亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        帶參數(shù)時空分?jǐn)?shù)階Fokas-Lenells 方程的精確解*

        2022-12-27 07:59:54劉楊秀胡彥霞
        關(guān)鍵詞:方法

        劉楊秀, 胡彥霞

        (華北電力大學(xué) 數(shù)理學(xué)院,北京 102206)

        引 言

        近幾十年來,分?jǐn)?shù)階非線性偏微分方程的研究已滲透到許多科學(xué)領(lǐng)域中.由整數(shù)階微分方程推廣出的分?jǐn)?shù)階微分方程,在描述一些系統(tǒng)的動力學(xué)行為中,更加能反映出系統(tǒng)的實際變化規(guī)律[1].眾所周知的分?jǐn)?shù)階非線性Schr?dinger 方程就是非常典型的一類非線性發(fā)展方程.很多分?jǐn)?shù)階非線性偏微分方程與深水波動、潛水波動現(xiàn)象有著緊密的聯(lián)系.如果知道這類方程的精確解,將有利于數(shù)值模擬進(jìn)行檢驗以及定性分析.由此我們需要了解分?jǐn)?shù)階導(dǎo)數(shù)各種詳細(xì)的定義,比如R-L 分?jǐn)?shù)階導(dǎo)數(shù)、Caputo 分?jǐn)?shù)階導(dǎo)數(shù)等[2-4],同樣用來解決整數(shù)階非線性偏微分方程的方法,也可以應(yīng)用到分?jǐn)?shù)階非線性偏微分方程上.從現(xiàn)有文獻(xiàn)看,求解分?jǐn)?shù)階非線性偏微分方程的方法已有眾多,比如試探函數(shù)法[5]、Horita 法[6]、擴(kuò)展的直接代數(shù)法[7]、李群方法[8-9]、Jacobi 橢圓函數(shù)法[10]、擴(kuò)展的Jacobi 橢圓函數(shù)法[11]、廣義G′/G方法[12]、sine-Gordon 方法[13]、多項式完全判別系統(tǒng)法[14]以及其他求解方法[15-24].由于非線性分?jǐn)?shù)階偏微分方程的多樣性及復(fù)雜性和每一種求解方法的局限性,還未能有一種通用的普遍有效的求解方法.因此,運(yùn)用有效的方法去求非線性分?jǐn)?shù)階偏微分方程的精確解仍是一個需要不斷研究的課題之一.隨著MATLAB 等其他數(shù)學(xué)軟件的應(yīng)用和普及,借助計算機(jī)軟件可以幫助我們更方便地解決這一問題.

        本文主要考慮非線性光學(xué)領(lǐng)域中的帶參數(shù)時空分?jǐn)?shù)階Fokas-Lenells 方程[25]:

        多項式完全判別系統(tǒng)法是一種求解此類問題比較有效的方法,是將偏微分方程在行波變換下簡化為常微分方程,再對常微分方程中的多項式進(jìn)行完整分類并求解相應(yīng)積分,從而得到原方程的精確解.對于分?jǐn)?shù)階偏微分方程,若其在行波變換下簡化為u′(ξ)=G(u,θ1,θ2,···,θm)(θ1,θ2,···,θm為 相應(yīng)參數(shù),且G(u,θ1,θ2,···,θm)是關(guān)于u的多項式)的形式,就可以利用此方法進(jìn)行求解.關(guān)于此方法的介紹及應(yīng)用詳見文獻(xiàn)[37-41].

        本文考慮方程(1)在一般情況下的解的問題,利用多項式完全判別系統(tǒng)法,根據(jù)對方程(1)單行波解的完整分類,在不做任何參數(shù)限制的條件下,求得方程(1)在一般情況下的9 種精確解,包括有理函數(shù)解、周期解、孤波解、Jacobi 橢圓函數(shù)解和雙曲函數(shù)解等,繪制了精確解的相關(guān)圖像,由此分析了參數(shù)對解的結(jié)構(gòu)的影響.

        1 預(yù) 備 知 識

        2 帶參數(shù)時空分?jǐn)?shù)階Fokas-Lenells 方程的約化分析

        首先對方程進(jìn)行行波變換,令

        3 帶參數(shù)Fokas-Lenells 方程的精確解

        圖1 | Ω1(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖1(b)對應(yīng)的等高線圖,以及t =3 時| Ω1(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω1(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω1(x,t)|2 的 三維圖; (c) 圖1(b)的等高線圖; (d) 當(dāng)t =3 時| Ω1(x,t)|2關(guān) 于x 的截面圖Fig. 1 The 3D graph of | Ω1(x,t)|2 with different values of the fractional derivative, the contour plot of fig.1(b) and the sectional view of | Ω1(x,t)|2 against x with t =3: (a) the graphic model of | Ω1(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω1(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.1(b);(d) the sectional view of | Ω1(x,t)|2 against x when t=3

        圖2 | Ω2(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖2(b)對應(yīng)的等高線圖,以及t =3 時| Ω2(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω2(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω2(x,t)|2 的 三維圖; (c) 圖2(b)的等高線圖; (d) 當(dāng)t =3 時| Ω2(x,t)|2關(guān) 于x 的截面圖Fig. 2 The 3D graph of | Ω2(x,t)|2 with different values of the fractional derivative, the contour plot of fig.2(b) and the sectional view of | Ω2(x,t)|2 against x with t =3: (a) the graphic model of | Ω2(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω2(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.2(b);(d) the sectional view of | Ω2(x,t)|2 against x when t=3

        經(jīng)檢驗,此情況不成立,不予討論.

        圖3 | Ω3(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖3(b)對應(yīng)的等高線圖,以及t =3 時| Ω3(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω3(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω3(x,t)|2 的 三維圖; (c) 圖3(b)的等高線圖; (d) 當(dāng)t =3 時| Ω3(x,t)|2關(guān) 于x 的截面圖Fig. 3 The 3D graph of | Ω3(x,t)|2 with different values of the fractional derivative, the contour map of fig. 3(b) and the sectional view of | Ω3(x,t)|2 against x with t =3: (a) the graphic model of | Ω3(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω3(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 3(b);(d) the sectional view of | Ω3(x,t)|2 against x when t=3

        圖4 | Ω4(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖4(b)對應(yīng)的等高線圖,以及t =3 時| Ω4(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω4(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω4(x,t)|2 的 三維圖; (c) 圖4(b)的等高線圖; (d) 當(dāng)t =3 時| Ω4(x,t)|2關(guān) 于x 的截面圖Fig. 4 The 3D graph of | Ω4(x,t)|2 with different values of the fractional derivative, the contour plot of fig.4(b) and the sectional view of | Ω4(x,t)|2 against x with t =3: (a) the graphic model of | Ω4(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω4(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.4(b);(d) the sectional view of | Ω4(x,t)|2 against x when t=3

        圖5 | Ω5(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖5(b)對應(yīng)的等高線圖,以及t =3 時| Ω5(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω5(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω5(x,t)|2 的 三維圖; (c) 圖5(b)的等高線圖; (d) 當(dāng)t =3 時| Ω5(x,t)|2關(guān) 于x 的截面圖Fig. 5 The 3D graph of | Ω5(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 5(b) and the sectional view of | Ω5(x,t)|2 against x with t =3: (a) the graphic model of | Ω5(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω5(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 5(b);(d) the sectional view of | Ω5(x,t)|2 against x when t=3

        圖6 | Ω6(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖6(b)對應(yīng)的等高線圖,以及t =3 時| Ω6(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω6(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω6(x,t)|2 的 三維圖; (c) 圖6(b)的等高線圖;(d) 當(dāng)t =3 時| Ω6(x,t)|2關(guān) 于x 的截面圖Fig. 6 The 3D graph of | Ω6(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 6(b) and the sectional view of | Ω6(x,t)|2 against x with t =3: (a) the graphic model of | Ω6(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω6(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 6(b);(d) the sectional view of | Ω6(x,t)|2 against x when t=3

        圖7 | Ω7(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖7(b)對應(yīng)的等高線圖,以及t =3 時| Ω7(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω7(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω7(x,t)|2 的 三維圖; (c) 圖7(b)的等高線圖; (d) 當(dāng)t =3 時| Ω7(x,t)|2關(guān) 于x 的截面圖Fig. 7 The 3D graph of | Ω7(x,t)|2 with different values of the fractional derivative, the contour plot of fig.7(b) and the sectional view of | Ω7(x,t)|2 against x with t =3: (a) the graphic model of | Ω7(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω7(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.7(b); (d) the sectional view of | Ω7(x,t)|2 against x when t=3

        圖8 | Ω8(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖8(b)對應(yīng)的等高線圖,以及t =3 時| Ω8(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω8(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω8(x,t)|2 的 三維圖; (c) 圖8(b)的等高線圖; (d) 當(dāng)t =3 時α =1/2,β=1/3,|Ω8(x,t)|2 關(guān) 于x 的截面圖Fig. 8 The 3D graph of | Ω8(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 8(b) and the sectional view of | Ω8(x,t)|2 against x with t =3: (a) the graphic model of | Ω8(x,t)|2,α=1/2,β=1/3; (b) the graphic model of |Ω 8(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 8(b);(d) the sectional view of | Ω8(x,t)|2 against x when t=3

        圖9 | Ω9(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時的三維圖,圖9(b)對應(yīng)的等高線圖,以及t =3 時| Ω9(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω9(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω9(x,t)|2 的 三維圖; (c) 圖9(b)的等高線圖; (d) 當(dāng)t =3 時| Ω9(x,t)|2關(guān) 于x 的截面圖Fig. 9 The 3D graph of | Ω9(x,t)|2 with different values of the fractional derivative, the contour plot of fig.9(b) and the sectional view of | Ω9(x,t)|2 against x with t =3: (a) the graphic model of | Ω9(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω9(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.9(b);(d) the sectional view of | Ω9(x,t)|2 against x when t=3

        4 結(jié) 果 分 析

        方程精確解的結(jié)構(gòu)反映了光學(xué)系統(tǒng)描述的波在介質(zhì)中傳播的特性.這里,我們主要討論分析分?jǐn)?shù)階參數(shù)α , β 的變化對解的結(jié)構(gòu)的影響.根據(jù)前面對方程(1)精確解的 |Ωi(x,t)|2的相關(guān)圖形的分析發(fā)現(xiàn),在圖1、3、5、7、9 中,當(dāng)其中一參數(shù) β不變,參數(shù)α 變化時,對應(yīng)的方程的奇異解的結(jié)構(gòu)沒有發(fā)生本質(zhì)的變化,只有波峰會向左或向右偏移,或出現(xiàn)幾個零散的波峰.由于這些奇異解在波峰處有一個不連續(xù)的一階導(dǎo)數(shù),這反映出對應(yīng)的方程(1)描述的波傳播的特性.在圖2、8 中,當(dāng)參數(shù)α 變化時,奇異周期解的結(jié)構(gòu)及奇異性、周期性也并未發(fā)生大的改變.在圖4 中,隨著 α的減小,扭波峰值會向右移動,但扭波仍然存在,其等高線分布僅在很小的時間范圍內(nèi)波動,但在t=0.1左 右出現(xiàn)新的走勢.在圖6 中,隨著α 的變化,對應(yīng)的奇異解的結(jié)構(gòu)也沒有發(fā)生質(zhì)的變化,但從等高線密集程度來看,有幾條明顯的“山脈”,反映了此時方程(1)描述的波傳播的情況.

        5 結(jié) 論

        本文通過行波變換,將光學(xué)系統(tǒng)中帶參數(shù)時空分?jǐn)?shù)階Fokas-Lenells 方程轉(zhuǎn)換成常微分方程,然后利用多項式完全判別系統(tǒng)法對該方程進(jìn)行了單行波解的完整分類,在不對方程中的參數(shù)和n做任何限定的情況下,得到了方程在一般情況下的精確解,包括有理函數(shù)解、孤立波解、雙曲函數(shù)解、周期解、Jacobi 橢圓函數(shù)解等.在現(xiàn)有文獻(xiàn)中,還沒有見到對帶參數(shù)時空分?jǐn)?shù)階Fokas-Lenells 方程中的參數(shù)和n不做任何限定的情況下求的精確解的相關(guān)結(jié)論.這是本文與其他已有文獻(xiàn)不同的地方.為了更好地理解此模型的物理現(xiàn)象和研究光孤子的傳播特性,我們繪制了精確解的相關(guān)三維圖、等高線圖及截面圖,討論了分?jǐn)?shù)階參數(shù)對解的影響.隨著分?jǐn)?shù)階導(dǎo)數(shù)值的變化,比如 β 不變, α減小時,方程的解的結(jié)構(gòu)并未發(fā)生質(zhì)的變化,這也反映出了此時光脈沖在介質(zhì)中的傳播特性.多項式完全判別系統(tǒng)法不僅可以用來求偏微分方程的精確解,也可以對方程進(jìn)行定性分析,這也將是我們此后工作的一部分.

        參考文獻(xiàn)( References ) :

        [1]W ANG B H, WANG Y Y, DAI C Q, et al. Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation[J].Alexandria Engineering Journal, 2020, 59(6): 4699-4707.

        [2]K ILBAS A, SRIVASTAVA H M, TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006.

        [3]M ILLER K S, ROSS B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].Wiley-Interscience,1993.

        [4]A TANGANA A.Derivative With a New Parameter Theory, Methods and Applications[M]. Amsterdam: Elsevier Science, 2015.

        [5]P ANDIR Y, EKIN A. Dynamics of combined soliton solutions of unstable nonlinear Schr?dinger equation with new version of the trial equation method[J].Chinese Journal of Physics, 2020, 67: 534-543.

        [6]L IU XIAOYAN, ZHOU Q, BISWAS A, et al. The similarities and differences of different plane solitons controlled by (3 + 1)-dimensional coupled variable coefficient system[J].Journal of Advanced Research, 2020, 24:167-173.

        [7]S AJID N, AKRAM G. Optical solitons with full nonlinearity for the conformable space-time fractional Fokas-Lenells equation[J].Optik, 2019, 196: 163131.

        [8]H ASHEMI M S, BALEANU D.Lie Symmetry Analysis of Fractional Differential Equations[M]. New York:Chapman and Hall/CRC , 2020.

        [9] 胡 彥鑫, 郭增鑫, 辛祥鵬. 一類Burgers-KdV方程的李群分析、李代數(shù)、對稱約化及精確解[J]. 聊城大學(xué)學(xué)報(自然科學(xué)版), 2021, 34(2): 8-13. (HU Yanxin, GUO Zengxin, XIN Xiangpeng. Lie group analysis, Lie algebra, symmetric reduction and exact solutions of a class of nonlinear evolution equations[J].Journal of Liaocheng University(Natural Science), 2021, 34(2): 8-13.(in Chinese))

        [10]K ALBANI K, AL-GHAFRI K S, KRISHNAN E V, et al. Pure-cubic optical solitons by Jacobi’s elliptic function approach[J].Optik, 2021, 243: 167404.

        [11]B ISWAS A, EKICI M, SONMEZOGLU A, et al. Highly dispersive optical solitons with non-local nonlinearity by extended Jacobi’s elliptic function expansion[J].Optik, 2019, 184: 277-286.

        [12]M ANAFIAN J, AGHDAEI M F, JEDDI R S, et al. Application of the generalizedG'/G-expansion method for nonlinear PDEs to obtaining soliton wave solution[J].Optik, 2017, 135: 395-406.

        [13]K ALLEL W, ALMUSAWA H, MIRHOSSEINI-ALIZAMINI S M, et al. Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion[J].Results in Physics, 2021, 26: 104388.

        [14] 胡 艷, 孫峪懷. 應(yīng)用多項式完全判別系統(tǒng)方法求解時空分?jǐn)?shù)階復(fù)Ginzburg-Landau方程[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2021,42(8): 874-880. (HU Yan, SUN Yuhuai. Solutions to space-time fractional complex Ginzburg-Landau equations with the complete discrimination system for polynomial method[J].Applied Mathematics and Mechanics, 2021,42(8): 874-880.(in Chinese))

        [15]C AO Q, DAI C. Symmetric and anti-symmetric solitons of the fractional second-and third-order nonlinear Schr?dinger equation[J].Chinese Physics Letters, 2021, 38(9): 090501.

        [16]D AI C Q, WANG Y Y, ZHANG J F. Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials[J].Nonlinear Dynamics, 2020, 102: 179-391.

        [17]F EI J, CAO W. Explicit soliton-cnoidal wave interaction solutions for the (2 + 1)-dimensional negative-order breaking soliton equation[J].Waves in Random and Complex Media, 2020, 30(1): 54-64.

        [18]H AN H, LI H, DAI C. Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schr?dinger equation[J].Applied Mathematics Letters, 2021, 120: 107302.

        [19]A RSHED S, RAZA N. Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion[J].Chinese Journal of Physics, 2020, 63: 314-324.

        [20]Y OUNIS M, SEADAWY A R, BABER M Z, et al. Analytical optical soliton solutions of the Schr?dinger-Poisson dynamical system[J].Results in Physics, 2021, 27: 104369.

        [21]F ANG Y, WU G Z, WANG Y Y, et al. Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN[J].Nonlinear Dynamics, 2021, 105: 603-616.

        [22]R AGHURAMAN P J, BAGHYA SHREE S, MANI RAJAN M S. Soliton control with inhomogeneous dispersion under the influence of tunable external harmonic potential[J].Waves in Random and Complex Media, 2021,31(3): 474-485.

        [23]D AI C Q, WANG Y Y. Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals[J].Nonlinear Dynamics, 2020, 102: 1733-1741.

        [24]A IN Q T, HE J H, N ANJUM, et al. The fractional complex transform: a novel approach to the time-fractional Schr?dinger equation[J].Fractals, 2021, 28(7): 2150002.

        [25]S HEHATA M, REZAZADEH H, ZAHRAN E, et al. New optical soliton solutions of the perturbed Fokas-Lenells equation[J].Communications in Theoretical Physics, 2019, 71(11): 13-18.

        [26]T RIKI H, WAZWAZ A M. Combined optical solitary waves of the Fokas-Lenells equation[J].Waves in Random and Complex Media, 2017, 27(4): 587-593.

        [27]A LI KHALID K, OSMAN M S, ABDEL-ATY M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method[J].Alexandria Engineering Journal, 2020, 59(3): 1191-1196.

        [28]B ULUT H, ABDULKADIR SULAIMAN T, MEHMET BASKONUS H, et al. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation[J].Optik, 2018, 172: 20-27.

        [29]T RIKI H, ZHOU Q, LIU W, et al. Localized pulses in optical fibers governed by perturbed Fokas-Lenells equation[J].Physics Letters A, 2022, 421: 127782.

        [30]B ISWAS A, YILDIRM Y, YASAR E, et al. Optical soliton solutions to Fokas-Lenells equation using some different methods[J].Optik, 2018, 173: 21-31.

        [31]B ISWAS A, EKICI M, SONMEZOGLU A, et al. Optical solitons with differential group delay for coupled Fokas-Lenells equation by extended trial function scheme[J].Optik, 2018, 165: 102-110.

        [32]Z HANG Y, YANG J W, CHOW K W, et al. Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation[J].Nonlinear Analysis:Real World Applications, 2017, 33: 237-252.

        [33]Z HANG Q, ZHANG Y, YE R. Exact solutions of nonlocal Fokas-Lenells equation[J].Applied Mathematics Letters, 2019, 98: 336-343.

        [34]Y AKUP Y, BISWAS A, DAKOVA A, et al. Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by sine-Gordon equation approach[J].Results in Physics, 2021, 26: 104409.

        [35]D IEU DONNE G, TIOFACK C G L, SEADAWY A, et al. Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas-Lenells equation[J].The European Physical Journal Plus, 2020, 135:371.

        [36]N ADIA M, GHAZALA A. Exact solitary wave solutions of the (1 + 1)-dimensional Fokas-Lenells equation[J].Optik, 2020, 208: 164459.

        [37] 楊 翠紅, 朱思銘, 梁肇軍. 多項式代數(shù)方程根的完全分類及其應(yīng)用[J]. 中山大學(xué)學(xué)報(自然科學(xué)版), 2003, 42(1): 5-8.(YANG Cuihong, ZHU Siming, LIANG Zhaojun. Complete discrimination of the roots of polynomials and its applications[J].Acta Scientiarum Naturalium Universitatis Sunyatseni(Natural Science), 2003, 42(1): 5-8.(in Chinese))

        [38] 夏 壁燦, 楊路. 多項式判別矩陣的若干性質(zhì)及其應(yīng)用[J]. 應(yīng)用數(shù)學(xué)學(xué)報, 2003, 4: 652-663. (XIA Bican, YANG Lu.Some properties of the discrimination matrix of polynomials with applications[J].Acta Mathematicae Applicatae Sinica, 2003, 4: 652-663.(in Chinese))

        [39] 楊 路, 張景中, 侯曉榮. 非線性代數(shù)方程組與定理機(jī)器證明[M]. 上海: 上??萍冀逃霭嫔? 1996. (YANG Lu,ZHANG Jingzhong, HOU Xiaorong.Machine Proof of Systems of Nonlinear Algebraic Equations and Theorems[M]. Shanghai: Shanghai Science and Technology Education Press, 1996. (in Chinese))

        [40]L IU C. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations[J].Computer Physics Communications, 2009, 181(2): 317-324.

        [41] 辛 華. 帶有微擾項的Fokas-Lenells方程的包絡(luò)行波模式[J]. 數(shù)學(xué)的實踐與認(rèn)識, 2021, 51(11): 324-328. (XIN Hua.The patterns of envelope traveling waves of Fokas-Lenells equation with perturbation term[J].Mathematics inPractice and Theory, 2021, 51(11): 324-328.(in Chinese))

        [42]K HALIL R, HORANI A, YOUSEF A, et al. A new definition of fractional derivative[J].Journal of Computational and Applied Mathematics, 2014, 264: 65-70.

        [43]L IU C. Counterexamples on Jumarie’s two basic fractional calculus formulae[J].Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/3): 92-94.

        [44]L IU C. Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions[J].Chaos,Solitons and Fractals, 2018, 109: 219-222.

        [45]T ARASOV V E. No nonlocality, no fractional derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 157-163.

        [46]T ARASOV V E. No violation of the Leibniz rule, no fractional derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11): 2945-2948.

        [47]W ANG B H, WANG Y Y. Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE[J].Applied Mathematics Letters, 2020, 110: 106583.

        [48]Y U L J, WU G Z, WANG Y Y, et al. Traveling wave solutions constructed by Mittag-Leffler function of a (2 +1)-dimensional space-time fractional NLS equation[J].Results in Physics, 2020, 17: 103156.

        [49]W ANG B H, LU P H, DAI C Q, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schr?dinger equation[J].Results in Physics, 2020, 17: 103036.

        [50]D AI C Q, WU G, LI H J, et al. Wick-type stochastic fractional solitons supported by quadratic-cubic nonlinearity[J].Fractals, 2021, 29(7): 2150192.

        猜你喜歡
        方法
        中醫(yī)特有的急救方法
        中老年保健(2021年9期)2021-08-24 03:52:04
        高中數(shù)學(xué)教學(xué)改革的方法
        河北畫報(2021年2期)2021-05-25 02:07:46
        化學(xué)反應(yīng)多變幻 “虛擬”方法幫大忙
        變快的方法
        兒童繪本(2020年5期)2020-04-07 17:46:30
        學(xué)習(xí)方法
        可能是方法不對
        用對方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        最有效的簡單方法
        山東青年(2016年1期)2016-02-28 14:25:23
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        亚洲欧美日韩综合久久| 欲妇荡岳丰满少妇岳| 日日噜狠狠噜天天噜av| 青春草国产视频| 日韩熟女一区二区三区| 日本不卡一区二区三区在线视频| 久久婷婷五月国产色综合| 一本大道色婷婷在线| 亚洲色www无码| 精品国产女主播一区在线观看| 亚洲午夜精品一区二区| 中文字幕精品一二三四五六七八 | 中文字幕人成乱码熟女| 精品久久久久久中文字幕| 亚洲午夜久久久久中文字幕久| 日本草逼视频免费观看| 一本色道久在线综合色| 久久久av波多野一区二区 | 中文字幕人妻熟在线影院| 婷婷久久久亚洲欧洲日产国码av| 亚洲第一无码精品久久| 国产日产久久福利精品一区| 日本视频一区二区三区在线观看| 日产学生妹在线观看| 99视频在线国产| 国产粉嫩高清| 蜜桃av一区二区三区| 色综合天天综合欧美综合| 日产学生妹在线观看| 亚洲精品456| 视频福利一区二区三区| 精品人妻系列无码人妻漫画| 综合无码一区二区三区| 精品三级久久久久久久| 亚洲av老熟女一区二区三区| 亚洲avav天堂av在线网毛片| 亚洲国产精品久久久久秋霞1| 中文字幕麻豆一区二区| 亚洲av本道一本二本三区| 国产精品毛片无遮挡| 中文字幕欧美一区|