氨酸/谷氨酸逆向轉(zhuǎn)運(yùn)系統(tǒng)(System XC-)中的輕鏈亞基溶質(zhì)載體家族7成員11(solute carrier family 7 member 11, SLC7A11)表達(dá)和胱氨酸攝取,導(dǎo)致谷胱甘肽(glutathione, GSH)依賴(lài)的谷胱甘肽過(guò)氧化物酶4(glutathione peroxidase 4, GPX4)活性降低,促進(jìn)細(xì)胞膜上高表達(dá)的多不飽和脂肪酸發(fā)生脂質(zhì)過(guò)氧化,從而發(fā)生細(xì)胞鐵死亡[13-14]。
sirtuins是煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)依賴(lài)性脫乙酰酶,共有7個(gè)亞型。sirtuin 6 (Sirt6)是位于細(xì)胞核中的多效賴(lài)氨酸脫乙酰酶,在能量代謝、衰老、炎癥、應(yīng)激反應(yīng)和癌癥等多方面發(fā)揮重要作用[15-17]。近期有研究發(fā)現(xiàn)Sirt6能夠調(diào)控胃癌[18]和胰腺癌[19]中的鐵死亡,但在肌少癥領(lǐng)域中鮮有報(bào)道。使用生物信息學(xué)分析發(fā)現(xiàn)P53蛋白是肌少癥和鐵死亡交叉的關(guān)鍵信號(hào)之一。P53表達(dá)受多種翻譯后修飾影響,在其C末端區(qū)域中多個(gè)賴(lài)氨酸位點(diǎn)受乙?;饔谜{(diào)控并提高P53穩(wěn)定性[20]。Sirt6通過(guò)使P53的C末端區(qū)域關(guān)鍵乙?;稽c(diǎn)——第381位賴(lài)氨酸(Lys381)去乙酰化,降低P53活性,影響下游信號(hào)轉(zhuǎn)導(dǎo)[21]。因此,本研究假設(shè)Sirt6通過(guò)去乙?;饔媒档蚉53表達(dá),經(jīng)P53/SLC7A11/GPX4信號(hào)通路抑制肌細(xì)胞鐵死亡而改善骨骼肌質(zhì)量,并進(jìn)行實(shí)驗(yàn)驗(yàn)證。
C2C12小鼠成肌細(xì)胞系購(gòu)自中國(guó)科學(xué)院上海細(xì)胞庫(kù)。C2C12專(zhuān)用培養(yǎng)液購(gòu)自Procell;DMEM basic培養(yǎng)液和馬血清均購(gòu)自Gibco;鐵死亡誘導(dǎo)劑Era、鐵死亡特異性拮抗劑鐵抑素1(ferrostatin-1, Fer-1)和Sirt6抑制劑OSS-128167 (OSS)均購(gòu)自MedChemExpress;Sirt6激動(dòng)劑MDL-800 (MDL)購(gòu)自APExBIO;CCK-8試劑及抗Sirt6、肌肉環(huán)指蛋白1(muscle ring-finger protein 1, MuRF1)、SLC7A11、GPX4和GAPDH抗體均購(gòu)自ABclonal;抗肌球蛋白重鏈(myosin heavy chain, MHC)抗體購(gòu)自Santa Cruz;抗乙酰化P53 (Lys381)蛋白[Ac-P53 (Lys381)]抗體購(gòu)自Immumoway;抗肌萎縮F盒蛋白(muscle atrophy F-box protein, MAFbx)抗體購(gòu)自Proteintech;快速RNA提取試劑盒、Evo M-MLV反轉(zhuǎn)錄預(yù)混型試劑盒及SYBR Green PCR試劑盒均購(gòu)自湖南艾科瑞生物工程有限公司;抗P53抗體購(gòu)自Cell Signaling Technology;DCFH-DA熒光探針購(gòu)自Biosharp;GSH測(cè)定試劑盒購(gòu)自上海碧云天公司;胞內(nèi)亞鐵離子熒光探針FerroOrange及脂質(zhì)過(guò)氧化物熒光探針Liperfluo均購(gòu)自Dojindo。
2.1細(xì)胞培養(yǎng)與肌管分化C2C12小鼠成肌細(xì)胞在37 ℃、5% CO2的培養(yǎng)箱中使用C2C12專(zhuān)用培養(yǎng)液進(jìn)行培養(yǎng),細(xì)胞密度達(dá)70%~80%進(jìn)行傳代或分化。分化培養(yǎng)液由DMEM basic培養(yǎng)液和2%馬血清組成,每天更換分化培養(yǎng)液,分化5 d形成肌管用于實(shí)驗(yàn)。
2.2細(xì)胞、肌管治療及分組將Era、Fer-1、OSS和MDL溶于二甲亞砜(dimethyl sulfoxide, DMSO)中,DMSO作為對(duì)照(control, Con)組。細(xì)胞和肌管用藥物處理24或48 h,F(xiàn)er-1、OSS或MDL提前預(yù)處理2 h。實(shí)驗(yàn)分組:Con組、Era (1 μmol/L)組、Era (1 μmol/L)+Fer-1 (1 μmol/L)組、Era (1 μmol/L)+OSS (100 μmol/L)組和Era (1 μmol/L)+MDL (5 μmol/L)組。
3.1CCK-8實(shí)驗(yàn)按每孔5 000個(gè)細(xì)胞種板,細(xì)胞密度達(dá)80%加藥反應(yīng)不同時(shí)間。換液后每孔加入CCK-8試劑10 μL,反應(yīng)0.5~4 h,使用多功能酶標(biāo)儀測(cè)量450 nm波長(zhǎng)下吸光度,用以反映細(xì)胞活力。
3.2肌源性分化形態(tài)學(xué)觀察6孔板中細(xì)胞生長(zhǎng)密度達(dá)80%,更換含不同藥物的分化培養(yǎng)液,每天換液,共分化5 d。使用倒置熒光顯微鏡對(duì)肌管形態(tài)和數(shù)量進(jìn)行可視化觀察。
3.3肌管免疫熒光染色成肌細(xì)胞用含有不同藥物的分化培養(yǎng)液處理5 d形成肌管。PBS溶液洗滌,冰甲醇固定20 min,0.5% Triton X-100冰上透膜15 min。5% BSA室溫封閉1 h。MHC抗體(1:50)4 ℃孵育過(guò)夜,熒光二抗室溫孵育1 h,滴加含DAPI抗熒光淬滅劑封片。使用正置熒光顯微鏡觀察拍照,并用ImageJ軟件分析。
3.4RT-qPCR實(shí)驗(yàn)使用快速RNA提取試劑盒從細(xì)胞或肌管中提取總RNA并測(cè)定濃度。再用反轉(zhuǎn)錄試劑盒去除gDNA,將RNA逆轉(zhuǎn)錄生成cDNA。最后加入SYBR Green PCR試劑,擴(kuò)增反應(yīng)程序?yàn)椋?5 ℃ 10 s;95 ℃ 5 s,60 ℃ 30 s,39個(gè)循環(huán);95 ℃ 5 s,65 ℃ 5 s,95 ℃ 50 s,1個(gè)循環(huán)。采用2-ΔΔCt法分析數(shù)據(jù)。引物序列見(jiàn)表1。
表1 RT-qPCR引物序列
3.5蛋白印跡分析細(xì)胞或肌管藥物處理48 h后,PBS洗滌,按100∶1∶1的比例加入細(xì)胞裂解液、蛋白酶抑制劑和去乙酰酶抑制劑混合物,提取總蛋白。BCA法定量蛋白濃度。配制12%聚丙烯酰胺凝膠電泳,恒壓100 V濕轉(zhuǎn)1 h,5%脫脂牛奶室溫封閉2 h;加入抗Sirt6、P53、MAFbx、MuRF1、SLC7A11和GPX4抗體(1∶1 000),抗Ac-P53 (Lys381)抗體(1∶1 500),抗GAPDH抗體(1∶2 000),4 ℃孵育過(guò)夜;加入Ⅱ抗(1∶10 000),室溫孵育1 h。使用增強(qiáng)型化學(xué)發(fā)光劑顯影記錄分析。
3.6ROS熒光強(qiáng)度測(cè)定96孔板中細(xì)胞密度達(dá)80%左右或肌管分化5 d,藥物作用24 h。按1∶1 000稀釋DCFH-DA熒光探針,在37 ℃、5% CO2培養(yǎng)箱中避光孵育30 min,PBS洗滌后使用酶標(biāo)儀檢測(cè)熒光信號(hào)(激發(fā)光波長(zhǎng):488 nm,發(fā)射光波長(zhǎng):524 nm)。
3.7GSH測(cè)定按說(shuō)明書(shū)配制所需試劑,超聲處理收集的細(xì)胞上清液,去除內(nèi)源性GSH;混勻反應(yīng)試劑,室溫反應(yīng)5 min;再加入50 μL NADPH溶液(0.5 g/L),室溫反應(yīng)25 min,用酶標(biāo)儀檢測(cè)。單點(diǎn)法繪制標(biāo)準(zhǔn)曲線并計(jì)算出GSH含量。
3.8胞內(nèi)Fe2+測(cè)定96孔板培育細(xì)胞或肌管,密度達(dá)標(biāo)后加藥處理24h。去除培養(yǎng)液用PBS洗滌后,每孔中加入1 μmol/L FerroOrange工作液100 μL,在37 ℃、5% CO2培養(yǎng)箱中避光孵育30 min。吸盡工作液后使用多功能酶標(biāo)儀(激發(fā)光波長(zhǎng):543 nm,發(fā)射光波長(zhǎng):580 nm)檢測(cè)樣品熒光強(qiáng)度,通過(guò)相對(duì)熒光強(qiáng)度反映胞內(nèi)Fe2+變化。
3.9胞內(nèi)脂質(zhì)過(guò)氧化測(cè)定96孔板中藥物處理細(xì)胞或肌管24 h。無(wú)血清培養(yǎng)液洗滌后,每孔中加入5 μmol/L Liperfluo工作液100 μL,在37 ℃、5% CO2培養(yǎng)箱中避光孵育30 min。PBS洗滌2次,使用多功能酶標(biāo)儀(激發(fā)光波長(zhǎng):488 nm,發(fā)射光波長(zhǎng):545 nm)測(cè)定熒光強(qiáng)度。
利用GraphPad Prism 9.2軟件進(jìn)行分析作圖,數(shù)值以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,≥3。兩組間均數(shù)比較采用檢驗(yàn);多組間均數(shù)比較使用單因素方差分析,用Tukey法進(jìn)行多組間兩兩比較分析。<0.05被認(rèn)為具有統(tǒng)計(jì)學(xué)意義。
為明確鐵死亡是否影響成肌細(xì)胞活力,并確定后續(xù)實(shí)驗(yàn)藥物作用濃度,采用不同濃度(0~5 μmol/L)的Era處理C2C12成肌細(xì)胞不同時(shí)間(12、24和48 h)。結(jié)果發(fā)現(xiàn),隨Era濃度的增加和作用時(shí)間的延長(zhǎng),細(xì)胞活力顯著下降;不同濃度作用12 h細(xì)胞相對(duì)活力均大于50%;當(dāng)藥物濃度大于1 μmol/L時(shí),作用24和48 h細(xì)胞活力過(guò)低,因此選擇1 μmol/L作用48 h進(jìn)行后續(xù)實(shí)驗(yàn)(圖1A)。而Era引起的細(xì)胞活力降低能被鐵死亡拮抗劑Fer-1逆轉(zhuǎn)(圖1B)。
在鐵死亡對(duì)C2C12成肌細(xì)胞肌源性分化影響的研究中,細(xì)胞生長(zhǎng)密度達(dá)到80%時(shí)更換分化培養(yǎng)液、含Era的分化培養(yǎng)液或含Era+Fer-1的分化培養(yǎng)液作用5 d,每天換液。顯微鏡下可見(jiàn),與Con組相比,Era處理后C2C12成肌細(xì)胞數(shù)量和分化能力下降,胞核減少、肌管變短、形態(tài)異常、排列紊亂,但添加Fer-1后能部分恢復(fù)肌源性分化能力(圖1C)。
Figure 1. Effects of erastin (Era) on C2C12 myoblasts and myotubes. A: the viability of C2C12 myoblasts treated with different concentrations of Era for 48 h; B: the viability of C2C12 myoblasts at 48 h in control (Con), Era and Era+ferrostatin-1 (Fer-1) groups; C: the morphological changes of myoblasts differentiating into myotubes in different groups. Mean±SD. n=3. **P<0.01 vs Con group; #P<0.05 vs Era group.
加入Era作用C2C12成肌細(xì)胞48 h,RT-qPCR顯示P53的mRNA表達(dá)水平升高,Sitr6及P53下游鐵死亡相關(guān)分子SLC7A11和GPX4的mRNA表達(dá)水平卻隨之降低(圖2A),且Sirt6會(huì)隨藥物作用時(shí)間延長(zhǎng)(48 h和72 h比較)下降得愈發(fā)明顯(圖2A、B)。在蛋白層面也發(fā)現(xiàn)相同的變化(圖2C)。
Figure 2. The mRNA and protein levels of Sirt6, P53, SLC7A11 and GPX4 in C2C12 myoblasts treated with different concentrations of erastin (Era). A: the mRNA levels of Sirt6, P53, SLC7A11 and GPX4 at 48 h; B: the mRNA level of Sirt6 at 72 h; C: the protein levels of Sirt6, P53, SLC7A11 and GPX4 at 48 h. Mean±SD. n=3. *P<0.05, **P<0.01 vs control (Con) or 0 μmol/L group.
在肌管中,Era會(huì)導(dǎo)致肌萎縮相關(guān)分子MAFbx和MuRF1的mRNA和蛋白水平升高,同時(shí)P53的蛋白水平升高,而Sirt6的mRNA和蛋白水平及鐵死亡相關(guān)分子SLC7A11和GPX4蛋白水平下降(圖3)。
Figure 3. Myotrophic specific E3 ubiquitin ligases were up-regulated and Sirt6 declined after erastin (Era) treatment in C2C12 myotubes. A: the mRNA expression of Sirt6, MAFbx and MuRF1 in myotubes; B: the protein expression of MAFbx, MuRF1, P53, SLC7A11, GPX4 and Sirt6 in myotubes. Mean±SD. n=3. *P<0.05, **P<0.01 vs control (Con) group.
以上結(jié)果表明在鐵死亡參與的肌肉病理改變中存在Sirt6的降低。Era作用使P53表達(dá)增加,可能通過(guò)影響P53/SLC7A11/GPX4鐵死亡通路的信號(hào)變化,參與肌細(xì)胞和肌管鐵死亡發(fā)生。
3.1激活Sirt6能抑制Era引起的成肌細(xì)胞活力下降和肌管變化為探索Sirt6在鐵死亡引起的肌質(zhì)量下降中是否發(fā)揮作用,在Era處理的基礎(chǔ)上預(yù)先加入Sirt6特異性激動(dòng)劑MDL或抑制劑OSS處理成肌細(xì)胞和肌管。在成肌細(xì)胞中,MDL激動(dòng)Sirt6會(huì)部分逆轉(zhuǎn)Era引起的細(xì)胞活力降低(圖4A),使P53的mRNA表達(dá)水平下降,SLC7A11和GPX4的mRNA表達(dá)水平升高(圖4B),改善脂質(zhì)過(guò)氧化等鐵死亡指標(biāo)(圖5),與Fer-1作用類(lèi)似;OSS處理后,伴隨Sirt6表達(dá)下降,P53的mRNA表達(dá)水平升高,而SLC7A11的mRNA表達(dá)水平降低,肌細(xì)胞鐵死亡指標(biāo)反映鐵死亡加重(圖4B及圖5)。以上結(jié)果進(jìn)一步證實(shí)在Era誘導(dǎo)的鐵死亡細(xì)胞模型中,P53可抑制SLC7A11表達(dá)并出現(xiàn)GPX4下降,Sirt6通過(guò)P53/SLC7A11/GPX4通路抑制肌細(xì)胞鐵死亡。
Figure 4. The cell viability (A) and the mRNA levels of ferroptosis markers (B) after adding ferrostatin-1 (Fer-1), OSS-128167 (OSS) or MDL-800 (MDL) based on erastin (Era) treatment in C2C12 myoblasts. Mean±SD. n=3. **P<0.01 vs control (Con) group; #P<0.05, ##P<0.01 vs Era group; &&P<0.01 vs Era+OSS group.
Figure 5. Lipid peroxidation indicators, Liperfluo (A), ROS (B), GSH (C) and FerroOrange/Fe2+(D), in C2C12 myoblasts treated with erastin (Era)-based addition of ferrostatin-1 (Fer-1), OSS-128167 (OSS) or MDL-800 (MDL). Mean±SD. n=3. **P<0.01 vs control (Con) group; ##P<0.01 vs Era group; &&P<0.01 vs Era+OSS group.
C2C12肌管用不同藥物處理48 h,RT-qPCR顯示Era使MAFbx和MuRF1的mRNA表達(dá)增加(圖6A),鐵死亡脂質(zhì)過(guò)氧化指標(biāo)和胞內(nèi)Fe2+升高,GSH下降(圖6B);OSS會(huì)加重鐵死亡改變,但MDL與Fer-1相似,能部分逆轉(zhuǎn)Era誘導(dǎo)的肌管變化(圖6)。這些結(jié)果證實(shí)鐵死亡降低肌管質(zhì)量,使促肌蛋白分解分子表達(dá)增加,Sirt6的激活對(duì)此有抑制作用。
Figure 6. Changes of amatrophy-related genes (A) and lipid peroxidation indexes (B) in C2C12 myotubes after addition ferrostatin-1 (Fer-1), OSS-128167 (OSS) or MDL-800 (MDL) based on erastin (Era) treatment. Mean±SD. n=3. **P<0.01 vs control (Con) group; #P<0.05, ##P<0.01 vs Era group; &&P<0.01 vs Era+OSS group.
3.2Sirt6激活能部分恢復(fù)因Era受損的細(xì)胞肌源性分化能力使用含不同藥物的分化培養(yǎng)液作用細(xì)胞5 d,利用免疫熒光染色檢測(cè)肌分化末期標(biāo)志分子MHC,觀察肌管分化的數(shù)量和形態(tài)。結(jié)果發(fā)現(xiàn)Era引起肌管胞核融合下降、數(shù)量變少、長(zhǎng)度變短、直徑變細(xì)、排列紊亂,MHC熒光信號(hào)降低;而MDL激活Sirt6后,與Fer-1相似,能減輕上述肌管變化(圖7A),說(shuō)明Sirt6能抑制鐵死亡引起的肌源性分化能力退化。
3.3Sirt6的去乙酰化作用可降低P53表達(dá),通過(guò)P53/SLC7A11/GPX4信號(hào)通路抑制鐵死亡肌管變化用Era處理肌管48 h,Sirt6蛋白水平下降,P53、Ac-P53 (Lys381)和肌萎縮標(biāo)志蛋白(MAFbx和MuRF1)表達(dá)增強(qiáng),SLC7A11和GPX4下降;在此基礎(chǔ)上加入MDL,則P53、Ac-P53 (Lys381)、MAFbx和MuRF1蛋白降低,SLC7A11和GPX4升高,與Fer-1相似,均能逆轉(zhuǎn)肌管鐵死亡相關(guān)蛋白表達(dá);而加用OSS使P53、Ac-P53 (Lys381)、MAFbx和MuRF1表達(dá)進(jìn)一步增加,Sirt6、SLC7A11和GPX4表達(dá)減少(圖7B)。這些結(jié)果表明,Sirt6抑制鐵死亡和改善鐵死亡相關(guān)肌管改變是通過(guò)使Ac-P53 (Lys381)去乙?;档蚉53活性,進(jìn)而影響下游P53/SLC7A11/GPX4信號(hào)通路來(lái)實(shí)現(xiàn)的。
Figure 7. Effects of Sirt6 on MHC and P53/SLC7A11/GPX4 signaling pathway in C2C12 myotubes. A: immunofluorescence staining of MHC; B: the protein levels of P53, Ac-P53 (Lys381), SLC7A11, GPX4, MAFbx and MuRF1. Mean±SD. n=3. *P<0.05, **P<0.01 vs Con group; #P<0.05, ##P<0.01 vs Era group; &P<0.05, &&P<0.01 vs Era+OSS group.
此外,在Era作用C2C12成肌細(xì)胞或肌管后ROS水平增高;Fer-1及MDL使ROS生成有不同程度下降;聯(lián)用OSS后ROS又進(jìn)一步增加(圖5B、6B)。因此,考慮Sirt6對(duì)肌細(xì)胞和肌管鐵死亡變化的調(diào)控存在多個(gè)作用機(jī)制,除了去乙酰化作用外,對(duì)ROS生成的影響也可能輔助抑制鐵死亡。
肌少癥相關(guān)的研究已經(jīng)成為老年化社會(huì)的一個(gè)重點(diǎn)方向,其發(fā)生機(jī)制已有大量研究報(bào)道[2, 22],隨著對(duì)衰老研究的深入,鐵死亡與肌少癥的關(guān)聯(lián)也走進(jìn)我們的視野。C2C12細(xì)胞系屬于衛(wèi)星細(xì)胞(satellite cells, SCs),能夠在充分刺激下從成肌細(xì)胞轉(zhuǎn)化成可分化的肌纖維最終形成可伸縮的肌管,是用以研究肌肉分化和再生的理想體外模型。成肌分化在肌肉再生中起重要作用,通過(guò)高度協(xié)調(diào)的序列程序產(chǎn)生成熟的骨骼肌,因此成肌細(xì)胞活力、肌源性分化能力和肌管質(zhì)量下降更能從源頭反映肌肉功能、力量和質(zhì)量改變[23]。本研究發(fā)現(xiàn),使用Era處理后,C2C12成肌細(xì)胞發(fā)生鐵死亡,肌管分化能力下降,可對(duì)骨骼肌產(chǎn)生負(fù)性影響。
鐵作為人體重要的微量元素,伴隨年齡增長(zhǎng)在身體機(jī)能調(diào)節(jié)中成為一把雙刃劍[9, 24],讓鐵死亡從多方面對(duì)骨骼肌質(zhì)量產(chǎn)生影響。發(fā)生鐵死亡的肌細(xì)胞中,轉(zhuǎn)鐵蛋白受體1(transferrin receptor 1, Tfr1)明顯減少會(huì)影響SCs蛋白合成,使SCs不可逆消耗,導(dǎo)致肌細(xì)胞活力下降、骨骼肌再生能力變差甚至肌萎縮發(fā)生[25]。肌細(xì)胞中鐵積累增加,GPX4和核因子E2相關(guān)因子2蛋白水平降低導(dǎo)致細(xì)胞脂質(zhì)過(guò)氧化、ROS清除障礙,加重肌細(xì)胞損傷[26-27]。P53在細(xì)胞鐵死亡中也發(fā)揮重要作用,應(yīng)激條件下被大量激活,介導(dǎo)下游靶基因轉(zhuǎn)錄抑制,調(diào)節(jié)System XC-、GPX4促進(jìn)肌細(xì)胞鐵死亡變化[12, 28-29]。此外,作為肌肉蛋白分解代謝最重要酶類(lèi),部分E3泛素連接酶參與鐵死亡發(fā)生[30],而肌萎縮特異性E3泛素連接酶(MAFbx和MuRF1)在衰老個(gè)體骨骼肌中隨鐵累積表達(dá)增加[9, 31]。研究中也發(fā)現(xiàn)Era處理后MHC表達(dá)下降,MAFbx和MuRF1含量大幅升高,鐵死亡影響肌管分化,促進(jìn)肌肉蛋白分解。
Sirt6是參與衰老、能量代謝、炎癥等反應(yīng)的重要脫乙酰酶,缺乏的個(gè)體更容易出現(xiàn)體重減少、脊柱前凸、腫瘤發(fā)生率增加、加速衰老,甚至過(guò)早死亡。目前Sirt6與鐵死亡的關(guān)系多數(shù)是圍繞腫瘤相關(guān)的報(bào)道,但在非腫瘤領(lǐng)域中也發(fā)現(xiàn)Sirt6通過(guò)抑制炎癥,減少1型糖尿病小鼠前額葉皮層細(xì)胞的鐵死亡,改善1型糖尿病小鼠的抑郁和焦慮[32]。
結(jié)合P53在鐵死亡調(diào)控中的重要意義和乙?;饔媚芗訌?qiáng)P53蛋白表達(dá)的特性[19, 33],本研究針對(duì)Era處理后的C2C12成肌細(xì)胞或肌管引入Sirt6特異性激動(dòng)劑MDL[34]和抑制劑OSS[35],發(fā)現(xiàn)激動(dòng)Sirt6能夠改善成肌細(xì)胞中鐵死亡變化并降低肌萎縮特異性E3泛素連接酶的表達(dá)。
對(duì)P53蛋白C末端第381位賴(lài)氨酸這一關(guān)鍵乙?;稽c(diǎn)進(jìn)一步研究發(fā)現(xiàn),Sirt6激活使P53中第381位賴(lài)氨酸去乙?;瘜?dǎo)致P53活性減弱,SLC7A11和GPX4的mRNA和蛋白表達(dá)增加,鐵死亡和肌萎縮特異性指標(biāo)下降,肌源性分化能力得到一定恢復(fù)。相反,Sirt6抑制會(huì)進(jìn)一步加重鐵死亡引起的變化。這些結(jié)果表明,Sirt6通過(guò)去乙?;饔?,可以影響P53/SLC7A11/GPX4信號(hào)通路表達(dá),是鐵死亡相關(guān)肌少癥的重要調(diào)控分子。
總之,在這項(xiàng)研究中,我們證明了骨骼肌細(xì)胞中鐵死亡發(fā)生與P53/SLC7A11/GPX4通路中信號(hào)變化關(guān)系密切,并伴有Sirt6表達(dá)下調(diào),肌管質(zhì)量下降,最終可能導(dǎo)致肌少癥發(fā)生,引起肌肉功能障礙;并從機(jī)制的角度闡明Sirt6對(duì)成肌細(xì)胞和肌管鐵死亡的干預(yù)是通過(guò)促進(jìn)Ac-P53 (Lys381)去乙?;瑥亩绊慞53/SLC7A11/GPX4信號(hào)通路實(shí)現(xiàn)的。我們的研究結(jié)果為鐵死亡相關(guān)肌少癥這一新型“流行病”治療提供了新的思考方向和治療策略。
[1] Cruz-Jentoft AJ, Sayer AA. Sarcopenia[J]. Lancet, 2019, 393(10191):2636-2646.
[2] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1):16-31.
[3] Woo EC, Rodis B. Sarcopenia in elderly surgery[J]. Ann Acad Med Singap, 2019, 48(11):363-369.
[4] Wiedmer P, Jung T, Castro JP, et al. Sarcopenia: molecular mechanisms and open questions[J]. Ageing Res Rev, 2021, 65:101200.
[5] Kinoshita H, Orita S, Inage K, et al. Skeletal muscle cell oxidative stress as a possible therapeutic target in a denervation-induced experimental sarcopenic model[J]. Spine (Phila Pa 1976), 2019, 44(8):E446-E455.
[6] Alves FM, Kysenius K, Caldow MK, et al. Iron accumulation in skeletal muscles of old mice is associated with impaired regeneration after ischaemia-reperfusion damage[J]. J Cachexia Sarcopenia Muscle, 2021, 12(2):476-492.
[7] Zhao G. Is iron accumulation a possible risk factor for sarcopenia?[J]. Biol Trace Elem Res, 2018, 186(2):379-383.
[8] Alves FM, Ayton S, Bush AI, et al. Age-related changes in skeletal muscle iron homeostasis[J]. Gerontol A Biol Sci Med Sci, 2023, 78(1):16-24.
[9] Huang Y, Wu B, Shen D, et al. Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8)[J]. Int J Biol Sci, 2021, 17(1):151-162.
[10] Ikeda Y, Imao M, Satoh A, et al. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway[J]. J Trace Elem Med Biol, 2016, 35:66-76.
[11] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2):273-285.
[12] Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62.
[13] Wang SJ, Li D, Ou Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression[J]. Cell Rep, 2016, 17(2):366-373.
[14] 張麗媛, 李芙蓉, 王超, 等. p53對(duì)鐵死亡的調(diào)節(jié)作用及潛在應(yīng)用[J]. 中國(guó)病理生理雜志, 2019, 35(12):2299-2304.
Zhang LY, Li FR, Wang C, et al. Emerging roles of p53 in ferroptosis and its potential application[J]. Chin J Pathophysiol, 2019, 35(12):2299-2304.
[15] Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a mammalian deacylase with multitasking abilities[J]. Physiol Rev, 2020, 100(1):145-169.
[16] Liu G, Chen H, Liu H, et al. Emerging roles of SIRT6 in human diseases and its modulators[J]. Med Res Rev, 2021, 41(2):1089-1137.
[17] 陶娜娜, 周洪鐘, 任吉華, 等. Sirtuin 6對(duì)肝癌細(xì)胞增殖的影響[J]. 中國(guó)病理生理雜志, 2016, 32(6):1031-1036.
Tao NN, Zhou HZ, Ren JH, et al. Effect of sirtuin 6 on proliferation of hepatocellular carcinoma cells[J]. Chin J Pathophysiol, 2016, 32(6):1031-1036.
[18] Cai S, Fu S, Zhang W, et al. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer[J]. Biochem Biophys Res Commun, 2021, 577:158-164.
[19] Gong S, Xiong L, Luo Z, et al. SIRT6 promotes ferroptosis and attenuates glycolysis in pancreatic cancer through regulation of the NF-κB pathway[J]. Exp Ther Med, 2022, 24(2):502.
[20] Xia Z, Kon N, Gu AP, et al. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression[J]. Oncogene, 2022, 41(22):3039-3050.
[21] Ghosh S, Wong S K, Jiang Z, et al. Haploinsufficiency ofdramatically extends the lifespan of Sirt6-deficient mice[J]. ELife, 2018, 7:e32127.
[22] Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101.
[23] Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle[J]. Nature, 1977, 270(5639):725-727.
[24] Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2):107-125.
[25] Ding H, Chen S, Pan X, et al. Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis[J]. J Cachexia Sarcopenia Muscle, 2021, 12(3):746-768.
[26] Gong Y, Wang N, Liu N, et al. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis[J]. DNA Cell Biol, 2019, 38(7):725-733.
[27] Wang Y, Yu R, Wu L, et al. Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation[J]. Cell Signal, 2021, 78:109870.
[28] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849.
[29] Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian[J]. Cell Death Differ, 2022, 29(5):895-910.
[30] Meng Y, Sun H, Li Y, et al. Targeting ferroptosis by ubiquitin system enzymes: a potential therapeutic strategy in cancer[J]. Int J Biol Sci, 2022, 18(14):5475-5488.
[31] Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1[J]. Am J Physiol Endocrinol Metab, 2014, 307(6):E469-E484.
[32] Wang Y, Wang S, Xin Y, et al. Hydrogen sulfide alleviates the anxiety-like and depressive-like behaviors of type 1 diabetic mice via inhibiting inflammation and ferroptosis[J]. Life Sci, 2021, 278:119551.
[33] Xia Z, Kon N, Gu AP, et al. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression[J]. Oncogene, 2022, 41(22):3039-3050.
[34] Shang JL, Ning SB, Chen YY, et al. MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer[J]. Acta Pharmacol Sin, 2021, 42(1):120-131.
[35] Jiang H, Cheng ST, Ren JH, et al. SIRT6 inhibitor, OSS_128167 restricts hepatitis B virus transcription and replication through targeting transcription factor peroxisome proliferator-activated receptors α[J]. Front Pharmacol, 2019, 10:1270.
Sirtuin 6 suppresses ferroptosis in skeletal muscle cells by regulating P53/SLC7A11/GPX4 pathway
WANG Yao1, CHEN Shikun1, DUAN Chenyang1, LIANG Xiaohan1, ZHOU Chengfu1, QIN Jun1, HOU Dongyao1, DU Quan1,2△
(1,,400010,;2,400010,)
To investigate the occurrence of ferroptosis in skeletal muscle cells and its molecular mechanisms.Mouse C2C12 myoblasts were divided into control group, erastin (Era; ferroptosis inducer) group, Era+ferrostatin-1 (ferroptosis antagonist) group, Era+MDL-800 [sirtuin 6 (Sirt6) agonist] group, and Era+OSS-128167 (Sirt6 inhibitor) group. The mRNA and protein expression levels of Sirt6, muscle atrophy markers and ferroptosis markers in C2C12 myoblasts or myotubes were determined by RT-qPCR and Western blot. Furthermore, acetylation levels of P53 protein, intracellular ferrous ion (Fe2+), reactive oxygen species (ROS), glutathione (GSH) and lipid peroxidation index Liperfluo were examined. Immunofluorescence revealed the intensity of myosin heavy chain (MHC; a biomarker of myotube differentiation) fluorescence signal.Treatment with Era reduced the viability of C2C12 cells and the quality of differentiated C2C12 myotube, accompanied by decreased Sirt6 mRNA and protein levels (<0.05). The mRNA and protein levels of muscle atrophy F-box protein (MAFbx) and muscle ring-finger protein 1 (MuRF1), markers of amyotrophy, were increased (<0.05). Activation of Sirt6 inhibited acetylation of lysine 381 site in P53 protein, and decreased P53 expression. The Sirt6 agonist also increased solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression levels, and altered ferroptosis specific indicators such as ROS, GSH, Fe2+and lipid peroxidation (<0.05). Conversely, inhibition of Sirt6 promoted ferroptosis.Sirt6 inhibits the acetylation of P53 protein to reduce its activity, counteracts ferroptosis-associated cell death and improves muscle mass by regulating the P53/SLC7A11/GPX4 signaling pathway.
sarcopenia; sirtuin 6; ferroptosis; deacetylation
R322.7+4; R363.2
A
10.3969/j.issn.1000-4718.2023.02.016
1000-4718(2023)02-0335-10
2022-09-19
2022-11-28
[基金項(xiàng)目]重慶市出國(guó)留學(xué)人員創(chuàng)新自主項(xiàng)目(No. CX2021069);重慶科衛(wèi)聯(lián)合項(xiàng)目(No. 2020MSXM008)
Tel: 13883643222; E-mail: duquan100@sina.com
(責(zé)任編輯:林白霜,羅森)