摘要:非生物脅迫(低溫、高溫、干旱、水澇、鹽害等)是影響牧草生長和發(fā)育的重要因素,因而探究牧草抗逆性響應(yīng)特征、指標(biāo)、評價(jià)方法和提升途徑,對于提升和穩(wěn)定牧草生產(chǎn)有重大意義。本文通過文獻(xiàn)資料調(diào)研和計(jì)量分析方法,綜述了牧草對溫度、水分和鹽分等非生物脅迫作用的響應(yīng),概述了牧草的形態(tài)結(jié)構(gòu)、生理生化和生產(chǎn)性能抗逆性指標(biāo),總結(jié)了6類牧草綜合評價(jià)方法的原理和優(yōu)缺點(diǎn),綜述了4種牧草抗逆性提升途徑,并對今后在非生物脅迫下牧草抗逆性方向上需開展的3個方面研究工作進(jìn)行展望,以期為選取牧草抗逆性指標(biāo)和評價(jià)方法,提升牧草質(zhì)量和產(chǎn)量提供參考依據(jù)。
關(guān)鍵詞:抗逆性指標(biāo);非生物脅迫;評價(jià)方法;牧草
中圖分類號:S54文獻(xiàn)標(biāo)識碼:A文章編號:1007-0435(2023)05-1293-09
A Review of Abiotic Stress Resistance of Forages
HUANG Xiao-fang SHI Pei-li YU Cheng-qun SUN Wei HOU Ge
(1. Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy Sciences, Beijing 100101,China; 2. College of Resources and Environment,University of Chinese
Academy of Sciences, Beijing 100190, China)
Abstract:Abiotic stresses,especially low temperature,high temperature,drought,waterlogging,salt damage,etc.,are important factors affecting the growth and development of forages. Therefore,it is of great significance to explore the characteristics,indicators,evaluation methods and measures for improving forage stress resistance and stabilizing forage production. In this paper,the responses of forages to abiotic stresses such as temperature,water and salt were investigated through literature review and quantitative analysis. We reviewed the morphological structure,physiological and biochemical indicators and production performance resistance indices of forages,summarized the principles,advantages and disadvantages of six types of comprehensive evaluation methods for the abiotic stress resistance of forage,proposed four measures to improve the stress resistance of forages,and pointed out three aspects of future research in the field of abiotic stress resistance of forages. This review is expected to provide insight into selecting forage stress resistance indicators and evaluation methods to improve forage quality and yield.
Key words:Stress resistance indicators;Abiotic stress;Evaluation method;Forages
草地占全球土地面積的四分之一,是陸地生態(tài)系統(tǒng)最大的天然屏障[1]。隨著全球氣候變化加劇,草地出現(xiàn)不同程度的退化、沙化等現(xiàn)象,制約了畜牧業(yè)生產(chǎn)的快速發(fā)展[2-3]。相關(guān)研究表明,人工草地的產(chǎn)量是天然草地的10~20倍,但牧草的存活量與其自身的抗逆性密切相關(guān)[4-5]。溫度、水分和鹽分等非生物環(huán)境脅迫因子是影響牧草的生長和發(fā)育的重要因素,因而進(jìn)行非生物脅迫下牧草抗逆性的系統(tǒng)綜述意義重大。結(jié)合CNKI(中國知網(wǎng))和WOS(Web of science)的關(guān)鍵詞共現(xiàn)聚類圖譜(圖1和圖2)可知,目前,國內(nèi)外學(xué)者針對牧草在非生物環(huán)境脅迫下的抗逆性研究的主要集中以下4個方面。牧草的抗逆性評價(jià),如耐鹽性、抗寒性和抗旱性;不同牧草的抗逆性對比研究,如羊草(Leymus chinensis)和黑麥草(Lolium perenne)等;牧草不同生長階段(如種子萌發(fā)和幼苗)對環(huán)境脅迫的應(yīng)答機(jī)制,如生物學(xué)特性、滲透調(diào)節(jié)、抗氧化系統(tǒng)和光系統(tǒng)Ⅱ等。基于不同組學(xué)技術(shù)(如蛋白質(zhì)組學(xué)分析)牧草抗逆性的研究,如基因表達(dá)、管家基因和轉(zhuǎn)基因苜蓿。
學(xué)者們基于抗逆性研究雖積累大量的研究成果,但已有的綜述主要集中在某一牧草的抗逆性研究,如紫花苜蓿(Medicago sativa L.)[6]、白三葉(Trifolium repens L.)[7]、鴨茅(Dactylis glomerata Linn.)[8]、狗牙根(Cynodon dactylon (Linn.) Pers.)[9]、披堿草(Elymus dahuricus Turcz.)[10]等,而缺乏對非生物脅迫下牧草的抗逆性及其指標(biāo)、評價(jià)方法和提升途徑進(jìn)行系統(tǒng)性綜述。鑒于此,本文以CNKI和WOS數(shù)據(jù)庫為數(shù)據(jù)源,通過文獻(xiàn)資料調(diào)研和計(jì)量分析方法,綜述了牧草對非生物脅迫作用的響應(yīng),概述了抗逆性指標(biāo)和評價(jià)方法,總結(jié)了牧草抗逆性提升途徑,并對今后在非生物脅迫下牧草抗逆性方向上需開展的研究工作進(jìn)行展望,以期為研究牧草抗逆性與提升牧草質(zhì)量和產(chǎn)量提供參考依據(jù)。
1非生物環(huán)境脅迫對牧草的影響
1.1牧草對溫度脅迫的響應(yīng)非生物環(huán)境脅迫通過植物對逆境的感知、信號的接收、放大、傳輸及響應(yīng)等一系列反應(yīng),進(jìn)而影響其生理生化反應(yīng)和逆境誘導(dǎo)基因等的調(diào)控和表達(dá)[11-13]。溫度是影響牧草存活、產(chǎn)量和品質(zhì)的重要因素之一,當(dāng)溫度低于或者高于牧草生存范圍時(shí),其正常生長發(fā)育會受到抑制,植株發(fā)生萎蔫,甚至死亡。冷馴化、脫馴化和再馴化是植物在隨著低溫脅迫加劇或復(fù)溫所產(chǎn)生抗寒能力變化的現(xiàn)象[14-15]。研究表明,牧草對溫度敏感性經(jīng)冷馴化后增加,其抗寒性隨著溫度的升高而降低,且經(jīng)過長時(shí)間自然馴化的牧草,抗寒性相對穩(wěn)定遺傳至后代[16-17]。相關(guān)研究顯示,脫馴化發(fā)生的速度比冷馴化更快;抗寒能力越強(qiáng),脫馴化速度越快[18]。如同一溫度(10℃)下,抗寒性強(qiáng)的匍匐羊茅(Festuca rubra trichophylla L.)比抗寒性弱的一年生早熟禾(Poa annua L.)脫馴化速度更快[19]。冷馴化雖能增強(qiáng)牧草的抗寒性,但抗寒性弱的牧草極易在脫馴化和再馴化過程中因細(xì)胞脫水而死亡[19]。
牧草受溫度脅迫后,通常會引起根系、葉片、膜脂結(jié)構(gòu)、滲透物質(zhì)(如糖類、脯氨酸和其他氨基酸)、磷脂和脂肪酸等[20-21]一系列形態(tài)和生理生化等變化來抵御低溫/高溫對自身造成傷害。牧草在形態(tài)和生產(chǎn)性能方面表現(xiàn)為,隨低溫時(shí)間推移,根長和休眠芽數(shù)增加,地上生物量部分向地下轉(zhuǎn)移,而葉長和葉脈突起度則與抗寒性呈正相關(guān)[22-23]。生理生化方面表現(xiàn)為,牧草的相對質(zhì)膜透性(Relative plasma permeability,RPP)和丙二醛(Malondialdehyde,MDA)含量在短期低溫脅迫下迅速增加,可溶性糖(Soluble sugar,SS)、游離脯氨酸(Free proline,Pro)、過氧化物酶(Peroxidase,POD)和超氧化物歧化酶(Superoxide dismutase,SOD)活性隨著溫度降低先升高后下降[24-25],但也與研究表明葉片Pro含量隨溫度降低而顯著升高[26]。與抗寒能力弱的苜蓿品種相比,抗寒性強(qiáng)的苜蓿POD更高,而受高溫脅迫的不同鴨茅品種研究表明,耐熱性弱的鴨茅Pro,MDA含量和POD活性變化更顯著[27-28]。高溫脅迫通常與干旱協(xié)同發(fā)生,不同干旱預(yù)處理的草地早熟禾與未處理相比,土層中根系分布加深,更易在高溫脅迫環(huán)境中生存[29]。Liu等[30]研究結(jié)果發(fā)現(xiàn),多年生黑麥草MDA累積量隨著高溫脅迫處理時(shí)間的延長逐漸遞增。
1.2牧草對水分脅迫的響應(yīng)
牧草在面臨水分脅迫時(shí),通常會啟動自我保護(hù)機(jī)制,如通過調(diào)整根系生長和分布、卷曲葉片等形態(tài)變化,提高土壤水分的吸收,防止牧草體內(nèi)水分的虧缺[31-32]。而長時(shí)間受水分脅迫既會影響光合作用[33],也會導(dǎo)致根尖細(xì)胞出現(xiàn)質(zhì)壁分離,甚至出現(xiàn)大量細(xì)胞死亡[34]。不同學(xué)者就抗逆性與葉綠素之間的相關(guān)性持不同觀點(diǎn),Deltoro[35]、Estill[36]和張衛(wèi)紅[37]等人研究表明,抗旱性與葉綠素含量具有較強(qiáng)的相關(guān)性,水分脅迫會影響植物體內(nèi)葉綠素的合成與降解。而Erice[38]認(rèn)為牧草體內(nèi)葉綠素含量的變化跟水分脅迫聯(lián)系并不密切,氣孔的關(guān)閉才是影響光合作用的主要原因。此外,研究發(fā)現(xiàn)受干旱脅迫復(fù)水后的牧草與經(jīng)過冷馴化的牧草類似,在面臨適度干旱脅迫復(fù)水后,牧草會產(chǎn)生相應(yīng)的補(bǔ)償效應(yīng)(生長補(bǔ)償和生理代謝補(bǔ)償),其抗逆性和產(chǎn)量均會增強(qiáng)[39]。
牧草在水分脅迫下,其滲透調(diào)節(jié)物質(zhì)和光合作用等均受到影響。隨干旱脅迫程度的增強(qiáng),Pro和SS等滲透調(diào)節(jié)物質(zhì)不斷積累,對牧草進(jìn)行滲透調(diào)節(jié)和抗脫水作用[40-42]。李怡等[43]結(jié)果表明,受干旱脅迫的羊草除Pro和MDA含量升高外,株高、干鮮重、葉綠素、存活率均低于對照組。不少學(xué)者用PEG溶液模擬干旱脅迫下牧草不同生長期指標(biāo)的變化。結(jié)果表明,種子內(nèi)酶的活性在低濃度的PEG溶液下被激發(fā),加快了種子萌發(fā)和生長物質(zhì)代謝過程,且隨著PEG的增加,對牧草種子萌發(fā)的抑制作用也越強(qiáng)[44-47]。植物為適應(yīng)淹水脅迫,需通過增加無氧呼吸提供維持新陳代謝所需的能量,因而根系乙醇脫氫酶(Alcohol dehydrogenase,ADH)等相關(guān)酶活性增加[48-49]。Wang等[50]對早熟禾研究發(fā)現(xiàn),在水淹脅迫下地上部和根系干重及葉綠素濃度降低,根系細(xì)胞膜滲漏量增加。
1.3牧草對鹽分脅迫的響應(yīng)
鹽脅迫主要是通過誘導(dǎo)滲透脅迫和離子效應(yīng)對植物的營養(yǎng)結(jié)構(gòu)和生長代謝產(chǎn)生影響[51-52]。為適應(yīng)鹽脅迫環(huán)境,牧草體內(nèi)調(diào)節(jié)機(jī)制來調(diào)控各類指標(biāo)減輕鹽脅迫的傷害。如Noble等[53]和Bao等[54]研究發(fā)現(xiàn),地上部對Na+積累的限制力越強(qiáng),或K+/Na+比例越高,牧草的耐鹽性越強(qiáng)。Pro[55]、甘氨酸[56]、甜菜堿[57]、SS[58]等滲透調(diào)節(jié)物質(zhì)的累積能防止細(xì)胞內(nèi)水分散失過多,但也有學(xué)者認(rèn)為Pro含量與耐鹽性呈負(fù)相關(guān),是遭受鹽脅迫的結(jié)果[59-60]。而在光合作用響應(yīng)鹽脅迫研究中,因鹽脅迫提高了葉綠素酶活性,葉綠素含量和光合速率隨著鹽脅迫濃度的增加而呈遞減趨勢[61-62]。
不同牧草品種、生長階段和鹽濃度對牧草的耐鹽性存在差異。Torabi等[63]研究結(jié)果表明因基因型不同,干旱荒漠地區(qū)的紫花苜蓿品種的耐鹽性強(qiáng)于其他地區(qū)紫花苜蓿的耐鹽性。種子萌發(fā)是牧草生長發(fā)育中受到鹽脅迫響應(yīng)最為敏感的階段。眾多研究表明,牧草種子生長在鹽脅迫中可能存在相應(yīng)的閾值,即在低鹽濃度脅迫下會促進(jìn)種子萌發(fā),但隨NaCl濃度的增加發(fā)芽率、胚根長度和活動指數(shù)等總體呈現(xiàn)下降趨勢[64-66]。Munns等人[67]認(rèn)為鹽脅迫對牧草的限制主要是通過影響種子吸水量和細(xì)胞膜毒性,低NaCl濃度通過促進(jìn)種子吸水而加快萌芽速率,反之高濃度引起膜毒性抑制萌芽。
2牧草抗逆性指標(biāo)及綜合評價(jià)方法
牧草的抗逆性主要表現(xiàn)在形態(tài)結(jié)構(gòu)、生理生化和生產(chǎn)性能等指標(biāo)。通過對相關(guān)文獻(xiàn)進(jìn)行統(tǒng)計(jì)分析,形態(tài)結(jié)構(gòu)包括種子萌發(fā)指標(biāo)(如發(fā)芽率、發(fā)芽勢、發(fā)芽指數(shù)、活力指數(shù)、胚芽和胚根長度)、株高、根長、根冠比等。生理生化指標(biāo)主要通過光合能力、滲透調(diào)節(jié)能力、膜系統(tǒng)穩(wěn)定性以及抗氧化酶活性等指標(biāo)來評價(jià)[68]。生產(chǎn)性能指標(biāo)可以直觀體現(xiàn)牧草對脅迫作用的響應(yīng),如地上和地下生物量??鼓嫘愿黝愔笜?biāo)選取的頻次如圖3所示,生理生化指標(biāo)應(yīng)用最為廣泛,其中MDA選取頻次最高(41%),其次分別為葉綠素、Pro、SS、相對質(zhì)膜通透性、相對含水率,出現(xiàn)頻次分別為40%,39%,29%,29%和25%,SOD和POD等保護(hù)性酶選取率超20%,研究表明它們能有效清除活性自由基,從而減少脅迫作用對牧草的影響[69]。形態(tài)結(jié)構(gòu)指標(biāo)中選取率最高的為發(fā)芽率,出現(xiàn)頻次為27%。而不定根長度、根冠比、根系活力和葉長的出現(xiàn)頻次僅為3%。存活率、地上和地下生物量等是生產(chǎn)性能指標(biāo)中選取率最高的。
非生物因子脅迫下牧草的抗逆性機(jī)制較為復(fù)雜,僅通過幾個指標(biāo)很難全面進(jìn)行反映。因而,相關(guān)學(xué)者基于不同環(huán)境脅迫因子下的牧草相關(guān)指標(biāo)含量進(jìn)行篩選測定,選取不同方法對牧草抗逆性進(jìn)行評價(jià),主要有隸屬函數(shù)法、主成分分析、聚類分析、五級評分法、灰色關(guān)聯(lián)分析和多元逐步回歸等。隸屬函數(shù)法是通過計(jì)算牧草各種指標(biāo)的隸屬函數(shù)值來表明指標(biāo)的實(shí)際情況,最后獲取總隸屬函數(shù)值進(jìn)行抗逆性綜合評價(jià),該值越大,牧草抗逆性越強(qiáng),反之則弱;主成分分析依據(jù)載荷來篩選關(guān)鍵指標(biāo),且能反映原始變量信息;聚類分析以簡潔明了的方式對評價(jià)指標(biāo)進(jìn)行分類;五級評分法通過各指標(biāo)分級值和權(quán)重系數(shù)來確定綜合評價(jià)值;灰色關(guān)聯(lián)分析通過關(guān)聯(lián)度和關(guān)聯(lián)系數(shù)客觀篩選評價(jià)指標(biāo);多元逐步回歸基于重要指標(biāo),建立預(yù)測精度高的回歸模型。后兩種方法通常與隸屬函數(shù)法相結(jié)合對牧草抗逆性進(jìn)行綜合評價(jià)。
牧草抗逆性方法中隸屬函數(shù)法選取頻率最高,出現(xiàn)頻次為87.84%,其次分別為主成分分析和聚類分析,而五級評分法和灰色關(guān)聯(lián)度等方法選取頻率最低。但在進(jìn)行牧草抗逆性篩選和綜合評價(jià)時(shí),學(xué)者們采用多種方法綜合進(jìn)行評判,以避免主觀的隨意性。李怡等[43]結(jié)合多種分析方法對羊草種質(zhì)資源進(jìn)行抗旱性綜合評價(jià),將其分為5類(高抗旱、抗旱、中等抗旱、干旱敏感和干旱高敏感)。田小霞等[70]基于各種方法的特點(diǎn),從指標(biāo)之間的關(guān)系、評價(jià)和預(yù)測回歸鹽脅迫對紫花苜蓿進(jìn)行綜合評價(jià),如采用主成分分析篩選主要指標(biāo),結(jié)合隸屬函數(shù)法獲取耐鹽性綜合評價(jià)值,通過聚類分析劃分不同耐鹽性等級,最后通過多元逐步回歸建立耐鹽性預(yù)測回歸模型。
3牧草抗逆性提高途徑
3.1抗逆性鍛煉
牧草進(jìn)行抗逆性鍛煉能夠有效提高其對非生物脅迫(溫度、水分和鹽分等)的抵抗能力。相關(guān)研究表明,在經(jīng)歷低溫脅迫前對植物進(jìn)行抗寒性鍛煉,能夠增強(qiáng)葉綠體偶聯(lián)因子(CF1)在膜上的穩(wěn)定性,影響質(zhì)膜上糖蛋白的側(cè)向遷移和重新分布,從而提高其抗寒性[81]。Tompkins等[82]對此進(jìn)行了實(shí)驗(yàn)驗(yàn)證,將冰雪覆蓋和去冰雪覆蓋的一年生早熟禾進(jìn)行低溫脅迫,結(jié)果顯示經(jīng)冰雪覆蓋后的早熟禾比無冰雪覆蓋更易死亡。牧草耐熱性可以通過高溫和干旱兩種預(yù)處理進(jìn)行鍛煉。其中高羊茅在高溫預(yù)處理下,通過熱應(yīng)激記憶引起HSP轉(zhuǎn)錄、光系統(tǒng)II光化學(xué)和代謝的重組,增強(qiáng)其耐熱性[83]。而在干旱預(yù)處理下通過增加參與膜穩(wěn)定和應(yīng)激信號傳導(dǎo)的磷脂和糖脂提高耐熱性[84]。俞玲[85]和Chen[86]等人對不同牧草進(jìn)行抗旱性鍛煉,研究均發(fā)現(xiàn)牧草干旱復(fù)水后的抗逆性效果,與其干旱脅迫下受損程度和恢復(fù)能力緊密相關(guān),且牧草恢復(fù)能力越強(qiáng),復(fù)水后抗旱能力越強(qiáng)。此外,研究發(fā)現(xiàn)牧草種子播前用低鹽溶液浸泡,能夠提高其發(fā)芽率、發(fā)芽指數(shù)和生長量,增強(qiáng)耐鹽性[87]。
3.2外源物質(zhì)施用
外源生長調(diào)節(jié)劑作用于牧草內(nèi)源激素的動態(tài)平衡,進(jìn)而調(diào)控其生長發(fā)育。施用外源物質(zhì)(脫落酸、水楊酸和褪黑素等)能夠有效提高抗氧化酶活性、減少蒸騰作用、增加滲透調(diào)節(jié)物質(zhì)和逆境蛋白等,來增強(qiáng)牧草對逆境脅迫的耐受性。在相關(guān)研究中發(fā)現(xiàn)施用脫落酸能夠激活抗氧化物質(zhì)或觸發(fā)與脅迫相關(guān)的基因表達(dá)和蛋白質(zhì)積累,增強(qiáng)其抗逆性[88]。這一研究同樣在狗牙根和多年生黑麥草的抗旱性中得到驗(yàn)證[89-90]。與對照組相比,匍匐翦股穎(Agrostis stolonifera L.)分別施用脫落酸、水楊酸和γ-氨基丁酸后,能夠有效維持膜穩(wěn)定性和葉片水分狀態(tài),抗旱性均得到提升[91]。草地早熟禾施用外源水楊酸后,能夠增強(qiáng)SOD和CAT的活性,提高耐熱性[92]。Nabati等[93]將鹽脅迫下的草地早熟禾用海藻提取劑和三唑類化合物處理后,結(jié)果顯示,地上部分和根系的生長與抗鹽能力得到促進(jìn)與提升。王慧等[94]結(jié)果表明與干旱脅迫下對照組相比,施用褪黑素的黑麥草和苜蓿根生物量分別增加29.6%和49.1%。
3.3抗逆基因工程培育
學(xué)者通過基因工程培育方法可以將所需的抗逆性外源基因?qū)肽敛菁?xì)胞中,并經(jīng)組織培養(yǎng)育出具有強(qiáng)抗逆性的牧草??鼓嫘韵嚓P(guān)的基因包括內(nèi)源激素調(diào)控基因和抗逆性相關(guān)蛋白類基因,如Mn-SOD cDNA,BADH,CBF,DREB1A,NAC轉(zhuǎn)錄因子和bZIP轉(zhuǎn)錄因子等。1993年Tarczynski等[95]通過基因工程技術(shù)將煙草(Nicotiana tabacum L.)中的Mn-SOD cDNA導(dǎo)入苜蓿,研究發(fā)現(xiàn)轉(zhuǎn)基因苜蓿的抗旱性明顯提高。隨后,Devereaux等同樣發(fā)現(xiàn)MnSOD基因在黑麥草中過表達(dá)有效提高了牧草的越冬率[96]。濱藜BADH基因在紫花苜蓿中過量表達(dá),使得轉(zhuǎn)基因植株的耐鹽性顯著提高[97]。Wu等[98]通過農(nóng)桿菌介導(dǎo)法將CBF1基因轉(zhuǎn)化至高羊茅(Festuca arundinacea Schreb.)受體中,研究表明與對照組相比,轉(zhuǎn)基因植株在低溫、高溫、干旱和高鹽脅迫下的葉片相對EC降低25%~30%,成活率更高,非生物脅迫抗逆性增強(qiáng)。Janmes等[99]將野大麥(Hordeum brevisubulatum (Trin.) Link)中的DREB1A基因在百喜草(Paspalum notatum Flugge)中進(jìn)行過表達(dá)。同樣,牧草當(dāng)中的抗逆性基因也能增強(qiáng)其他植物抵抗非生物脅迫的能力。如從無芒隱子草(Cleistogenes songorica (Roshev.) Ohwi)[100]、苦蕎麥(Fagopyrum tataricum (L.) Gaertn.)[101]中進(jìn)行提取的NAC和bZIP等多個轉(zhuǎn)錄因子,能夠在異源模式植物擬南芥等植物中進(jìn)行過表達(dá),結(jié)果表明它們均能緩解低溫、干旱和高鹽等非生物脅迫作用。由此可以看出,抗逆性基因的挖掘能夠?yàn)榛蚬こ膛嘤鼓嫘詮?qiáng)和高產(chǎn)優(yōu)質(zhì)的牧草和其他植物提供扎實(shí)基礎(chǔ)。
3.4根際促生菌、叢枝菌根和內(nèi)生真菌應(yīng)用
根際促生菌(PGPR)、叢枝菌根(AM)和內(nèi)生真菌均能增強(qiáng)牧草抗逆性、促進(jìn)生長發(fā)育和提高作物產(chǎn)量,但三者的作用對象和機(jī)理略有不同。PGPR是存在于根際的一類微生物,既能改善土壤理化性質(zhì),又能促進(jìn)植物對營養(yǎng)物質(zhì)的吸收,通過分泌和調(diào)控植物激素等物質(zhì),增強(qiáng)牧草抵抗非生物脅迫能力;而AM真菌和內(nèi)生真菌均能與宿主形成共生關(guān)系,但前者分布更為廣泛,主要通過侵染植物根系形成菌絲體以增加吸收土壤中營養(yǎng)物質(zhì)的能力,進(jìn)而促進(jìn)和增強(qiáng)植物的生長和抗逆性,后者分布在植物的根莖葉等細(xì)胞間隙中,通過與宿主植物產(chǎn)生生物堿或其他次生代謝物來提高宿主抗逆性[102-104]。目前,這3類在牧草抗逆性研究中均得到廣泛應(yīng)用。研究表明,多年生黑麥草可通過接種PGPR菌株假單胞菌M30-35來提高其耐鹽性[105]。同樣,白三葉[106]和紫花苜蓿[107]在接種枯草芽孢桿菌后,有效緩解高鹽對牧草的脅迫作用。Malinowski等[108]和Nagabhyru等[109]分別對受水分脅迫作用的高羊茅和黑麥草進(jìn)行研究,結(jié)果表明與對照組相比,受侵染內(nèi)生真菌的牧草葉片葡萄糖、果糖和生物量更多。接種AM真菌的紫花苜蓿MDA、Pro、SS、可溶性蛋白和抗氧化酶活性高于未接種植株,減輕活性氧傷害和細(xì)胞膜脂過氧化,提高牧草的抗鹽性[110]。
4展望
因全球氣候變化的復(fù)雜性和極端性,溫度、水分、鹽類等非生物脅迫作用對牧草的影響在未來或許將更加普遍,因而了解牧草對多種非生物脅迫的響應(yīng),有助于提高牧草抗逆性和機(jī)理研究。本文綜述了牧草對非生物脅迫作用(低溫、高溫、干旱、水澇、鹽害等)的響應(yīng),概述了抗逆性指標(biāo)和評價(jià)方法,總結(jié)了牧草抗逆性提升途徑。綜上可見,學(xué)者們在非環(huán)境脅迫下牧草響應(yīng)機(jī)制和抗逆性綜合評價(jià)上積累了大量的研究成果,但目前關(guān)于抗逆性基因功能和調(diào)控機(jī)制系統(tǒng)研究較少。因此,未來可以加強(qiáng)以下幾個方面研究。(1)結(jié)合多種組學(xué)方法對牧草抗逆性相關(guān)基因的挖掘和基因工程技術(shù)應(yīng)用。(2)深入研究牧草對逆境響應(yīng)的機(jī)理。如激素合成途徑。(3)進(jìn)一步探討提升牧草抗逆性相關(guān)途徑。如進(jìn)行抗逆性鍛煉的閾值;施用多種外源物質(zhì)對牧草的耦合關(guān)系;接種根際促生菌、叢枝菌根真菌和內(nèi)生真菌對抗逆性的協(xié)同作用及機(jī)理等。
參考文獻(xiàn)
[1]LOKA D,HARPER J,HUMPHREYS M,et al. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses:a review[J]. Food and Energy Security,2019,8(1):e00152
[2]胡自治. 人工草地在我國21世紀(jì)草業(yè)發(fā)展和環(huán)境治理中的重要意義[J]. 草原與草坪,2000(1):12-15
[3]張自和,郭正剛,吳素琴. 西部高寒地區(qū)草業(yè)面臨的問題與可持續(xù)發(fā)展[J]. 草業(yè)學(xué)報(bào),2002(3):29-33
[4]HARRISON J,TONKINSON C,EAGLES C,et al. Acclimation to freezing temperatures in perennial ryegrass (Lolium perenne)[J]. Acta Physiologiae Plantarum,1997,19(4):505-515
[5]LARSEN A. Breeding winter hardy grasses [J]. Euphytica,1994,77(3):231-237
[6]范洪文. 紫花苜蓿抗逆性評價(jià)的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2014,42(16):5054-5055,5145
[7]屈璐璐,王俊杰. 白三葉抗逆性研究進(jìn)展[J]. 中國草地學(xué)報(bào),2020,42(2):155-161
[8]張雅潔,喬丹丹,熊雪梅,等. 鴨茅抗逆性研究進(jìn)展[J]. 草學(xué),2019,(3):4-8,15
[9]宋鑫,徐杉,熊芹. 狗牙根抗逆研究進(jìn)展[J]. 草學(xué),2021(6):9-14
[10]龍建廷,高獻(xiàn)磊,包賽很那,等. 垂穗披堿草抗逆性研究進(jìn)展[J]. 草學(xué),2022(3):1-8
[11]韓福松,余成群,付剛,等. 低溫和干旱脅迫下牧草的抗逆性機(jī)制[J]. 草地學(xué)報(bào),2022,30(11):2856-2864
[12]ACUNA-RODRIGUEZ I S,NEWSHAM K K,GUNDEL P E,et al. Functional roles of microbial symbionts in plant cold tolerance[J]. Ecology Letters,2020,23(6):1034-1048
[13]TRISCHUK R G,SCHILLING B S,LOW N H,et al. Cold acclimation,de-acclimation and re-acclimation of spring canola,winter canola and winter wheat:The role of carbohydrates,cold-induced stress proteins and vernalization[J]. Environmental and Experimental Botany,2014(106):156-163
[14]HULKE B S,WATKINS E,WYSE D L,et al. Freezing tolerance of selected perennial ryegrass (Lolium perenne L.) accessions and its association with field winterhardiness and turf traits[J]. Euphytica,2008,163(1):131-141
[15]KALBERER S R,WISNIEWSKI M,ARORA R. Deacclimation and reacclimation of cold-hardy plants:current understanding and emerging concepts[J]. Plant Science,2006,171(1):3-16
[16]HOFFMAN L,DACOSTA M,BERTRAND A,et al. Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass[J]. Environmental and Experimental Botany,2014(106):197-206
[17]JRGENSEN M,STREM L,HGLIND M. De-hardening in contrasting cultivars of timothy and perennial ryegrass during winter and spring[J]. Grass and Forage Science,2010,65(1):38-48
[18]GAY A P,EAGLES C F. Quantitative-analysis of cold hardening and dehardening in Lolium [J]. Annals of Botany,1991,67(4):339-345
[19]ESPEVIG T,HOGLIND M,AAMLID T S. Dehardening resistance of six turfgrasses used on golf greens[J]. Environmental and Experimental Botany,2014(106):182-188
[20]COLLINS G G,NIE X L,SALTVEIT M E. Heat-shock proteins and chilling sensitivity of mung bean hypocotyls [J]. Journal of Experimental Botany,1995,46(288):795-802
[21]ZHANG J,LI X M,LIN H X,et al. Crop improvement through temperature resilience[J]. Annual Review of Plant Biology,2019(70):753-780
[22]崔國文,馬春平. 紫花苜蓿葉片形態(tài)結(jié)構(gòu)及其與抗寒性的關(guān)系[J]. 草地學(xué)報(bào),2007(1):70-75
[23]朱愛民,張玉霞,王顯國,等. 沙地生境不同苜蓿品種形態(tài)特征對低溫的響應(yīng)及其與抗寒性關(guān)系[J]. 草地學(xué)報(bào),2018,26(6):1400-1408
[24]陳玖紅,王沛,王平,等. 6份披堿草屬牧草種質(zhì)材料抗寒性的比較[J]. 草業(yè)科學(xué),2019,36(6):1591-1599
[25]賈祥,多吉格桑,趙愛民,等. 4種禾本科牧草苗期抗寒性綜合評價(jià)[J]. 草地學(xué)報(bào),2020,28(5):1372-1378
[26]張尚雄,尼瑪平措,徐雅梅,等. 3個披堿草屬牧草對低溫脅迫的生理響應(yīng)及苗期抗寒性評價(jià)[J]. 草業(yè)科學(xué),2016,33(6):1154-1163
[27]羅登,左福元,邱健東,等. 不同鴨茅品種的耐熱性評價(jià)[J]. 草業(yè)科學(xué),2015,32(6):952-960
[28]GERLOFF E,RICHARDSON T,STAHMANN M. Changes in fatty acids of alfalfa roots during cold hardening[J]. Plant Physiology,1966,41(8):1280-1284
[29]JIANG Y W,HUANG B R. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass[J]. Crop Science,2001,41(4):1168-1173
[30]LIU X,HUANG B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass[J]. Crop Science,2000,40(2):503-510
[31]ERICE G,LOUAHLIA S,IRIGOYEN J J,et al. Biomass partitioning,morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery[J]. Journal of Plant Physiology,2010,167(2):114-120
[32]JONES M,LEAFE E,STILES W. Water stress in field‐grown perennial ryegrass. II. Its effect on leaf water status,stomatal resistance and leaf morphology[J]. Annals of Applied Biology,1980,96(1):103-110
[33]HURA T,HURA K,GRZESIAK M,et al. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants[J]. Acta Physiologiae Plantarum,2007,29(2):103-113
[34]JONES M,LEAFE E,STILES W. Water stress in field‐grown perennial ryegrass. I. Its effect on growth,canopy photosynthesis and transpiration[J]. Annals of Applied Biology,1980,96(1):87-101
[35]DELTORO V I,CALATAYUD A,GIMENO C,et al. Changes in chlorophyll a fluorescence,photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts[J]. Planta,1998,207(2):224-228
[36]ESTILL K,DELANEY R,SMITH W,et al. Water relations and productivity of alfalfa leaf chlorophyll variants[J]. Crop Science,1991,31(5):1229-1233
[37]張衛(wèi)紅,劉大林,苗彥軍,等. 西藏3種野生牧草苗期對干旱脅迫的響應(yīng)[J]. 生態(tài)學(xué)報(bào),2017,37(21):7277-7285
[38]ERICE G,IRIGOYEN J J,SNCHEZ-DAZ M,et al. Effect of drought,elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting[J]. Plant Science,2007,172(5):903-912
[39]AHMADI A,JOUDI M. Effects of timing and defoliation intensity on growth,yield and gas exchange rate of wheat grown under well-watered and drought conditions[J]. Parkistan Journal of Biological Sciences,2007,10(21):3794-3800
[40]李京蓉,周學(xué)斌,馬真,等. 6種高寒牧區(qū)禾本科牧草抗旱性研究與評價(jià)[J]. 草地學(xué)報(bào),2018,26(3):659-665
[41]ZHANG M,JIN Z-Q,ZHAO J,et al. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley[J]. Plant Growth Regulation,2015,75(2):567-574
[42]ZHANG T,KESOJU S,GREENE S L,et al. Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance[J]. Genetic Resources and Crop Evolution,2018,65(2):471-484
[43]李怡,侯向陽,武自念,等. 羊草種質(zhì)資源抗旱性綜合評價(jià)[J]. 中國草地學(xué)報(bào),2019,41(1):75-82
[44]ROMAISA A,KHALID H,UJALA M,et al. Effect of different levels of drought on growth,morphology and photosynthetic pigments of lady finger (Abelmoschus esculentus)[J]. World Journal of Agricultural Sciences,2015,11(4):198-201
[45]賈蓉,龐妙甜,杜利霞,等. 5個苜蓿品種種子萌發(fā)期干旱耐受性研究[J]. 中國草地學(xué)報(bào),2018,40(5):114-119
[46]馬海鴿,蔣齊,王占軍,等. PEG脅迫下野生甘草種子萌發(fā)和幼苗生長[J]. 草業(yè)科學(xué),2014,31(8):1487-1492
[47]秦文靜,梁宗鎖. 四種豆科牧草萌發(fā)期對干旱脅迫的響應(yīng)及抗旱性評價(jià)[J]. 草業(yè)學(xué)報(bào),2010,19(4):61-70
[48]MUSTROPH A,ALBRECHT G. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J]. Physiologia Plantarum,2003,117(4):508-520
[49]ISMAIL A M,ELLA E S,VERGARA G V,et al. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa)[J]. Annals of Botany,2009,103(2):197-209
[50]WANG K,JIANG Y. Waterlogging tolerance of Kentucky bluegrass cultivars[J]. Hort Science,2007,42(2):386-390
[51]MUNNS R,TERMAAT A. Whole-plant responses to salinity[J]. Functional Plant Biology,1986,13(1):143-160
[52]劉友良,毛才良,汪良駒. 植物耐鹽性研究進(jìn)展[J]. 植物生理學(xué)通訊,1987(4):1-7
[53]NOBLE C,ROGERS M. Arguments for the use of physiological criteria for improving the salt tolerance in crops[J]. Plant and Soil,1992,146(1):99-107
[54]BAO A K,GUO Z G,ZHANG H F,et al. A procedure for assessing the salt tolerance of lucerne (Medicago sativa L.) cultivar seedlings by combining agronomic and physiological indicators[J]. New Zealand Journal of Agricultural Research,2009,52(4):435-442
[55]IRIGOYEN J,EINERICH D,SáNCHEZ-DíAZ M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants[J]. Physiologia Plantarum,1992,84(1):55-60
[56]QI W,ZHANG L,XU H,et al. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings[J]. Biochemical and Biophysical Research Communications,2014,450(2):1010-1015
[57]王玉祥,張博,王濤. 鹽脅迫對苜蓿葉綠素、甜菜堿含量和細(xì)胞膜透性的影響[J]. 草業(yè)科學(xué),2009,26(3):53-56
[58]李源,劉貴波,高洪文,等. 紫花苜蓿種質(zhì)耐鹽性綜合評價(jià)及鹽脅迫下的生理反應(yīng)[J]. 草業(yè)學(xué)報(bào),2010,19(4):79-86
[59]PETRUSA L M,WINICOV I. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl[J]. Plant Physiology and Biochemistry (Paris),1997,35(4):303-310
[60]HANSON A D,NELSEN C E,EVERSON E H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars 1[J]. Crop Science,1977,17(5):720-726
[61]RAO G,RAO G R. Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity[J]. Indian Journal of Experimental Biology,1981,19(8):768-770
[62]吳欣明,王運(yùn)琦,劉建寧,等. 羊茅屬植物耐鹽性評價(jià)及其對鹽脅迫的生理反應(yīng)[J]. 草業(yè)學(xué)報(bào),2007(6):67-73
[63]TORABI M,HALIM R,SINNIAH U,et al. Influence of salinity on the germination of Iranian alfalfa ecotypes[J]. African Journal of Agricultural Research,2011,6(19):4624-4630
[64]QINGFANG H,CHONGWEI L. The study on salt tolerance of different alfalfa varieties in germ inating period[J]. Acta Botanica Boreali-Occidentalia Sinica,2003,23(4):597-602
[65]宗俊勤,高艷芝,陳靜波,等. 荻不同資源種子萌發(fā)期抗鹽性評價(jià)[J]. 草地學(xué)報(bào),2013,21(6):1148-1156
[66]柴艷,孫宗玖,李培英,等. 新疆狗牙根種質(zhì)芽期耐鹽性綜合評價(jià)[J]. 草業(yè)學(xué)報(bào),2017,26(8):154-167
[67]MUNNS R. Comparative physiology of salt and water stress[J]. Plant,Cell and Environment,2002,25(2):239-250
[68]PAGTER M,ARORA R. Winter survival and deacclimation of perennials under warming climate:physiological perspectives[J]. Physiol Plant,2013,147(1):75-87
[69]CASTONGUAY Y,LABERGE S,BRUMMER E C,et al. Alfalfa winter hardiness:a research retrospective and integrated perspective [J]. Advances in Agronomy,2006(90):203-265
[70]田小霞,毛培春,李杉杉,等. 紫花苜蓿苗期耐鹽指標(biāo)篩選及耐鹽性綜合評價(jià)[J]. 草地學(xué)報(bào),2017,25(3):545-553
[71]高獻(xiàn)磊,包賽很那,周忠義,等. 4種牧草種子在不同逆境下的萌發(fā)特性[J]. 草業(yè)科學(xué),2022,39(9):1823-1831
[72]CUI G W,JI G X,LIU S Y,et al. Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai-Tibetan Plateau[J]. Acta Physiologiae Plantarum,2019,41(7):1-9
[73]馬琳. NaCl脅迫對牧草種子萌發(fā)與幼苗生理生化的影響及耐鹽性評價(jià)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2010:30
[74]王國偉,葉彥輝,南吉斌,等. 5種牧草芽期耐鹽性評價(jià)[J]. 高原農(nóng)業(yè),2020,4(6):575-579
[75]孟林,毛培春,張國芳,等. 17個苜蓿品種苗期抗旱性鑒定[J]. 草業(yè)科學(xué),2008(1):21-25
[76]湛妲,孫鑫博,濮陽雪華,等. 16個草地早熟禾品種耐熱性能的比較[J]. 中國草地學(xué)報(bào),2012,34(6):54-60
[77]馬祎,王彩云. 幾種引進(jìn)冷季型草坪草的生長及抗旱生理指標(biāo)[J]. 草業(yè)科學(xué),2001(2):57-61
[78]張鶴山,陳明新,田宏,等. 高溫脅迫下白三葉種子萌發(fā)特性及耐熱性研究[J]. 種子,2010,29(8):1-5
[79]于潔,閆利軍,冀曉婷,等. 苜蓿和扁蓿豆萌發(fā)期耐鹽指標(biāo)篩選及耐鹽性綜合評價(jià)[J]. 植物遺傳資源學(xué)報(bào),2017,18(3):449-460
[80]李娟霞,白小明,張翠,等. 7個野生一年生早熟禾種質(zhì)萌發(fā)期耐鹽性綜合評價(jià)[J]. 草地學(xué)報(bào),2022,30(11)2937-2948
[81]簡令成. 植物抗寒機(jī)理研究的新進(jìn)展[J]. 植物學(xué)通報(bào),1992,(3):17-22,16
[82]TOMPKINS D K,ROSS J B,MOROZ D L. Dehardening of annual bluegrass and creeping bentgrass during late winter and early spring[J]. Agronomy Journal,2000,92(1):5-9
[83]HU T,LIU S Q,AMOMBO E,et al. Stress memory induced rearrangements of HSP transcription,photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress[J]. Frontiers in Plant Science,2015(6):403
[84]ZHANG X,XU Y,HUANG B. Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea)[J]. Plant Cell and Environment,2019,42(3):947-958
[85]俞玲,馬暉玲. 甘肅幾種早熟禾內(nèi)源激素水平及干旱適應(yīng)性[J]. 中國沙漠,2015,35(1):182-188
[86]CHEN D,WANG S,CAO B,et al. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings[J]. Frontiers in Plant Science,2016(6):1241
[87]CHEN X,ZHANG Z,WU B. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage[J]. Scientia Agricultura Sinica,2014,47(10):2038-2046
[88]SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Gene expression and signal transduction in water-stress response[J]. Plant Physiology,1997,115(2):327
[89]MOHAMMADI M H S,ETEMADI N,ARAB M M,et al. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl,Paclobutrazol and Abscisic acid under drought stress[J]. Plant Physiology and Biochemistry,2017(111):129-143
[90]LU S Y,SU W,LI H H,et al. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2 and NO-induced antioxidant enzyme activities[J]. Plant Physiology and Biochemistry,2009,47(2):132-138
[91]LI Z,YU J,PENG Y,et al. Metabolic pathways regulated by abscisic acid,salicylic acid and γ‐aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)[J]. Physiologia Plantarum,2017,159(1):42-58
[92]HE Y,LIU Y,CAO W,et al. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J]. Crop Science,2005,45(3):988-995
[93]NABATI D,SCHMIDT R,PARRISH D. Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron[J]. Crop Science,1994,34(1):198-202
[94]王慧,王冬梅,張澤洲,等. 外源褪黑素對干旱脅迫下黑麥草和苜??寡趸芰梆B(yǎng)分吸收的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2022,33(5):1311-1319
[95]TARCZYNSKI M C,JENSEN R G,BOHNERT H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol[J]. Science,1993,259(5094):508-510
[96]DEVEREAUX A C. Transformation and overexpression of a MnSOD gene in perennial ryegrass (Lolium perenne L.)[D]. Guelph:University of Guelph,2000:35
[97]LIU Z H,ZHANG H M,LI G L,et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase[J]. Euphytica,2011,178(3):363-372
[98]WU G T,CHEN J Q,HU Z H,et al. Production of transgenic tall fescue plants with enhanced stress tolerances by Agrobacterium tumefaciens-mediated transformation[J]. Agricultural Sciences in China,2006,5(5):330-338
[99]JAMES V A,NEIBAUR I,ALTPETER F. Stress inducible expression of the DREB1A transcription factor from xeric,Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance[J]. Transgenic Research,2008,17(1):93-104
[100]ZONG X,YAN Q,WU F,et al. Genome-wide analysis of the role of NAC family in flower development and abiotic stress responses in Cleistogenes songorica[J]. Genes,2020,11(8):927
[101]LI Q,ZHAO H,WANG X,et al. Tartary buckwheat transcription factor FtbZIP5,regulated by FtSnRK2. 6,can improve salt/drought resistance in transgenic Arabidopsis[J]. International journal of molecular sciences,2020,21(3):1123
[102]瞿宋林,吳一凡,劉忠寬,等. 叢枝菌根真菌對紫花苜蓿生長發(fā)育特性的影響[J]. 草地學(xué)報(bào),2022,30(10):2529-2534
[103]NADEEM S M,AHMAD M,ZAHIR Z A,et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology advances,2014,32(2):429-448
[104]SMITH S E,READ D J. Mycorrhizal symbiosis[M]. London:Academic press,2010:48-54
[105]HE A L,NIU S Q,ZHAO Q,et al. Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron[J]. International Journal of Molecular Sciences,2018,19(2):469
[106]HAN Q Q,LYU X P,BAI J P,et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Frontiers in Plant Science,2014(5):525
[107]韓慶慶,賈婷婷,呂昕培,等. 枯草芽孢桿菌GB03對紫花苜蓿耐鹽性的影響[J]. 植物生理學(xué)報(bào),2014,50(9):1423-1428
[108]MALINOWSKI D P,BELESKY D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses:mechanisms of drought and mineral stress tolerance[J]. Crop Science,2000,40(4):923-940
[109]NAGABHYRU P,DINKINS R D,WOOD C L,et al. Tall fescue endophyte effects on tolerance to water-deficit stress[J]. BMC Plant Biology,2013,13(1):1-17
[110]郭艷妮. 不同耐鹽性苜蓿接種叢枝菌根真菌對鹽脅迫的生理響應(yīng)[D]. 太原:山西農(nóng)業(yè)大學(xué),2015:17-27
(責(zé)任編輯 劉婷婷)