王麗娟,牛瑞利
不銹鋼激光點焊接頭組織和力學性能研究
王麗娟,牛瑞利
(鄭州工業(yè)應用技術學院,鄭州 451100)
改善SUS301L–HT不銹鋼激光點焊焊接性能。以2 mm SUS301L–HT不銹鋼為母材進行激光點焊試驗,并分析焊接接頭的金相組織、硬度、拉伸性能以及斷口形貌等。焊點表面無損壞、壓痕均勻、無較大焊接變形,表面無飛濺、母材顏色無明顯變化。焊核區(qū)的微觀組織主要是柱狀晶,柱狀晶依附于未熔化母材晶粒向焊核中心生長。母材硬度最高,約為309HV;焊核中心附近區(qū)域硬度適中,約為255HV,熱影響區(qū)硬度最小,不到220HV。點焊接頭斷裂形式多為紐扣式斷裂且發(fā)生在熱影響區(qū)。不銹鋼激光點焊整體質量較好,可用于軌道列車車體加工。
激光焊;SUS301L-HT不銹鋼;微觀組織;力學性能
目前,我國軌道列車發(fā)展十分迅速,不銹鋼在列車中的應用越來越普遍,主要是因為不銹鋼列車優(yōu)點比較明顯[1-3],如防火性、安全性、撞擊吸能性、維護成本低等。其中,SUS301L奧氏不銹鋼不僅含碳量低而且還含有少量氮,除了可以確保焊接性和耐腐蝕性還能夠保持較高強度,因此SUS301L是不銹鋼列車車身材料首選[4-7]。列車車身成形涉及眾多加工方法,焊接則是不可或缺、至關重要的一個環(huán)節(jié)。奧氏體不銹鋼的焊接方法比較多,電阻點焊、電子束焊、TIG焊、MIG焊、激光焊是幾種比較常見的焊接方法[8-17]。以激光焊接為例,焊接熱源就是一束高能量激光束,將激光束作用在工件表面進行焊接的一種新興焊接技術[18-22]。與傳統(tǒng)焊接相比,激光焊優(yōu)勢比較明顯,焊接變形小、焊接應力小、焊接速度快、焊縫無需二次處理、焊縫成形好、焊接效率高[23-25]。激光焊在不銹鋼薄板焊接領域的應用非常廣泛,對于奧氏體不銹鋼激光焊的研究也已經逐步展開。楊立軍等[26]以0.5 mm厚A304不銹鋼為研究對象,采用YAG激光進行焊接工藝研究,給出了不同工作模式下的最佳工藝參數(shù)。張巖等[27]利用脈沖激光焊進行了SUS301L薄板不銹鋼對接焊實驗,并分析了此種焊接方法的工藝特點、接頭微觀組織和硬度等。陳樹青等[28]采用光纖激光對304奧氏體不銹鋼進行焊接,獲得成型良好的激光焊接接頭,利用光學顯微鏡、超景深、顯微硬度計等分析檢測手段,對304不銹鋼焊接接頭的微觀組織特點、力學性能及斷口特征進行了研究并進行相應的分析。孫家豪等[29]在316L不銹鋼的激光焊過程中,根據(jù)材料焊縫二維不光滑輪廓特點,采用分段函數(shù)思想,構建廣義回歸神經網絡焊縫二維形貌預測模型,平均相對誤差為?3.49%。歐陽軼等[30]采用激光焊對0.635 mm厚的A286不銹鋼薄板進行填絲焊接,研究了焊接接頭的微觀組織、顯微硬度、力學性能以及斷口形貌,焊縫區(qū)組織為柱狀晶奧氏體基體上分布著少量枝晶間的δ鐵素體,熱影響區(qū)發(fā)生了回復和再結晶,晶粒有一定程度的長大;在常溫和高溫拉伸過程中,焊接接頭均在母材處斷裂,并且斷裂形式為典型的韌性斷裂,焊縫滿足強度要求。樊宇等[31]在激光功率為1 350 W、焊接速度為0.8 m/min的工藝參數(shù)下對316L不銹鋼板材進行對接焊,發(fā)現(xiàn)激光功率和離焦量對熔深影響較大,而焊接速度則對熔寬和束腰寬影響較大。本文在現(xiàn)有研究的基礎上,以SUS301L-HT不銹鋼為研究對象,重點討論激光點焊接頭組織和力學性能,為不銹鋼激光點焊工藝設計提供一些參考。
試驗所選用母材為2 mm厚SUS301L-HT不銹鋼,母材成分與SUS301L完全相同,HT表示其強化方式。試樣具體尺寸為300 mm×150 mm×2 mm,不開坡口。
母材SUS301L-HT成分如下:C元素質量分數(shù)不大于0.03%,Si元素質量分數(shù)不大于1.0%,Mn元素質量分數(shù)不大于2.0%,P元素質量分數(shù)不大于0.045%,S元素質量分數(shù)不大于0.03%,Ni元素質量分數(shù)介于8%~10.5%,Cr元素質量分數(shù)介于18%~20%,N元素質量分數(shù)不大于0.02%,剩余為Fe元素。
試驗設備主要包括如下幾種:光纖激光器,型號為IPG YLR-4000,最大輸出功率為4 kW,激光波長為1.07 μm,焦點直徑為0.3 mm,焦長為250 mm;焊接機器人,型號為ABB IRB4400/60,額定負載為60 kg,重復精度可以達到0.07 mm。激光焊接主要參數(shù)如下:激光功率3 500 W,焊接速度3.0 m/min,離焦量+4 mm,保護氣體流量45 L/min。
焊接之前需要對焊接區(qū)域進行一些處理,如砂紙打磨、丙酮清洗等。焊接結束后,可觀察焊縫表面形貌。截取焊縫金相試樣并打磨,利用LWS金相顯微鏡觀察焊縫截面形貌;利用WDW3200萬能試驗機進行拉伸試驗;采用顯微硬度計觀測焊縫硬度分布,通過掃描電鏡觀測斷口形貌。試驗研究過程中,制作10個試樣,每個試樣進行1次試驗,試驗結果取平均值。
鑒于該材料主要用在軌道列車上,所以點焊完成后,焊點需要滿足以下幾點要求:外觀平整、無較大焊接變形;焊點表面無損壞、壓痕均勻;表面無飛濺;母材顏色無明顯變化。焊點宏觀形貌如圖1所示,從圖中可以看出:接頭內部并沒有出現(xiàn)飛濺現(xiàn)象;兩母材之間翹曲并不明顯;熔核無偏移;焊點表面壓痕深度非常小。通過反復試驗,當焊接電流為3.2 kA、電極壓力為4.3 kN、焊接周次為12時,點焊接頭質量最好。將點焊接頭放大25倍,具體形貌如圖2所示。從圖2中可以比較容易地分辨出母材、焊點熔核、熔合區(qū)域、熱影響區(qū),另外焊點的形狀規(guī)則、無夾雜物、組織比較純凈。
圖1 焊點宏觀形貌
圖2 焊點形貌(25倍)
母材微觀組織形貌如圖3a所示,可以看出母材主要由奧氏體組成,同時含有少量鐵素體。熱影響區(qū)微觀組織形貌如圖3b所示,即母材和焊核之間的過渡區(qū)域,該區(qū)域主要是一些等軸狀奧氏體晶粒,比較粗大且為熔化。因為點焊時間比較短、冷卻速度很快,所以熱影響區(qū)比較窄。熱影響區(qū)晶粒粗大的原因在于受焊接熱源影響晶粒出現(xiàn)回復和再結晶現(xiàn)象,導致晶粒不斷長大。除此之外,離焊縫越近,晶粒尺寸越大。如上所述,熱影響區(qū)組織分布并不均勻,因此該區(qū)域性能分布也是不均勻的,該區(qū)域往往是整個接頭中最薄弱的環(huán)節(jié)。
圖3c為焊核微觀組織形貌,可以看出:熔核組織聯(lián)生結晶特征比較明顯,存在大量柱狀晶;這些柱狀晶垂直于熔合線并向焊點中心生長。金屬從液態(tài)轉變?yōu)楣虘B(tài)的一個重要前提就是過冷度,即只要液態(tài)金屬的過冷度足夠,金屬就會形核并凝固。在點焊過程中,兩個電極之間的母材會被熔化,此時處于過熱狀態(tài)。但是在焊核邊緣區(qū)域始終存在未熔化的固相金屬與液相金屬接觸,此時焊核會依附在固相表面非自發(fā)成核,沿散熱最快方向朝焊核中心生長。最終,兩處柱狀晶會在板材中間處由于相互抵制而停止生長,具體如圖3d所示。
圖3 微觀形貌
點焊接頭硬度分布曲線如圖4所示,可以看出:焊接接頭的硬度分布并不均勻,呈現(xiàn)出“w”狀。其中母材處硬度最高,硬度約為309HV;焊核中心附近區(qū)域硬度適中,可以達到255HV,熱影響區(qū)硬度最小,不到220HV。
圖4 點焊接頭硬度分布曲線
不同工藝參數(shù)下對應的熔核直徑變化規(guī)律如圖5所示,熔核是基于在焊接頭通電后產生的熱能作用在不銹鋼金屬上形成的,由于熱能與所通的電流平方成正相關關系,因此電流對熔核影響很大。從圖5a可以看出,在2.0~3.2 kA范圍內,熔核直徑與電流成正比,在3.2 kA時達到最大值5.19 mm,當進一步增大電流后,直徑會由于金屬飛濺而大幅度降低。圖5b為熔核直徑與電極壓力關系曲線,可以看出,在3.7~4.3 kN范圍內,直徑表現(xiàn)正相關關系,達到最大值4.3 kN后,熔核直徑下降[32]。圖5c為熔核直徑與焊接時間的關系趨勢,可以看出在8~12 cyc(1 cyc=0.02 s)范圍內,直徑隨著焊接時間的延長而升高,與焊接電流左右機理類似,隨著時間的延長,所提供的熱能越高,對應的直徑也增加,但是當超過最大值12 cyc后,由于金屬的飛濺將會導致熔核直徑的下降,因此從熔核直徑的變化趨勢圖可以得出最優(yōu)的工藝參數(shù)為:焊接電流3.2 kA,電極壓力4.3 kN,焊接時間12 cyc。
拉剪力與焊接電流、電極壓力、焊接時間的關系如圖6所示,圖6a為與焊接電流關系,可以看出,在2.0~3.2 kA范圍內,拉剪力與電流表現(xiàn)為正相關,當超過3.2 kA最大電流后,由于產生了金屬飛濺,導致焊接頭位置的拉剪力降低。圖6b為與電極壓力關系,可以看出,在3.7~4.3 kN范圍內,拉剪力與電極壓力表現(xiàn)為正相關關系,當電極壓力超過最優(yōu)值4.3 kN后,由于電極與不銹鋼材料的點焊接觸面積升高,熱能輸入降低,對應拉剪力下降。圖6c為與焊接時間關系,可以看出,在8~12 cyc范圍,拉剪力與焊接時間表現(xiàn)為正相關趨勢,在12~16 cyc時間范圍內,由于金屬飛濺將會引起點焊接頭處的拉剪力降低,因此從拉剪力的變化趨勢圖可以得出最優(yōu)的工藝參數(shù)為:焊接電流3.2 kA,電極壓力4.3 kN,焊接時間12 cyc。
圖5 熔核直徑
圖6 拉剪力
1)SUS301L–HT不銹鋼點焊具有外觀平整、無較大焊接變形、焊點表面無損壞、壓痕均勻、母材顏色無明顯變化等特點。
2)焊核區(qū)的微觀組織主要是柱狀晶,柱狀晶依附于未熔化母材晶粒向焊核中心生長;熱影響區(qū)組織分布并不均勻,該區(qū)域往往是整個接頭中最薄弱的環(huán)節(jié),往往發(fā)生紐扣式斷裂。
3)母材處硬度最高,硬度約為309HV;焊核中心附近區(qū)域硬度適中,可以達到255HV,熱影響區(qū)硬度最小,不到220HV。綜上所述,不銹鋼激光點焊性能優(yōu)良、接頭質量較好,可用于軌道列車車體加工。
4)基于熔核直徑和拉剪力指標的考核,獲得點焊的最佳工藝參數(shù)為:焊接電流3.2 kA,電極壓力4.3 kN,焊接時間12 cyc。
[1] 陳俊科, 石巖, 劉佳, 等. 奧氏體不銹鋼激光焊接工藝研究[J]. 應用激光, 2015, 35(3): 335-338.
CHEN Jun-ke, SHI Yan, LIU Jia, et al. A Study of Austenitic Stainless Steel Laser Welding Process[J]. Applied Laser, 2015, 35(3): 335-338.
[2] 田文騰. 304奧氏體不銹鋼薄板光纖激光焊接試驗及數(shù)值模擬研究[D]. 徐州: 中國礦業(yè)大學, 2016: 25-45.
TIAN Wen-teng. The Research of Experiment and Numerical Simulation for Fiber Laser Welding 304 Austenitic Stainless Steel Thin Sheet[D]. Xuzhou: China University of Mining and Technology, 2016: 25-45.
[3] VOLPP J, VOLLERTSEN F. Impact of Multi-Focus Beam Shaping on the Process Stability[J]. Optics & Laser Technology, 2019, 112: 278-283.
[4] 李磊. 城軌客車用不銹鋼薄板激光搭接焊接頭組織與力學行為研究[D]. 大連: 大連交通大學, 2012: 15-42.
LI Lei. Microstructure and Mechanical Behavior on Lap Laser Welding Joint of Stainless Steel Sheet for Railway Vehicle[D]. Dalian: Dalian Jiaotong University, 2012: 15-42.
[5] 葉慶豐, 王少剛, 趙雅萱, 等. 超薄不銹鋼激光焊接頭的微觀組織與力學性能[J]. 焊接技術, 2017, 46(3): 16-20.
YE Qing-feng, WANG Shao-gang, ZHAO Ya-xuan, et al. Microstructure and Mechanical Properties of Ultra-Thin Stainless Steel Joint with Laser Beam Welding[J]. Welding Technology, 2017, 46(3): 16-20.
[6] HO J K, TSAI C H, TSAI M Y, et al. Development of a Novel Cooling System-Assisted Minimum Quantity Lubrication Method for Improvement of Milling Performance[J]. Journal of the Chinese Institute of Engineers, 2015, 38(3): 322-331.
[7] 王金鳳, 陳銀銀. 不銹鋼薄板激光焊接工藝研究[J]. 熱加工工藝, 2012, 41(1): 108-110.
WANG Jin-feng, CHEN Yin-yin. Research of Laser Welding Procedure for Ultra-Thin Stainless Steel Sheet [J]. Hot Working Technology, 2012, 41(1): 108-110.
[8] 康麗齊, 邵有發(fā), 魏良, 等. 電阻點焊在不銹鋼軌道車輛上的應用研究[J]. 電焊機, 2018, 48(3): 349-353.
KANG Li-qi, SHAO You-fa, WEI Liang, et al. Application Study of Spot Welding Equipment in Stainless Steel Rail Vehicles[J]. Electric Welding Machine, 2018, 48(3): 349-353.
[9] 孫書娟, 季業(yè)益, 陸寶山, 等. FeCoNiCrCu0.5高熵合金與304L不銹鋼電阻點焊的試驗研究[J]. 熱加工工藝, 2022, 51(5): 110-115.
SUN Shu-juan, JI Ye-yi, LU Bao-shan, et al. Experimental Investigation on Resistance Spot Welding between FeCoNiCrCu0.5High Entropy Alloy and 304L Stainless Steel[J]. Hot Working Technology, 2022, 51(5): 110-115.
[10] 胡興, 彭昭成, 馮廣杰, 等. SUS310S不銹鋼局部真空電子束焊接接頭殘余應力及變形研究[J]. 機械工程學報, 2020, 56(21): 38-47.
HU Xing, PENG Zhao-cheng, FENG Guang-jie, et al. Numerical Simulation of Residual Stress and Deformation of SUS310S Stainless Steel Local Vacuum Electron Beam Welded Joint[J]. Journal of Mechanical Engineering, 2020, 56(21): 38-47.
[11] 楊濤, 袁夢揚, 簡海林, 等. 焊接速度對304不銹鋼電子束焊接頭組織與性能的影響[J]. 機械工程材料, 2021, 45(12): 31-35.
YANG Tao, YUAN Meng-yang, JIAN Hai-lin, et al. Effects of Welding Speed on Microstructure and Properties of 304 Stainless Steel Electron Beam Welded Joint[J]. Materials for Mechanical Engineering, 2021, 45(12): 31-35.
[12] 劉自剛, 唐海鴻, 劉云華, 等. 不銹鋼DP-TIG焊接接頭組織與性能[J]. 材料導報, 2020, 34(S2): 1462-1464.
LIU Zi-gang, TANG Hai-hong, LIU Yun-hua, et al. Structure and Property of Stainless Steel Deep Penetration TIG Welding Welded Joint[J]. Materials Reports, 2020, 34(S2): 1462-1464.
[13] 陳曄, 姚屏, 鄭振興, 等. 雙脈沖MIG焊工藝參數(shù)對316L不銹鋼焊縫成形及性能影響研究[J]. 自動化與信息工程, 2022, 43(3): 1-6.
CHEN Ye, YAO Ping, ZHENG Zhen-xing, et al. Research on Influence of Double Pulse MIG Welding Process Parameters on Weld Form and Properties of 316L Stainless Steel[J]. Automation & Information Engineering, 2022, 43(3): 1-6.
[14] 張義福, 張華, 蘇展展, 等. Zr-Ni中間層對TC4鈦合金/304SS不銹鋼激光焊接頭組織性能的影響[J]. 稀有金屬, 2020, 44(11): 1137-1145.
ZHANG Yi-fu, ZHANG Hua, SU Zhan-zhan, et al. Microstructure and Mechanical Properties of Laser Welding Joints between TC4 Titanium Alloy and 304SS Stainless Steel Using Zr-Ni Multi-Interlayer[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1137-1145.
[15] 張瑩瑩, 劉政軍, 張琨. 藥芯焊絲CO2氣體保護焊接2205不銹鋼焊縫的組織與耐腐蝕性能[J]. 機械工程材料, 2020, 44(2): 60-64.
ZHANG Ying-ying, LIU Zheng-jun, ZHANG Kun. Microstructure and Corrosion Resistance of 2205 Stainless Steel Weld by CO2Gas-Shielded Arc Welding with Flux-Cored Wire[J]. Materials for Mechanical Engineering, 2020, 44(2): 60-64.
[16] 汪海濤, 畢宗岳, 劉玉棟, 等. S32205雙相不銹鋼激光焊接頭性能分析[J]. 應用激光, 2020, 40(1): 56-61.
WANG Hai-tao, BI Zong-yue, LIU Yu-dong, et al. Performance Analysis of Duplex Stainless Steel Laser Welding Joint[J]. Applied Laser, 2020, 40(1): 56-61.
[17] 龐晉山, 宋傳旺, 李建新. 焊接工藝對Cr18Ni8不銹鋼食具容器重金屬遷移量的影響[J]. 包裝工程, 2008, 29(9): 56-58.
PANG Jin-shan, SONG Chuan-wang, LI Jian-xin. Effect of Welding on Heavy Metal Migration Quantity of Household Utensils Made of Cr18Ni8 Stainless Steel[J]. Packaging Engineering, 2008, 29(9): 56-58.
[18] TADAMALLE A P, REDDY Y P, RAMJEE E, et al. Evaluation of Nd: YAG Laser Welding Efficiencies for 304L Stainless Steel[J]. Procedia Materials Science, 2014, 6: 1731-1739.
[19] MAURER W, ERNST W, RAUCH R, et al. Evaluation of the Factors Influencing the Strength of HSLA Steel Weld Joint with Softened HAZ[J]. Welding in the World, 2015, 59(6): 809-822.
[20] 王浩軍, 張兵憲, 李靜, 等. 激光焊接工藝對304不銹鋼薄板搭接接頭組織性能的影響[J]. 熱加工工藝, 2021, 50(1): 30-34.
WANG Hao-jun, ZHANG Bing-xian, LI Jing, et al. Effect of Laser Welding Process on Microstructure and Properties of 304 Stainless Steel Sheet Lap Joint[J]. Hot Working Technology, 2021, 50(1): 30-34.
[21] LIU Sang, MI Gao-yang, YAN Fei, et al. Real Weld Geometry Determining Mechanical Properties of High Power Laser Welded Medium Plates[J]. Optics & Laser Technology, 2018, 102: 100-110.
[22] MIRSHEKARI G R, TAVAKOLI E, ATAPOUR M, et al. Microstructure and Corrosion Behavior of Multipass Gas Tungsten Arc Welded 304L Stainless Steel[J]. Materials & Design, 2014, 55: 905-911.
[23] 郭亮, 王方, 張慶茂, 等. 激光-MIG復合焊接304不銹鋼工藝研究[J]. 激光技術, 2013, 37(6): 781-785.
GUO Liang, WANG Fang, ZHANG Qing-mao, et al. Research of Techniques of Laser-MIG Hybrid Welding of 304 Stainless Steel[J]. Laser Technology, 2013, 37(6): 781-785.
[24] YAN Jun, GAO Ming, ZENG Xiao-yan. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by TIG, Laser and Laser-TIG Hybrid Welding[J]. Optics and Lasers in Engineering, 2010, 48(4): 512-517.
[25] 張春玉, 張洪國, 張益銘. 不銹鋼激光焊分析試驗對比研究[J]. 大連交通大學學報, 2021, 42(6): 83-86.
ZHANG Chun-yu, ZHANG Hong-guo, ZHANG Yi-ming. Analysis Test Comparison Investigation for Laser Welding on Stainless Steel[J]. Journal of Dalian Jiaotong University, 2021, 42(6): 83-86.
[26] 楊立軍, 孫貴錚, 王金杰, 等. A304不銹鋼薄板激光焊工藝試驗研究[J]. 電焊機, 2011, 41(1): 66-69.
YANG Li-jun, SUN Gui-zheng, WANG Jin-jie, et al. Study on Laser Welding of A304 Stainless Steel Sheet[J]. Electric Welding Machine, 2011, 41(1): 66-69.
[27] 張巖, 谷曉燕, 朱麗娟, 等. SUS301L薄板不銹鋼脈沖激光焊接頭的組織特點與硬度分布[J]. 材料熱處理學報, 2016, 37(S1): 55-60.
ZHANG Yan, GU Xiao-yan, ZHU Li-juan, et al. Microstructure Characteristics and Hardness Distribution of Pulsed Laser Welded SUS301L Stainless Steel Sheet Joint[J]. Transactions of Materials and Heat Treatment, 2016, 37(S1): 55-60.
[28] 陳樹青, 魏昕, 趙杰魁, 等. 6 mm厚304不銹鋼激光焊接接頭組織及力學性能研究[J]. 機械設計與制造, 2021(6): 139-142, 146.
CHEN Shu-qing, WEI Xin, ZHAO Jie-kui, et al. Study on Microstructure and Mechanical Properties of Laser Welded Joint of 6mm Thick 304 Austenitic Stainless Steel[J]. Machinery Design & Manufacture, 2021(6): 139-142, 146.
[29] 孫家豪, 張超勇, 吳劍釗, 等. 基于神經網絡的316L不銹鋼激光焊焊縫形貌預測[J]. 焊接學報, 2021, 42(12): 40-47.
SUN Jia-hao, ZHANG Chao-yong, WU Jian-zhao, et al. Prediction of Weld Profile of 316L Stainless Steel Based on Generalized Regression Neural Network[J]. Transactions of the China Welding Institution, 2021, 42(12): 40-47.
[30] 歐陽軼, 邢少敏. A286不銹鋼薄板激光焊接工藝性研究[J]. 熱加工工藝, 2021, 50(9): 144-147.
OUYANG Yi, XING Shao-min. Study on Laser Welding Technology of A286 Stainless Steel Sheet[J]. Hot Working Technology, 2021, 50(9): 144-147.
[31] 樊宇, 浦軻, 顧洪飛, 等. 316L不銹鋼激光焊接頭組織與性能研究[J]. 熱加工工藝, 2020, 49(23): 27-32.
FAN Yu, PU Ke, GU Hong-fei, et al. Research on Microstructure and Properties of Laser Welded Joint of 316L Stainless Steel[J]. Hot Working Technology, 2020, 49(23): 27-32.
[32] 萬佳林. SUS301L不銹鋼點焊工藝及接頭組織與性能[D]. 長春: 吉林大學, 2014.
WAN Jia-lin. Resistance Spot Welding Process and the Microstructures and Properties of SUS301L Stainless Steel Joints[D]. Changchun: Jilin University, 2014.
Microstructure and Mechanical Properties of Stainless Steel Laser Spot Welding Joints
Wang Li-juan, Niu Rui-li
(Zhengzhou University of Industrial Technology, Zhengzhou 451100, china)
To improve the welding performance of SUS301L-HT stainless steel laser spot welding, the laser spot welding test was carried out with 2 mm SUS301L-HT stainless steel as the base material, and the microstructure, hardness, tensile properties and fracture morphology of the welded joints were analyzed. The test results show that there is no damage, uniform indentation, no large welding deformation, no splash on the surface and no obvious change in the color of the base material. The microstructure of welded core is mainly columnar crystals which grow towards the center of welded core attached to the unmelted base metal grains. The hardness of base material is the highest, about 309HV. The hardness of the region near the core center is moderate, about 255HV, and the hardness of the heat-affected zone is the least, less than 220HV. The fracture form of spot welded joints is button fracture and occurs in the heat affected zone. Laser spot welding of stainless steel has good overall quality and can be used for rail train body processing.
laser welding; SUS301L-HT stainless steel; microstructure; mechanical properties
10.3969/j.issn.1674-6457.2022.10.017
TG456.7
A
1674-6457(2022)10-0120-06
2021–10–09
河南省科技攻關項目(222102210155)
王麗娟(1984—),女,講師,主要研究方向為材料、力學。