奚運濤,賈毛,張軍,黃雪萍,喬玉龍
HVOF熱噴WC-12Co和Ni60涂層在不同攻角下的固體粒子沖蝕行為
奚運濤1,賈毛1,張軍2,黃雪萍3,喬玉龍4
(1.西安石油大學(xué) 材料科學(xué)與工程學(xué)院 西安市高性能油氣田材料重點實驗室,西安 710065; 2.中國石油長慶油田分公司科技發(fā)展部,西安 710021;3. 中國石油長慶油田分公司第二采氣廠,西安 710200;4. 中國石油長慶油田分公司第一采氣廠,西安 710018)
解決輸氣管線彎頭沖蝕損傷而導(dǎo)致的刺漏問題。采用超音速火焰噴涂(HVOF)方法在20#鋼基材上分別制備WC-12Co和Ni60涂層。采用顯微硬度計測試基材及涂層截面顯微硬度。采用X射線衍射儀(XRD)分析涂層表面成分。采用自制噴射式氣固沖蝕試驗機(jī)開展30°、50°、90° 3種攻角下固體粒子沖蝕(SPE)試驗。采用掃描電子顯微鏡(SEM)觀察SPE試驗前后表面和截面的微觀形貌,開展基材和2種涂層的SPE機(jī)理及沖蝕速率研究。在30°攻角下,SPE機(jī)理以犁削為主,沖蝕速率受表面硬度的影響較大,20#鋼沖蝕速率最大,而WC-12Co涂層的沖蝕速率最??;在50°攻角下,SPE機(jī)理為犁削和多沖疲勞混合機(jī)理,20#鋼的沖蝕速率仍然最大,Ni60涂層和WC-12Co涂層的沖蝕速率相當(dāng),均較?。辉?0°攻角下,沖蝕機(jī)理以多沖疲勞損傷為主,WC-12Co涂層的缺陷較少,界面無裂紋,沖蝕速率最小,而Ni60涂層界面處存在裂紋,內(nèi)部缺陷較多,抗疲勞性能差,沖蝕速率最高。WC-12Co涂層在3種不同攻角下都表現(xiàn)出優(yōu)異的抗沖蝕性能,為提升輸氣管線彎頭抗沖蝕損傷提供了有力的保障。
WC-12Co涂層;Ni60涂層;沖蝕;攻角;彎頭
近年來隨著致密氣和頁巖氣等非常規(guī)天然氣的快速發(fā)展,加砂壓裂技術(shù)取得了長足的進(jìn)步,裂縫長度和加砂規(guī)模均不斷增加,天然氣單井產(chǎn)量和開發(fā)效益顯著提升[1-2]。但是,由于井底和井口高生產(chǎn)壓差引起的誘導(dǎo)應(yīng)力,以及高速氣流造成的拖曳力作用,使井底的巖層易松動出砂,或?qū)痈脑鞎r裂縫中的壓裂砂擠出,從而導(dǎo)致采出天然氣中的含砂量增大[3-5]。在高速氣流作用下很容易造成輸氣管線彎頭沖蝕損傷,導(dǎo)致刺漏事故頻發(fā),給氣田安全生產(chǎn)造成一定隱患[6-9]。管道內(nèi)輸送介質(zhì)為氣、液、固多相流,流態(tài)為高壓、高流速下的沖擊流(段塞流),損傷影響因素主要包括管道材質(zhì)、環(huán)境和流體力學(xué)3個方面[10]。因多相流沖蝕機(jī)理較為復(fù)雜,且開采初期產(chǎn)液量較少,水氣比較小,可近似為氣固雙相流的固體粒子沖蝕(SPE)模型開展相關(guān)研究[11]。固體粒子沖蝕的影響因素頗多,沖蝕攻角是其中最關(guān)鍵的因素[12-15]。由于大、小攻角下的SPE機(jī)制不同,小攻角以微切削為主,而大攻角以多沖疲勞破壞為主,導(dǎo)致同時有效控制管線彎頭的沖蝕損傷較為困難[16-18]。
超音速火焰噴涂技術(shù)(HVOF)因其焰流速度快、直徑收縮小、粉末動能大等特點,使涂層可以獲得較高的硬度、致密性和結(jié)合強度,顯著提高基材的耐磨損和耐腐蝕性能[19-21]。但是,在SPE方面,HVOF涂層不同攻角下的沖蝕機(jī)理、沖蝕速率隨攻角的變化規(guī)律等還存在較大分歧。陳文龍等[22]利用HVOF制備了WC-10Co4Cr涂層,開展了30°、45°、60°不同攻角下的沖蝕機(jī)理和質(zhì)量損失研究,結(jié)果表明,沖蝕攻角變化對涂層的沖蝕質(zhì)量損失影響不明顯。王海軍等[23]研究了HVOF噴涂WC-Co涂層在30°和90°攻角下的沖蝕磨損情況,結(jié)果表明,在相同沖蝕砂量下,30°攻角下的沖蝕速率遠(yuǎn)低于90°攻角下的沖蝕速率;該研究結(jié)果與鮑君峰等[24]關(guān)于WC-12Co涂層的沖蝕試驗結(jié)果一致。李陽等[25]研究了15°、45°、75°、90°攻角下,WC-Co-Cr涂層的沖蝕速率隨沖蝕攻角的變化規(guī)律,結(jié)果表明,當(dāng)攻角高于45°后,WC-Co-Cr涂層的沖蝕速率顯著增大,超過了0Cr13Ni5Mo基材,為基材質(zhì)量損失的1.3~4.1倍。Wen等[26]研究了Ni60- NiCrMoY復(fù)合涂層的沖蝕行為,結(jié)果表明,在小沖蝕攻角下涂層和基材的沖蝕由微切削控制,涂層的耐沖蝕性能高于基體;在大沖蝕攻角下涂層表現(xiàn)出明顯的脆性斷裂,以及裂紋萌生和擴(kuò)展引起的層狀剝落。
從以上研究現(xiàn)狀可以看出,HVOF涂層在多種沖蝕攻角下的抗SPE行為和沖蝕速率變化規(guī)律尚不明確,無法給地面管線彎頭的抗沖蝕防護(hù)方案提供有效的數(shù)據(jù)支撐。為此,本文選用地面管線彎頭常用材料20#鋼作為基材,利用HVOF技術(shù)制備了2種典型的涂層WC-12Co和Ni60,探討沖蝕攻角對其沖蝕機(jī)理和沖蝕速率的影響,為有效解決管線彎頭的沖蝕損傷問題提供依據(jù)。
試驗選用地面管線常用材料20#鋼作為基材,加工成30 mm×10 mm的圓片試樣。試樣表面經(jīng)粗磨、細(xì)磨后,放入酒精中超聲波清洗30 min,低溫烘干,再通過表面噴砂處理提高表面粗糙度,以增加涂層附著力。砂粒為46目棕剛玉,噴槍壓力為0.6 MPa。
采用DJ2700超音速火焰噴涂設(shè)備在試樣表面分別制備WC-12Co和Ni60涂層,2種涂層粉末的化學(xué)成分見表1。噴涂過程中采用丙烷作為燃料,氧氣作為助燃?xì)猓獨庾鳛樗头圯d氣,噴涂工藝參數(shù)見表2。
表1 涂層粉末的化學(xué)成分
表2 超音速火焰噴涂工藝參數(shù)
SPE試驗在自制噴射式氣固沖蝕試驗機(jī)(見圖1)上進(jìn)行。試樣固定在可旋轉(zhuǎn)夾具上,調(diào)整并固定試樣角度;固體粒子與壓縮空氣在混合室內(nèi)充分混合,經(jīng)加速管加速并由噴嘴噴出,入射到試樣表面,造成表面沖蝕損傷。通過控制分壓裝置來調(diào)整固體粒子速度,通過流量控制器來調(diào)整砂量。選用多棱形剛玉砂粒(直徑為180~240 μm,硬度為2 000~2 300HV)作為SPE介質(zhì),沖蝕試驗參數(shù)見表3。采用SHIMADZU- AUW220D型分析天平(精度0.1 mg)稱量試樣沖蝕前后的質(zhì)量損失。通過失重法計算涂層的沖蝕速率。
圖1 噴射式氣固沖蝕試驗機(jī)示意圖
采用Nova NanoSEM450型掃描電子顯微鏡觀察試樣表面形貌。采用XRD-6000型X射線衍射儀對試樣表面涂層成分進(jìn)行分析。采用HXD-1000TMC/LCD型顯微硬度計測量試樣表面硬度,評價靜載荷下涂層試樣的承載能力,載荷為100 g,保荷時間為15 s。
表3 SPE試驗參數(shù)
WC-12Co涂層表面SEM形貌和橫截面結(jié)構(gòu)如圖2和圖3所示。由圖可以看出,該涂層表面和內(nèi)部均存在一些細(xì)小的微孔,但無微裂紋產(chǎn)生。該結(jié)果與Stewart等[27]的試驗結(jié)果一致。同時,還可以看出WC-12Co涂層的平均厚度約為120 μm,涂層較致密,與基體結(jié)合緊密,界面處無明顯缺陷。
Ni60涂層表面SEM形貌和橫截面結(jié)構(gòu)如圖4和圖5所示。由圖可以看出,該涂層表面缺陷較少,但內(nèi)部存在一些微孔,分布很不均勻,主要位于涂層的中上部,且大小不一,最大微孔尺寸為WC-12Co涂層微孔的5倍以上。同時,還可以看出Ni60涂層的平均厚度約為180 μm,涂層與基體結(jié)合較差,存在連續(xù)貫穿性裂紋。
圖2 WC-12Co涂層的表面形貌
圖3 WC-12Co涂層的截面形貌
圖4 Ni60涂層的表面形貌
圖5 Ni60涂層的截面形貌
2種涂層表面的XRD成分分析結(jié)果如圖6所示。由圖可以看出,WC-12Co涂層表面成分以WC為主,同時還存在W2C和Co,W2C相可能是由于部分WC相脫碳所致。Ni60涂層表面的成分相對比較復(fù)雜,主要包括Ni、Ni-Cr-Fe、[Fe,Ni]、FeNi3、NiC、FeNi、Fe-Cr等組成。
圖6 WC-12Co(a)和Ni60(b)涂層的XRD分析結(jié)果
分別對20#鋼基體、Ni60涂層和WC-12Co涂層進(jìn)行顯微硬度測試,結(jié)果見圖7。由圖可以發(fā)現(xiàn),20#鋼基體的顯微硬度最低,為139.5HV0.1,Ni60涂層的顯微硬度為613.1HV0.1,WC-12Co涂層的顯微硬度最高,為1 229.1HV0.1。2種涂層的顯微硬度相對基體均顯著提高。
圖7 基體及涂層截面的顯微硬度
不同攻角下,基體和2種涂層的SPE沖蝕速率變化規(guī)律見圖8,沖蝕形貌見圖9。由圖8可以看出,在30°攻角下,20#鋼基材的沖蝕速率最大,為0.040 5 mg/g;其次為Ni60涂層,沖蝕速率為0.028 8 mg/g;WC- 12Co涂層的沖蝕速率最小,為0.010 8 mg/g。結(jié)合圖9沖蝕形貌分析,可以看出,在小攻角下各試樣的表面形貌均為斜向小角度切削,且方向一致。其中,20#鋼基材的犁溝最深,切出的金屬翻在犁溝的兩側(cè);Ni60涂層表面的犁溝深淺不一,大部分較淺;WC- 12Co涂層表面的犁溝最淺,且較密。在小攻角下各試樣的沖蝕機(jī)理以犁削為主,因此受涂層表面硬度和結(jié)合強度的影響較大。20#鋼表面硬度最低,在SPE作用下表面的塑性材料很容易被多棱形砂粒切割翻出,并被氣流帶走,留下較深的犁溝。Ni60涂層的表面硬度較20#鋼有所提高,但涂層存在較多裂紋和微孔等缺陷,導(dǎo)致沖蝕速率略有減小,且表面凹凸不平,犁溝深淺不一。WC涂層硬度最大,在小攻角沖蝕下涂層幾乎不會發(fā)生塑性變形,且涂層較為致密,缺陷少,涂層表面平整,犁溝較淺。
圖8 不同角度的沖蝕速率
在50°攻角下,20#鋼的沖蝕速率較30°顯著下降,但仍然最大,為0.018 5 mg/g;Ni60涂層和WC-12Co涂層的沖蝕速率基本接近,分別為0.011 5 mg/g和0.011 7 mg/g。結(jié)合圖9沖蝕形貌分析,可以看出,各試樣表面犁溝的方向性不明顯,主要是因為在固體粒子切向速度作用行程較短,犁削較短;同時,垂直速度對涂層有微小捶擊作用,進(jìn)一步破壞了犁溝的方向性。在50°攻角下各試樣的沖蝕機(jī)理兼具犁削和多沖疲勞損傷2種機(jī)理,因此同時受到表面硬度、塑韌性和結(jié)合強度的作用。20#鋼的硬度較低,固體粒子的切向分力造成一定短的犁溝,垂直分力又使犁溝變得雜亂;Ni60涂層硬度有所提高,固體粒子造成的犁溝變淺,多沖垂直沖力使犁溝變得更加平整;WC涂層硬度最大,犁溝最淺,多沖造成一定表面疲勞損傷,沖蝕速率與Ni60涂層相當(dāng)。
在90°攻角下,Ni60涂層的沖蝕速率最大,為0.017 1 mg/g;其次為20#鋼基材,沖蝕速率為0.009 5 mg/g;WC-12Co涂層的沖蝕速率最小,為0.001 4 mg/g。在90°攻角下各試樣的沖蝕機(jī)理為多沖疲勞損傷,主要與試樣表面的硬度、塑韌性、涂層/界面結(jié)合強度、涂層內(nèi)部缺陷及分布情況等有關(guān)。結(jié)合圖3、圖5和圖9微觀形貌分析,可以看出,20#鋼硬度較低,塑性較好,固體粒子多次沖擊下,基體表面出現(xiàn)大量較淺的凹坑,沖蝕速率顯著下降;Ni60涂層由于存在較多裂紋和微孔等缺陷,固體粒子垂直沖擊下,部分涂層脫落,導(dǎo)致表面凹坑的深淺及面積相差較大,沖蝕速率也最高;WC-12Co涂層雖然硬度最高,具有一定的脆性特征,但該涂層為多層熔滴堆砌結(jié)構(gòu),具有一定的緩沖作用,且涂層較致密,與基體結(jié)合緊密,界面處無明顯缺陷,內(nèi)部均存在一些細(xì)小的微孔,但無明顯微裂紋,在固體粒子的多次垂直沖擊作用下,表面呈現(xiàn)出淺而密的凹坑,分布較均勻,同時,表現(xiàn)出較好的抗疲勞性能,沖蝕速率最低。
圖9 不同角度下涂層和基體的沖蝕形貌
同時,可以看出WC-12Co涂層在30°、50°、90°攻角下均表現(xiàn)出了較好的SPE抗力,尤其是小角度下較20#鋼基材提高抗力3.75倍,輸氣管線彎頭存在全角度沖蝕風(fēng)險。因此,采用WC-12Co涂層對彎頭內(nèi)壁進(jìn)行防護(hù),能夠起到較好的抵抗全角度下SPE損傷,降低刺漏風(fēng)險的目的。
1)Ni60涂層平均厚度約為180 μm,內(nèi)部存在微孔、裂紋等較多缺陷,分布也不均勻,涂層與基體結(jié)合較差;WC-12Co涂層較致密,與基體結(jié)合緊密,界面處無明顯缺陷,內(nèi)部均存在一些細(xì)小的微孔,但無微裂紋產(chǎn)生。
2)20#鋼基體的顯微硬度最低,為139.5HV0.1;Ni60涂層和WC-12Co涂層的顯微硬度均顯著提高,分別為1 229.1HV0.1和613.1HV0.1。
3)在30°攻角下,SPE沖蝕機(jī)理以犁削為主,沖蝕速率受表面硬度影響較大,硬度越高,抗SPE性能越好,WC-12Co涂層抗SPE性能最優(yōu),20#鋼最差;在50°攻角下,SPE沖蝕機(jī)理為犁削和多沖疲勞損傷的混合機(jī)理,20#鋼的沖蝕速率最高,Ni60和WC-12Co涂層的沖蝕速率接近;在90°攻角下,沖蝕機(jī)理為多沖疲勞損傷,主要與試樣表面的硬度、塑韌性、涂層/界面結(jié)合情況、內(nèi)部缺陷及分布情況等多種因素有關(guān),Ni60涂層界面處存在裂紋,內(nèi)部缺陷較多,固體粒子垂直沖擊作用下,部分涂層脫落,導(dǎo)致沖蝕速率最高;WC-12Co涂層的缺陷較少,界面無裂紋,沖蝕速率最小。
4)采用WC-12Co涂層對輸氣管線彎頭內(nèi)壁進(jìn)行防護(hù),能夠起到減少SPE沖蝕損傷、降低刺漏風(fēng)險的目的。
[1] 鄒才能, 董大忠, 王玉滿, 等. 中國頁巖氣特征、挑戰(zhàn)及前景(一)[J]. 石油勘探與開發(fā), 2015, 42(6): 689-701.
ZOU Cai-neng, DONG Da-zhong, WANG Yu-man, et al. Shale Gas in China: Characteristics, Challenges and Pros-pects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[2] 趙金洲, 任嵐, 蔣廷學(xué), 等. 中國頁巖氣壓裂十年: 回顧與展望[J]. 天然氣工業(yè), 2021, 41(8): 121-142.
ZHAO Jin-zhou, REN Lan, JIANG Ting-xue, et al. Ten Years of Gas Shale Fracturing in China: Review and Prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142.
[3] 謝奎, 曾小軍, 王雷. 威遠(yuǎn)區(qū)塊頁巖氣排采除砂工藝分析[J]. 鉆采工藝, 2019, 42(4): 60-63, 10.
XIE Kui, ZENG Xiao-jun, WANG Lei. Flow-Back Sand Removal Process at Weiyuan Shale Gas Block[J]. Drilling & Production Technology, 2019, 42(4): 60-63, 10.
[4] 潘登, 涂敖, 謝奎. 頁巖氣地面排采作業(yè)初期難點與技術(shù)對策[J]. 鉆采工藝, 2018, 41(6): 40-42, 45, 7.
PAN Deng, TU Ao, XIE Kui. Difficulties during Shale Gas Well Early-Stage Flow-Back and well-Testing and Technical Solutions[J]. Drilling & Production Technology, 2018, 41(6): 40-42, 45, 7.
[5] 王健. 頁巖氣長水平井筒流動沖蝕及沉砂規(guī)律研究[D]. 成都: 西南石油大學(xué), 2017.
WANG Jian. Study on the Flow Erosion and Sand De-position Law of Shale Gas in Long Horizontal Wellbore [D]. Chengdu: Southwest Petroleum University, 2017.
[6] 王健剛, 孫巧雷, 嚴(yán)淳鳀, 等. 測試地面流程彎管沖蝕磨損的影響研究[J]. 石油機(jī)械, 2021, 49(1): 88-94.
WANG Jian-gang, SUN Qiao-lei, YAN Chun-ti, et al. Study on the Influences of the Erosion Wear of Bend Pipe in Testing Surface Process[J]. China Petroleum Machinery, 2021, 49(1): 88-94.
[7] 周蘭, 張紅, 陳文康, 等. 頁巖氣壓裂管匯彎頭的沖蝕磨損影響分析[J]. 中國安全生產(chǎn)科學(xué)技術(shù), 2020, 16(10): 53-58.
ZHOU Lan, ZHANG Hong, CHEN Wen-kang, et al. Analysis on Erosion Wear Effect of Fracturing Manifold Elbow in Shale Gas[J]. Journal of Safety Science and Technology, 2020, 16(10): 53-58.
[8] 劉巨保, 蘭乘宇, 丁宇奇, 等. 通徑式噴砂器傘鍵流場仿真與防沖蝕設(shè)計[J]. 石油機(jī)械, 2017, 45(6): 72-77.
LIU Ju-bao, LAN Cheng-yu, DING Yu-qi, et al. Flow Field Simulation and Anti-Erosion Design of Umbrella Key in Sand Blasting Device[J]. China Petroleum Ma-chinery, 2017, 45(6): 72-77.
[9] 曹學(xué)文, 李星標(biāo), 樊茵, 等. 固體顆粒沖蝕理論與試驗研究進(jìn)展[J]. 油氣儲運, 2019, 38(3): 251-257.
CAO Xue-wen, LI Xing-biao, FAN Yin, et al. Progress of Theory and Test Studies on the Erosion of Solid Par-ticles[J]. Oil & Gas Storage and Transportation, 2019, 38(3): 251-257.
[10] 原徐杰. 油氣輸送管道內(nèi)沖刷腐蝕的研究進(jìn)展[J]. 電鍍與涂飾, 2016, 35(20): 1091-1094.
YUAN Xu-jie. Research Progress of Erosion Corrosion of Oil and Gas Pipeline[J]. Electroplating & Finishing, 2016, 35(20): 1091-1094.
[11] 謝明, 吳貴陽, 張強. 長寧頁巖氣含砂介質(zhì)沖蝕問題研究[C]//2018年全國天然氣學(xué)術(shù)年會論文集(03非常規(guī)氣藏). 福州, 2018: 258-264.
[12] 侯素娟, 李新梅, 梁存光. 沖蝕角對等離子噴涂WC-12Co涂層沖蝕磨損的影響[J]. 熱加工工藝, 2020, 49(16): 109-113.
HOU Su-juan, LI Xin-mei, LIANG Cun-guang. Effect of Erosion Angle on Erosion Wear of Plasma Sprayed WC-12Co Coatings[J]. Hot Working Technology, 2020, 49(16): 109-113.
[13] ZHANG Xing-yi. Comparison on Multi-Angle Erosion Behavior and Mechanism of Cr3C2-NiCr Coatings Sprayed by SPS and HVOF[J]. Surface and Coatings Technology, 2020, 403: 126366.
[14] OKA Y I. Impact-Angle Dependence and Estimation of Erosion Damage to Ceramic Materials Caused by Solid Particle Impact[J]. Wear, 2009, 267(1-4): 129-135.
[15] ZHANG Zhe-yuan. Experimental Study on Water Droplet Erosion Resistance of Coatings (Ni60 and WC-17Co) Sprayed by APS and HVOF[J]. Wear, 2019, 432-433: 202950.
[16] 王東生, 田宗軍, 王松林, 等. 等離子噴涂WC顆粒增強Ni基涂層組織及抗沖蝕性能[J]. 熱加工工藝, 2012, 41(4): 136-139.
WANG Dong-sheng, TIAN Zong-jun, WANG Song-lin, et al. Microstructure and Erosion Resistance of WC Particles Reinforced Ni-Based Plasma-Sprayed Coating[J]. Hot Working Technology, 2012, 41(4): 136-139.
[17] 劉琦峰, 章德銘, 程旭瑩, 等. 幾種熱噴涂封嚴(yán)涂層的沖蝕磨損行為研究[J]. 熱噴涂技術(shù), 2019, 11(3): 57-62.
LIU Qi-feng, ZHANG De-ming, CHENG Xu-ying, et al. Research on Erosion Wear Behavior of Several Seal Coa-tings Prepared by Thermal Spraying[J]. Thermal Spray Technology, 2019, 11(3): 57-62.
[18] 吳玉萍, 杲志峰, 龍偉漾, 等. 沖蝕角對超音速火焰噴涂Cr3C2-NiCr涂層沖蝕磨損行為的影響[J]. 焊接學(xué)報, 2021, 42(5): 29-35, 99.
WU Yu-ping, GAO Zhi-feng, LONG Wei-yang, et al. Effect of Impingement Angle on Erosion Wear Behavior of HVOF Cr3C2-NiCr Coating[J]. Transactions of the China Welding Institution, 2021, 42(5): 29-35, 99.
[19] HUANG Yan. Slurry Erosion Behaviour and Mechanism of HVOF Sprayed Micro-Nano Structured WC-CoCr Coatings in NaCl Medium[J]. Tribology International, 2020, 148: 106315.
[20] 蘇靜雨, 蔡洪能, 魏志遠(yuǎn), 等. 滑靴耐磨減摩涂層制備[J]. 精密成形工程, 2020, 12(1): 138-142.
SU Jing-yu, CAI Hong-neng, WEI Zhi-yuan, et al. Pre-paration of Wear-Resistant and Antifriction Coating for Slipper[J]. Journal of Netshape Forming Engineering, 2020, 12(1): 138-142.
[21] VASHISHTHA N. Tribological Behaviour of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2–25NiCr Coatings[J]. Tribology International, 2017, 105: 55-68.
[22] 陳文龍, 劉敏, 韓滔. 低溫超音速火焰噴涂WC-10Co4Cr涂層的抗泥漿沖蝕性能[J]. 有色金屬工程, 2016, 6(2): 1-5.
CHEN Wen-long, LIU Min, HAN Tao. Anti-Slurry Erosion Performance of WC-10Co4Cr Coatings Sprayed by LT- HVOF[J]. Nonferrous Metals Engineering, 2016, 6(2): 1-5.
[23] 王海軍, 韓志海, 王建, 等. 超音速等離子噴涂WC-Co涂層性能研究[J]. 裝甲兵工程學(xué)院學(xué)報, 2006, 20(1): 85-89.
WANG Hai-jun, HAN Zhi-hai, WANG Jian, et al. Study on the Performance of Supersonic Plasma Sprayed WC-12Co Coatings[J]. Journal of Academy of Armored Force Engineering, 2006, 20(1): 85-89.
[24] 鮑君峰, 于月光, 劉海飛. HVOF噴涂WC/Co涂層沖蝕磨損機(jī)理研究[J]. 礦冶, 2006, 15(1): 24-28, 12.
BAO Jun-feng, YU Yue-guang, LIU Hai-fei. Study on Erosion Wear Mechanisms of WC/Co Coating Prepared by HVOF[J]. Mining and Metallurgy, 2006, 15(1): 24-28, 12.
[25] 李陽, 劉陽, 段德莉, 等. HVOF熱噴WC-Co-Cr涂層在不同攻角下的料漿沖蝕行為[J]. 中國表面工程, 2011, 24(6): 11-18.
LI Yang, LIU Yang, DUAN De-li, et al. Slurry Erosion Behavior of HVOF Sprayed WC-Co-Cr Coatings at Different Impingement Angle[J]. China Surface Engineering, 2011, 24(6): 11-18.
[26] WEN Z H. Corrosion Resistance of Vacuum re-Melted Ni60-NiCrMoY Alloy Coatings[J]. Journal of Alloys and Compounds, 2017, 711: 659-669.
[27] STEWART D A, et al. Microstructural Evolution in Thermally Sprayed WC-Co Coatings: Comparison between Nanocomposite and Conventional Starting Powders[J]. Acta Materialia, 2000, 48(7): 1593-1604.
Solid Particle Erosion Behavior of HVOF Thermal Spray WC-12Co and Ni60 Coatings at Different Angles of Attack
1,1,2,3,4
(1. Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Material Science and Engineering, Xi’an Shiyou University, Xi'an 710065, China; 2. Department of Science and Technology Management, Changqing Oilfield Company, CNPC, Xi'an 710021, China; 3. No.2 Gas Production Plant, Changqing Oilfield Company, CNPC, Xi'an 710200, China; 4. No.1 Gas Production Plant, Changqing Oilfield Company, CNPC, Xi'an 710018, China)
In order to solve the problem of penetration and leakage caused by erosion damage of elbow of gas transmission pipeline, it is found that there are many influencing factors of solid particle erosion, and the erosion attack angle is one of the most key factors. In view of the above problems, two kinds of coatings, such as WC-12Co and Ni60, were prepared on 20# steel substrate by DJ2700 high-velocity oxygen-fuel spraying (HVOF) equipment. The microstructure of the coating surface and section were observed by Nova Nano SEM450 scanning electron microscope (SEM). HXD-1000TMC/LCD microhardness tester was used to measure the hardness of coating section. XRD-6000 X-ray diffractometer (XRD) was used to analyze the coating composition of the surface coating of the samples. The self-made jet gas-solid erosion tester was used to carry out the solid particle erosion (SPE) test at three attack angles of 30°, 50° and 90°, and the micro morphology of the surface before and after the SPE test was observed by scanning electron microscope (SEM). The SPE mechanism and erosion rate of the substrate and the two coatings were studied through comprehensive analysis of the above test data. The results the microhardness of 20# steel substrate was the lowest, which was 139.5HV0.1. The microhardness of Ni60 coating and WC-12Co coating were significantly improved, which were 1 229.1HV0.1 and 613.1HV0.1, respectively. At the angle of attack of 30°, the SPE mechanism is mainly ploughing, and the erosion rate is greatly affected by the surface hardness. The erosion rate of 20# steel substrate is the largest, which is 0.040 5 mg/g, followed by Ni60 coating, which is 0.028 8 mg/g, and the erosion rate of the WC-12Co coating is the smallest, which was 0.010 8 mg/g. The WC coating has the highest hardness. At small angle of attack SPE, the coating basically does not have plastic deformation, and the coating is denser with few defects. The coating surface is flat and the furrow is shallow. At the angle of attack of 50°, the SPE mechanism is a mixed mechanism of ploughing and multi-impact fatigue. The erosion rate of 20# steel is significantly lower than that of 30°, but it is still the largest, which is 0.018 5 mg/g; The erosion rates of Ni60 coating and WC-12Co coating are basically similar, which are 0.011 5 mg/g and 0.011 7 mg/g respectively. At 90° angle of attack, the erosion rate of Ni60 coating is the highest, which is 0.017 1 mg/g, followed by 20# steel substrate, which is 0.009 5 mg/g, and the erosion rate of WC-12Co coating is the lowest, which is 0.001 4 mg/g. The erosion mechanism is mainly multi-impact fatigue damage. The WC-12Co coating has few defects, no cracks at the interface, and the erosion rate is the lowest, while Ni60 coating has cracks at the interface, many internal defects, poor fatigue resistance and the highest erosion rate. The WC-12Co coating shows excellent erosion resistance under three different attack angles, which provides a strong guarantee for improving the erosion resistance of gas pipeline elbow.
WC-12Co coating; Ni60 coating; erosion; angle of attack; pipeline elbow
TH117
A
1001-3660(2022)12-0109-07
10.16490/j.cnki.issn.1001-3660.2022.12.010
2021–10–27;
2022–02–20
2021-10-27;
2022-02-20
陜西省重點學(xué)科專項資金資助項目(YS37020203);西安石油大學(xué)青年科研創(chuàng)新團(tuán)隊建設(shè)項目(2019QNKYCXTD14);西安石油大學(xué)研究生創(chuàng)新與實踐能力培養(yǎng)計劃資助項目(YCS20212110)
Supported by Shaanxi Key Disciplines Special Fund (YS37020203); Young Scientific Research and Innovation Team of Xi'an Shiyou University (2019QNKYCXTD14); Postgraduate Innovation and Practical Ability Training Program of the Xi'an Shiyou University (YCS20212110)
奚運濤(1978—),男,博士,教授,主要研究方向為腐蝕與防護(hù)及表面工程技術(shù)。
XI Yun-tao (1978-), Male, Doctor, Professor, Research focus: corrosion and protection and surface engineering technology.
奚運濤, 賈毛, 張軍, 等. HVOF熱噴WC-12Co和Ni60涂層在不同攻角下的固體粒子沖蝕行為[J]. 表面技術(shù), 2022, 51(12): 109-115.
XI Yun-tao, JIA Mao, ZHANG Jun, et al. Solid Particle Erosion Behavior of HVOF Thermal Spray WC-12Co and Ni60 Coatings at Different Angles of Attack[J]. Surface Technology, 2022, 51(12): 109-115.
責(zé)任編輯:萬長清