李勃, 魯瑩, 萬(wàn)琪, 梁璇, 楊沂文, 韓勇, 曾俊偉
· 論著 ·
miR-29c通過(guò)下調(diào)TNFR1信號(hào)通路減輕TNF-α誘導(dǎo)的小鼠海馬神經(jīng)元HT22細(xì)胞損傷*
李勃, 魯瑩, 萬(wàn)琪, 梁璇, 楊沂文, 韓勇, 曾俊偉△
(遵義醫(yī)科大學(xué)生理學(xué)教研室,貴州 遵義 563000)
探討微小RNA-29c(microRNA-29c, miR-29c)對(duì)腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)誘導(dǎo)小鼠海馬神經(jīng)元HT22細(xì)胞損傷效應(yīng)的影響及機(jī)制。構(gòu)建慢病毒(lentivirus, LV)介導(dǎo)的過(guò)表達(dá)/低表達(dá)miR-29c的小鼠海馬神經(jīng)元HT22,分為空載體細(xì)胞株(LV-vector)組、LV-vector+TNF-α組、miR-29c過(guò)表達(dá)細(xì)胞株(LV-miR-29c)+TNF-α組和miR-29c低表達(dá)細(xì)胞株(LV-miR-29c sponge)+TNF-α組。采用CCK-8法和乳酸脫氫酶(lactate dehydrogenase, LDH)釋放實(shí)驗(yàn)評(píng)價(jià)TNF-α對(duì)HT22細(xì)胞的毒性作用;免疫熒光染色觀察腫瘤壞死因子受體1(tumor necrosis factor receptor 1, TNFR1)的表達(dá);RT-qPCR檢測(cè)miR-29c和TNFR1 mRNA的表達(dá);Western blot檢測(cè)TNFR1、TNFR相關(guān)死亡域蛋白(TNFR-associated death domain protein, TRADD)、Fas相關(guān)死亡結(jié)構(gòu)域蛋白(Fas-associated death domain protein, FADD)、pro-caspase-8、cleaved caspase-8、pro-caspase-3和cleaved caspase-3的蛋白水平;Hoechst和TUNEL染色檢測(cè)細(xì)胞凋亡率。(1)CCK-8和LDH釋放實(shí)驗(yàn)結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組細(xì)胞活力顯著下降(<0.05),且LDH釋放顯著增多(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組細(xì)胞活力顯著上升(<0.05),且LDH釋放顯著減少(<0.05),而LV-miR-29c sponge+TNF-α組細(xì)胞活力顯著下降(<0.05),且LDH釋放顯著增多(<0.05)。(2)RT-qPCR和免疫熒光結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組TNFR1表達(dá)顯著增多(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組TNFR1表達(dá)顯著減少(<0.05),而LV-miR-29c sponge+TNF-α組TNFR1表達(dá)顯著增多(<0.05)。(3)Western blot結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組細(xì)胞中TNFR1、TRADD、FADD、cleaved caspase-8和cleaved caspase-3蛋白水平顯著上調(diào)(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組TNFR1、TRADD、FADD、cleaved caspase-8和cleaved caspase-3蛋白水平表達(dá)顯著下調(diào)(<0.05),而LV-miR-29c sponge+TNF-α組TNFR1、TRADD、FADD、cleaved caspase-8和cleaved caspase-3蛋白水平顯著上調(diào)(<0.05)。(4)Hoechst和TUNEL染色結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組凋亡細(xì)胞數(shù)目顯著增加(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組凋亡細(xì)胞數(shù)目顯著減少(<0.05),而LV-miR-29c+sponge+TNF-α組凋亡細(xì)胞數(shù)顯著增加(<0.05)。miR-29c減輕TNF-α誘導(dǎo)的小鼠海馬神經(jīng)元HT22細(xì)胞損傷,其機(jī)制可能與抑制TNFR1信號(hào)通路激活導(dǎo)致的細(xì)胞凋亡有關(guān)。
微小RNA-29c;腫瘤壞死因子α;TNFR1信號(hào)通路;細(xì)胞凋亡;海馬神經(jīng)元
海馬腦區(qū)是邊緣系統(tǒng)的重要組成部分之一,在痛覺感受、情緒體驗(yàn)以及學(xué)習(xí)記憶等功能中發(fā)揮重要作用。在阿爾茨海默?。ˋlzheimer disease, AD)、腦缺血再灌注損傷和創(chuàng)傷后應(yīng)激障礙等許多神經(jīng)系統(tǒng)疾病的病變進(jìn)展過(guò)程中,均可見到在海馬腦區(qū)炎癥因子的積聚,這可誘發(fā)神經(jīng)元的損傷甚至凋亡[1-4]。在這些疾病的發(fā)生發(fā)展過(guò)程中,往往伴隨海馬腦區(qū)微小RNA(microRNA, miRNA, miR)表達(dá)譜及多種炎癥因子的表達(dá)發(fā)生改變,提示這些miRNA可能通過(guò)調(diào)節(jié)海馬炎癥,促進(jìn)神經(jīng)元損傷,參與病變進(jìn)展[5-6]。
miR-29c是miR-29s家族成員之一,作為重要的基因表達(dá)調(diào)控因子,在心臟、肝臟、子宮及肌肉組織中表達(dá)較低,而在大腦和脊髓處于高水平表達(dá)[7]。在缺血再灌注小鼠海馬組織和氧糖剝奪損傷的PC12細(xì)胞中均可見miR-29c表達(dá)下降,但腫瘤壞死因子受體1(tumor necrosis factor receptor 1, TNFR1)及炎癥因子白細(xì)胞介素1β(interleukin-1β, IL-1β)、IL-6和TNF-α表達(dá)增加[8]。在坐骨神經(jīng)損傷性疼痛的大鼠,海馬組織中miR-29c的表達(dá)下降近70%;在脊神經(jīng)損傷小鼠,海馬小膠質(zhì)細(xì)胞釋放腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)增多,作用于神經(jīng)元TNFR1,導(dǎo)致神經(jīng)元損傷,可見神經(jīng)元樹突分支減少,樹突棘密度降低,但這些變化在基因敲除后顯著減輕[9-10]。雙螢光素酶報(bào)告基因?qū)嶒?yàn)證實(shí)miR-29c可與TNFR1 mRNA的3'非翻譯區(qū)(3'-untranslated region, 3'-UTR)結(jié)合,導(dǎo)致TNFR1表達(dá)下調(diào)[11]。因此,有必要深入研究miR-29c是否可以通過(guò)下調(diào)TNFR1表達(dá),抑制TNFR1下游通路激活導(dǎo)致的海馬神經(jīng)元損傷。
HT22細(xì)胞是一種源于小鼠的永生化海馬神經(jīng)元細(xì)胞系,廣泛應(yīng)用于多種神經(jīng)系統(tǒng)疾病的體外研究實(shí)驗(yàn)中[12]。有研究報(bào)道,TNF-α作用于HT22細(xì)胞可以導(dǎo)致其細(xì)胞活力下降且凋亡率上升[13]。因此,本實(shí)驗(yàn)采用TNF-α誘發(fā)HT22細(xì)胞損傷,以慢病毒(lentivirus, LV)轉(zhuǎn)染技術(shù)構(gòu)建miR-29c過(guò)表達(dá)或低表達(dá)的穩(wěn)轉(zhuǎn)細(xì)胞株,觀察miR-29c過(guò)表達(dá)或低表達(dá)是否影響TNF-α誘發(fā)的HT22細(xì)胞損傷,探討miR-29c是否可以抑制TNFR1的表達(dá)及后續(xù)的細(xì)胞凋亡,以期在細(xì)胞水平上明確miR-29c對(duì)TNF-α/TNFR1通路激活導(dǎo)致的海馬神經(jīng)元損傷的抑制作用。
小鼠海馬神經(jīng)元HT22細(xì)胞購(gòu)自美國(guó)模式培養(yǎng)物集存庫(kù)(American Type Culture Collection, ATCC);胎牛血清(fetal bovine serum, FBS)購(gòu)自MRC;DMEM高糖培養(yǎng)液和胰蛋白酶均購(gòu)自HyClone;兔抗Fas相關(guān)死亡結(jié)構(gòu)域蛋白(Fas-associated death domain protein, FADD)多克隆抗體、兔抗TNFR1多克隆抗體、兔抗β-actin多克隆抗體和山羊抗兔Cy3熒光Ⅱ抗均購(gòu)自Proteintech;兔抗cleaved caspase-3單克隆抗體和兔抗cleaved caspase-8單克隆抗體購(gòu)自Cell Signaling Technology;兔抗TNFR相關(guān)死亡域蛋白(TNFR-associated death domain protein, TRADD)多克隆抗體和兔抗GAPDH單克隆抗體均購(gòu)自HuaBio;兔抗pro-caspase-3單克隆抗體、兔抗pro-caspase-8單克隆抗體和小鼠TNF-α重組蛋白均購(gòu)自Abcam;引物設(shè)計(jì)與合成和慢病毒包裝與合成均由上海生工有限公司提供;CCK-8試劑盒、乳酸脫氫酶(lactate dehydrogenase, LDH)檢測(cè)試劑盒和一步法TUNEL細(xì)胞凋亡檢測(cè)試劑盒(Cy3-dUTP)均購(gòu)自上海碧云天生物科技公司;Hoechst 33258染色液購(gòu)自北京索萊寶公司;Triozl試劑、逆轉(zhuǎn)錄試劑盒和SYBR Green熒光染料試劑盒購(gòu)自TaKaRa。
激光掃描共聚焦顯微鏡Airyscan 2購(gòu)自Zeiss;NanoDrop 2000/2000C、低溫高速離心機(jī)、QuantStudioTM6 Flex PCR儀和FORM Series ll Water Jacket CO2細(xì)胞培養(yǎng)箱購(gòu)自Thermo Fisher Scientific;熒光顯微鏡和倒置相差顯微鏡購(gòu)自Leica;電泳槽、電泳儀和半干電轉(zhuǎn)移系統(tǒng)購(gòu)自Bio-Rad;全能型凝膠成像系統(tǒng)購(gòu)自Syngene。
3.1構(gòu)建慢病毒介導(dǎo)的miR-29c過(guò)表達(dá)/低表達(dá)的HT22細(xì)胞株取狀態(tài)良好的HT22細(xì)胞進(jìn)行胰酶消化,細(xì)胞計(jì)數(shù)后,按照每孔1×104個(gè)細(xì)胞接種至24孔板中,放入37 ℃、體積分?jǐn)?shù)5% CO2的培養(yǎng)箱中過(guò)夜培養(yǎng)。待細(xì)胞密度達(dá)到30%~50%后,按照感染復(fù)數(shù)(multiplicity of infect, MOI)=120配制含有病毒原液的培養(yǎng)液進(jìn)行病毒感染,24 h后吸棄含有病毒的培養(yǎng)液,換含10% FBS的DMEM高糖培養(yǎng)基后放入培養(yǎng)箱繼續(xù)培養(yǎng)。3 d后,通過(guò)熒光顯微鏡觀察細(xì)胞的增強(qiáng)型綠色熒光蛋白(enhanced green fluorescent protein, EGFP)的表達(dá)效率。將適量嘌呤霉素加入新鮮培養(yǎng)基進(jìn)行篩選,直到存活細(xì)胞的EGFP表達(dá)效率達(dá)到90%以上。本實(shí)驗(yàn)中,miR-29c sponge的序列含有8段重復(fù)序列(5'-TAACCGATTTTTTTGGTGCTA-3'),可以與miR-29c(5'-TAGCACCATTTGAAATCGGTTA-3')結(jié)合。
3.2實(shí)驗(yàn)分組將慢病毒轉(zhuǎn)染構(gòu)建的空載體(LV-vector)、miR-29c過(guò)表達(dá)(LV-miR-29c)及miR-29c低表達(dá)(LV-miR-29c sponge)HT22細(xì)胞分為以下4組:LV-vector組、LV-vector+TNF-α組、LV-miR-29c+TNF-α組和LV-miR-29c sponge+TNF-α組。
3.3CCK-8法檢測(cè)細(xì)胞活力將HT22細(xì)胞接種到96孔細(xì)胞培養(yǎng)板中,密度為每孔7 000個(gè)。各組細(xì)胞處理完畢后,根據(jù)試劑盒說(shuō)明書,向每孔加入10 μL CCK-8溶液,將培養(yǎng)板放入孵箱中孵育2 h后,用酶標(biāo)儀在450 nm處測(cè)定各孔吸光度(absorbance,)。按照下述公式進(jìn)行計(jì)算:細(xì)胞活力(%)=(加藥組-空白組)/(對(duì)照組-空白組)×100%。
3.4LDH釋放檢測(cè)將HT22細(xì)胞接種到96孔細(xì)胞培養(yǎng)板中,密度為每孔7 000個(gè)。將培養(yǎng)孔進(jìn)行以下分組:(1)無(wú)細(xì)胞的培養(yǎng)液孔;(2)未經(jīng)藥物處理的對(duì)照細(xì)胞孔;(3)未經(jīng)藥物處理的用于后續(xù)裂解的細(xì)胞孔;(4)藥物處理的細(xì)胞孔。標(biāo)記好后常規(guī)培養(yǎng)。檢測(cè)前1 h,從孵箱中取出細(xì)胞培養(yǎng)板,在(3)中加入LDH釋放試劑后,反復(fù)吹打數(shù)次混勻,然后繼續(xù)在細(xì)胞培養(yǎng)箱中孵育。1 h過(guò)后開始檢測(cè),離心(400×, 5 min),取120 μL各孔的上清液并加入到新的96孔板相應(yīng)孔中,隨即在各孔分別加入LDH檢測(cè)工作液50 μL混勻(乳酸溶液∶INT溶液∶酶溶液=1∶1∶1),室溫避光孵育30 min,酶標(biāo)儀在490 nm處測(cè)定各組值,并將得到的值[(1)、(2)、(3)和(4)組的值分別為1、2、3和4]按照下述公式進(jìn)行計(jì)算:LDH釋放率(%)=(4-2)/(3-2)×100%。
3.5細(xì)胞免疫熒光實(shí)驗(yàn)HT22細(xì)胞接種于蓋玻片上(每孔1×105)并放于孵箱培養(yǎng)24 h后給予TNF-α(400 μg/L,24 h)。棄去上清液后用PBS漂洗3次,每次5 min,4%多聚甲醛固定20 min,PBS漂洗3~4次,每次5 min;加入兔抗TNFR1單克隆抗體(1∶350)覆蓋于玻片上,37 ℃避光孵育1 h后置于4 ℃冰箱過(guò)夜。次日,用PBS漂洗3~4次,每次5 min,隨后加入Cy3標(biāo)記的山羊抗兔IgG(1∶350),37 ℃避光孵育30 min,室溫避光孵育1 h后取出;加入DAPI(1∶500,5 min)標(biāo)記細(xì)胞核;甘油+PBS(體積比1∶1)封片。在激光共聚焦顯微鏡下觀察并拍照,使用ZEN軟件處理得到單細(xì)胞熒光強(qiáng)度數(shù)值(每組不少于100個(gè)細(xì)胞)。
3.6Western blot各組細(xì)胞棄去上清,按照BCA試劑盒說(shuō)明書進(jìn)行操作。步驟如下:預(yù)冷的PBS(PH 7.4)清洗后加入裂解液,將細(xì)胞刮下。4 ℃靜置半小時(shí),低溫高速(4 ℃,4 500×)離心5 min,提取上清后加入上樣緩沖液,熱變性。每孔30 μg蛋白樣品,SDS-PAGE分離,膜轉(zhuǎn)移,用含5%脫脂奶粉的 TBST 緩沖液封閉2 h。分別孵育兔抗TNFR1(1∶500)、TRADD(1∶500)、FADD(1∶500)、pro-caspase-3(1∶1 000)、cleaved caspase-3(1∶1 000)、pro-caspase-8(1∶1 000)、cleaved caspase-8(1∶1 000)、β-actin(1:4 000)和GAPDH(1∶8 000)抗體,4 ℃過(guò)夜。膜清洗15 min,加入HRP標(biāo)記的山羊抗兔IgG(1∶4 000),室溫孵育1 h,洗膜、顯色曝光。所有數(shù)據(jù)采取ImageJ 1.48軟件處理。
3.7RT-qPCR使用Trizol試劑提取各組細(xì)胞總RNA,按照逆轉(zhuǎn)錄試劑盒和熒光染料試劑盒說(shuō)明書進(jìn)行操作。逆轉(zhuǎn)錄反應(yīng)條件為:37 ℃ 15 min,85 ℃ 5 s。擴(kuò)增反應(yīng)條件為:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,40個(gè)循環(huán)。miR-29c的上游引物序列為5′-CGCGTAGCACCATTTGAAAT-3′,下游引物序列5′-AGTGCAGGGTCCGAGGTATT-3′;U6的上游引物序列為5′-CTCGCTTCGGCAGCACATATACT-3′,下游引物序列為5′-ACGCTTCACGAATTTGCGTGTC-3′;TNFR1的上游引物序列為5′-CCGGGAGAAGAGGGATAGCTT-3′,下游引物序列為5′-TCGGACAGTCACTCACCAAGT-3′;β-actin的上游引物序列為5′-GGCTGTATTCCCCTCCATCG-3′,下游引物序列為5′-CCAGTTGGTAACAATGCCATGT-3′。分別以β-actin和U6為內(nèi)參照,統(tǒng)計(jì)各組Ct值,采用2-ΔΔCt法進(jìn)行數(shù)據(jù)分析。
3.8Hoechst染色HT22細(xì)胞正常消化,接種于蓋玻片上(每孔1×105)并放于孵箱培養(yǎng)24 h后給予TNF-α(400 μg/L,24 h)處理。棄去上清液后用PBS漂洗3次,每次5 min,4%多聚甲醛固定15 min,PBS漂洗3次,每次5 min,加入Hoechst 33258 (10 mg/L)染色液在室溫下避光孵育5 min,PBS漂洗后封片(甘油∶PBS=1∶1),倒置熒光顯微鏡下觀察胞核形態(tài)變化并拍照,細(xì)胞核呈現(xiàn)淡藍(lán)色橢圓形為正常細(xì)胞,細(xì)胞核呈現(xiàn)高亮藍(lán)色皺縮為凋亡細(xì)胞,采用以下公式計(jì)算凋亡率:凋亡率(%)=凋亡細(xì)胞數(shù)量/細(xì)胞總數(shù)×100%。
3.9TUNEL染色HT22細(xì)胞正常消化,接種于蓋玻片上(每孔1×105)并放于孵箱培養(yǎng)24 h后給予TNF-α(400 μg/L,24 h)處理。棄去上清液后用PBS漂洗3次,每次5 min,4%多聚甲醛固定30 min,PBS漂洗3次,每次5 min;之后選用0.3% Triton X-100處理5 min,PBS漂洗3次,每次5 min;然后按照試劑盒說(shuō)明書進(jìn)行染色。每張玻片滴加 TUNEL反應(yīng)混合液30 μL(TdT酶∶熒光標(biāo)記液=1∶9),然后置于暗濕盒中,37 ℃避光孵育1 h,PBS漂洗3次,每次5 min;然后用DAPI溶液對(duì)細(xì)胞核進(jìn)行避光染色5 min,PBS漂洗3次,每次5 min,在激光共聚焦顯微鏡下拍照并保存好圖像資料。細(xì)胞發(fā)生凋亡后,染色體DNA雙鏈斷裂或單鏈斷裂而產(chǎn)生大量的黏性3'-OH末端,可以在TdT酶的催化下加上紅色熒光探針Cy3標(biāo)記的dUTP,進(jìn)行凋亡細(xì)胞檢測(cè),采用以下公式計(jì)算凋亡率:凋亡率(%)=凋亡陽(yáng)性細(xì)胞數(shù)目/細(xì)胞總數(shù)×100%。
采用SPSS 17.0軟件統(tǒng)計(jì)實(shí)驗(yàn)結(jié)果。數(shù)據(jù)表示為均數(shù)±標(biāo)準(zhǔn)差(mean±SD)。組間均數(shù)比較選用單因素方差分析,方差齊選用Dunnett檢驗(yàn)進(jìn)行兩兩比較。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
在熒光顯微鏡下可見慢病毒感染后的HT22細(xì)胞呈現(xiàn)綠色熒光;RT-qPCR結(jié)果顯示,與LV-vector組相比,LV-miR-29c組中的miR-29c表達(dá)顯著上調(diào)(<0.05),而LV-miR-29c sponge組中的miR-29c表達(dá)顯著下調(diào)(<0.05),見圖1。這提示空載體慢病毒轉(zhuǎn)染(LV-vector)、miR-29c過(guò)表達(dá)(LV-miR-29c)及miR-29c低表達(dá)(LV-miR-29c sponge)的小鼠海馬神經(jīng)元HT22細(xì)胞株均已構(gòu)建。
Figure 1. Establishment of stable HT22 cell line with overexpression or low expression of miR-29c. A: the HT22 cells in LV-vector, LV-miR-29c and LV-miR-29c sponge groups were detected by fluorescence microscopy after lentiviral transfection (top row: observation under green fluorescence; bottom row: observation under white light; scale bar=100 μm); B: RT-qPCR analysis of miR-29c expression in the HT22 cells transfected with LV-vector, LV-miR-29c or LV-miR-29c sponge. Mean±SD. n=4. *P<0.05 vs LV-vector group; #P<0.05 vs LV-miR-29c group.
CCK-8法檢測(cè)各組細(xì)胞的活力,結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組細(xì)胞活力顯著下降,且當(dāng)濃度為400 μg/L的TNF-α作用24 h后,細(xì)胞活力下降近50%(<0.05),見圖2A。于是后續(xù)實(shí)驗(yàn)選用該濃度檢測(cè)miR-29c對(duì)TNF-α誘導(dǎo)的HT22細(xì)胞活力下降的影響。與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組的細(xì)胞活力顯著上升(<0.05),而LV-miR-29c sponge+TNF-α組的細(xì)胞活力顯著下降(<0.05),見圖2B。
同時(shí),LDH釋放檢測(cè)結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組LDH釋放顯著增多(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組LDH釋放顯著減少,而LV-miR-29c sponge+TNF-α組細(xì)胞LDH釋放顯著增多(<0.05),見圖2C。
倒置相差顯微鏡下觀察,LV-vector組細(xì)胞生長(zhǎng)狀態(tài)良好,呈貼壁性生長(zhǎng);而LV-vector+TNF-α組部分細(xì)胞皺縮變圓,貼壁不緊有脫落現(xiàn)象;與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組上述表現(xiàn)有所緩解;與LV-vector+TNF-α組相比,LV-miR-29c sponge+TNF-α組細(xì)胞損傷現(xiàn)象進(jìn)一步加重,見圖2D。
Figure 2. miR-29c overexpression protected HT22 cells from TNF-α-induced injury. A and B: cell viability was measured by CCK-8 assay; C: cytotoxicity was measured by LDH release assay; D: morphological changes of HT22 cells were observed(scale bar=100 μm). Mean±SD. n=6. ▲P<0.05 vs vehicle group; *P<0.05 vs LV-vector group; △P<0.05 vs LV-vector+TNF-α group; #P<0.05 vs LV-miR-29c+TNF-α group.
免疫熒光染色結(jié)果所示,與LV-vector組相比,LV-vector+TNF-α組細(xì)胞中TNFR1熒光強(qiáng)度顯著升高(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組細(xì)胞TNFR1熒光強(qiáng)度顯著下降(<0.05),而LV-miR-29c sponge+TNF-α組細(xì)胞TNFR1熒光強(qiáng)度顯著升高(<0.05),見圖3A。
RT-qPCR和Western blot結(jié)果表明,與LV-vector組相比,LV-vector+TNF-α組的TNFR1在mRNA和蛋白水平的表達(dá)均顯著上調(diào)(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組細(xì)胞TNFR1在mRNA和蛋白水平的表達(dá)均顯著下調(diào)(<0.05),而LV-miR-29c sponge+TNF-α組TNFR1在mRNA和蛋白水平的表達(dá)顯著上調(diào)(<0.05),見圖3B、C。
Figure 3. miR-29c overexpression inhibited TNF-α-induced the expression of TNFR1 in HT22 cells.A: immunofluorescence staining of TNFR1 (scale bar=50 μm) and the mean fluorescence intensity per cell (≥100 cells); B: RT-qPCR analysis of TNFR1 mRNA level; C: Western blot was applied to detect the protein expression of TNFR1. Mea±SD. n=4. *P<0.05 vs LV-vector group; △P<0.05 vs LV-vector+TNF-α group; #P<0.05 vs LV-miR-29c+TNF-α group.
Western blot結(jié)果顯示,在4組細(xì)胞中,pro-caspase-8的變化無(wú)顯著差異。與LV-vector組相比,LV-vector+TNF-α組中TRADD、FADD和cleaved caspase-8的蛋白水平均顯著上調(diào)(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組中TRADD、FADD和cleaved caspase-8的蛋白水平顯著下調(diào)(<0.05);而LV-miR-29c sponge+TNF-α組中TRADD、FADD和cleaved caspase-8的蛋白水平顯著上調(diào)(<0.05)。見圖4。
Figure 4. miR-29c overexpression inhibited TNF-α-induced expression of TNFR1 signaling pathway-related proteins in HT22 cells. A: Western blot was applied to detect the protein levels of TRADD and FADD; B: Western blot was applied to detect the protein levels of pro-caspase-8 and cleaved caspase-8. Mean±SD. n=4. *P<0.05 vs LV-vector group; △P<0.05 vs LV-vector+TNF-α group; #P<0.05 vs LV-miR-29c+TNF-α group.
Western blot結(jié)果顯示,在4組細(xì)胞中,pro-caspase-3變化無(wú)顯著差異。與LV-vector組相比,LV-vector+TNF-α組中cleaved caspase-3的蛋白水平顯著上調(diào)(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組中cleaved caspase-3的蛋白水平顯著下調(diào)(<0.05);而LV-miR-29c sponge+TNF-α組中cleaved caspase-3的蛋白水平顯著上調(diào)(<0.05)。見圖5A。
Hoechst染色觀察到,在熒光顯微鏡下,LV-vector組細(xì)胞核大多呈現(xiàn)彌散均勻熒光;與LV-vector組相比,LV-vector+TNF-α組細(xì)胞核內(nèi)可見濃染致密的顆粒塊狀熒光,且光亮度增加,凋亡細(xì)胞數(shù)顯著增加(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組雖然也有部分高亮藍(lán)色皺縮形的凋亡細(xì)胞,但數(shù)目顯著減少(<0.05),LV-miR-29c sponge+TNF-α組高亮藍(lán)色皺縮形的凋亡細(xì)胞數(shù)目顯著增多(<0.05),見圖5B。
TUNEL染色結(jié)果顯示,與LV-vector組相比,LV-vector+TNF-α組TUNEL陽(yáng)性細(xì)胞數(shù)目顯著增加(<0.05);與LV-vector+TNF-α組相比,LV-miR-29c+TNF-α組TUNEL陽(yáng)性細(xì)胞數(shù)目顯著減少(<0.05),LV-miR-29c sponge+TNF-α組TUNEL陽(yáng)性細(xì)胞數(shù)目顯著增多(<0.05),見圖5C。
在海馬腦區(qū),TNF-α/TNFR1信號(hào)通路的異常激活促進(jìn)了神經(jīng)炎癥和和神經(jīng)元的凋亡過(guò)程,參與了如腦外傷、腦卒中、阿爾茲海默癥和帕金森癥等神經(jīng)系統(tǒng)疾病的病變進(jìn)程[14-16]。因此,如何抑制TNF-α/TNFR1信號(hào)通路過(guò)度激活已成為神經(jīng)系統(tǒng)疾病治療的一個(gè)關(guān)鍵問(wèn)題。鑒于miR-29c作為一個(gè)重要的基因表達(dá)調(diào)控因子,高表達(dá)于人類和嚙齒類動(dòng)物的海馬組織,因此,有必要深入探討miR-29c對(duì)受損海馬神經(jīng)元是否具有保護(hù)作用并探討其機(jī)制。
本實(shí)驗(yàn)結(jié)果表明,TNF-α刺激小鼠海馬神經(jīng)元HT22細(xì)胞,導(dǎo)致細(xì)胞活力下降,LDH釋放增加,甚至出現(xiàn)細(xì)胞凋亡。然而,在HT22細(xì)胞過(guò)表達(dá)miR-29c后可以顯著減輕TNF-α誘導(dǎo)的上述細(xì)胞損傷;相反,在HT22細(xì)胞轉(zhuǎn)染miR-29c sponge之后,miR-29c表達(dá)下降,而且由于miR-29c sponge與miR-29c的結(jié)合,導(dǎo)致miR-29c的保護(hù)作用大大減弱,因此TNF-α誘導(dǎo)的HT22細(xì)胞損傷進(jìn)一步加重。由此可見,miR-29c對(duì)TNF-α誘導(dǎo)的小鼠HT22海馬神經(jīng)元損傷具有保護(hù)作用。雖然細(xì)胞實(shí)驗(yàn)不同于在體神經(jīng)元所處的細(xì)胞環(huán)境,研究結(jié)果具有一定的局限性,但這些結(jié)果還是提示miR-29c具有神經(jīng)元保護(hù)效應(yīng),有望成為治療炎癥和凋亡相關(guān)神經(jīng)系統(tǒng)疾病的一個(gè)潛在靶點(diǎn)。
以往研究報(bào)道,TNF-α通過(guò)TNFR1途徑介導(dǎo)HT22細(xì)胞凋亡[17]。而且,在U251人膠質(zhì)母細(xì)胞瘤細(xì)胞和SH-SY5Y人神經(jīng)母細(xì)胞瘤細(xì)胞中,miR-29c和TNFR1之間的調(diào)控關(guān)系通過(guò)雙螢光素酶報(bào)告基因?qū)嶒?yàn)得到驗(yàn)證[11]。因此,本研究檢測(cè)miR-29c是否通過(guò)影響TNFR1的表達(dá)及下游途徑的激活發(fā)揮神經(jīng)元保護(hù)效應(yīng)。通過(guò)免疫熒光染色、RT-qPCR和Western blot技術(shù)觀察到,TNF-α作用于HT22細(xì)胞,導(dǎo)致TNFR1表達(dá)升高,而miR-29c過(guò)表達(dá)可顯著抑制TNFR1的表達(dá),但在HT22細(xì)胞轉(zhuǎn)染miR-29c sponge后,miR-29c表達(dá)下降,TNFR1的表達(dá)處于高水平,這充分說(shuō)明miR-29c可以負(fù)向調(diào)節(jié)TNFR1的表達(dá)。
TNFR1具有一個(gè)可以募集TRADD和FADD的胞質(zhì)死亡域,通過(guò)活化caspase-8從而與位于caspase級(jí)聯(lián)反應(yīng)下游的caspase-3結(jié)合并使其激活,最終誘導(dǎo)細(xì)胞凋亡的產(chǎn)生[18-19]。另外,有研究報(bào)道,在酗酒模型大鼠的海馬組織,TNFR1、TRADD和FADD表達(dá)同時(shí)上調(diào),而且三者形成復(fù)合物,這對(duì)caspase-8激活至關(guān)重要;在烏頭堿誘導(dǎo)的HT22細(xì)胞凋亡中也觀察到FADD和caspase-8表達(dá)同步增加[20-22]。因此,本實(shí)驗(yàn)檢測(cè)miR-29c對(duì)TNF-α誘導(dǎo)的HT22細(xì)胞凋亡的影響。結(jié)果表明,TNF-α處理HT22細(xì)胞后,凋亡細(xì)胞數(shù)目增多,TNFR1、TRADD、FADD、cleaved caspase-8和cleaved caspase-3蛋白水平顯著升高。過(guò)表達(dá)miR-29c后,TNF-α作用于HT22細(xì)胞,凋亡細(xì)胞數(shù)目減少,TNFR1、TRADD和FADD的表達(dá)降低,活化型的caspase-8和caspase-3表達(dá)下降;相反,當(dāng)miR-29c的表達(dá)被抑制后,TNF-α誘導(dǎo)的上述凋亡相關(guān)蛋白表達(dá)更加明顯,凋亡細(xì)胞數(shù)目增多。雖然本實(shí)驗(yàn)沒(méi)有直接探討miR-29c對(duì)TNFR1-FADD-TRADD復(fù)合物形成的影響,但目前結(jié)果仍然提示miR-29c可能通過(guò)抑制TNFR1信號(hào)通路從而減輕TNF-α誘導(dǎo)的HT22細(xì)胞凋亡。這也是本實(shí)驗(yàn)的一個(gè)局限之處。miR-29c對(duì)TNFR1-FADD-TRADD復(fù)合物結(jié)合的影響有待后續(xù)研究。
miRNAs通過(guò)與靶基因特異性結(jié)合,導(dǎo)致mRNA降解或翻譯阻滯,在多種生理病理過(guò)程中發(fā)揮重要調(diào)控作用[23]。miRNA可與多個(gè)mRNA下游靶點(diǎn)結(jié)合,并且多個(gè)miRNA也可調(diào)控同一個(gè)mRNA下游靶點(diǎn)。此外,氧糖剝奪/復(fù)氧處理的HT22細(xì)胞中miR-29c水平降低,導(dǎo)致其直接靶點(diǎn)Map2k6的表達(dá)增加,促進(jìn)凋亡發(fā)生[8]。在本研究中,miR-29c對(duì)TNF-α誘導(dǎo)HT22細(xì)胞凋亡的保護(hù)作用有可能是通過(guò)調(diào)控多種mRNA下游靶點(diǎn)產(chǎn)生的。未來(lái)還需要通過(guò)數(shù)據(jù)庫(kù)檢索、RNA測(cè)序與雙螢光素酶報(bào)告基因?qū)嶒?yàn)等進(jìn)一步探索與確認(rèn)miR-29c可以影響哪些mRNA下游靶點(diǎn)的表達(dá),進(jìn)而產(chǎn)生神經(jīng)元保護(hù)效應(yīng)。
綜上所述,TNF-α誘導(dǎo)HT22細(xì)胞損傷后,TNFR1信號(hào)通路被激活,TRADD、FADD及活化型cleaved caspase-8/-3蛋白水平升高,細(xì)胞凋亡率上升;通過(guò)慢病毒轉(zhuǎn)染技術(shù),使HT22細(xì)胞中miR-29c表達(dá)上調(diào)后,TNF-α誘導(dǎo)的上述效應(yīng)顯著減輕,提示miR-29c的神經(jīng)元保護(hù)效應(yīng)可能是抑制TNFR1信號(hào)通路過(guò)度激活,從而緩解TNF-α誘導(dǎo)的細(xì)胞損傷。
[1] Song Q, Feng YB, Wang L, et al. COX-2 inhibition rescues depression-like behaviors via suppressing glial activation, oxidative stress and neuronal apoptosis in rats[J]. Neuropharmacology, 2019, 160:107779.
[2] Yang Y, Li X, Zhang L, et al. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPAR?/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury[J]. Int J Clin Exp Pathol, 2015, 8(3):2484-2494.
[3] Zong Y, Yu P, Cheng H, et al. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer's disease[J]. Brain Res, 2015, 1624:95-102.
[4]古春青, 張運(yùn)克, 楊廣華, 等. 蝦青素預(yù)處理通過(guò)調(diào)控Sirt1/miR-134信號(hào)通路改善腦缺血再灌注大鼠認(rèn)知功能[J]. 中國(guó)病理生理雜志, 2021, 37(9):1620-1627.
Gu CQ, Zhang YK, Yang GH, et al. Astaxanthin preconditioning ameliorates cognitive function in rats with cerebral ischemia/reperfusion by regulating Sirt1/miR-134 signaling pathway[J]. Chin J Pathophysiol, 2021, 37(9):1620-1627.
[5] Liu Y, Liu D, Xu J, et al. Early adolescent stress-induced changes in prefrontal cortex miRNA-135a and hippocampal miRNA-16 in male rats[J]. Dev Psychobiol, 2017, 59(8):958-969.
[6] Yang Y, Ye Y, Kong C, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochem Res, 2019, 44(4):811-828.
[7] Li C, Wang X, Zhang G, et al. Downregulation of microRNA29c reduces pain after child delivery by activating the oxytocin-GABA pathway[J]. Mol Med Rep, 2020, 22(3):1921-1931.
[8] Tang C, Ou J, Kou L, et al. Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6[J]. Mol Cell Probes, 2020, 49:101478.
[9] Hori Y, Goto G, Arai-Iwasaki M, et al. Differential expression of rat hippocampal microRNAs in two rat models of chronic pain[J]. Int J Mol Med, 2013, 32(6):1287-1292.
[10] Liu Y, Zhou LJ, Wang J, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury[J]. J Neurosci, 2017, 37(4):871-881.
[11] Wang M, Guo J, Dong LN, et al. Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post-stroke depression by suppressing brain inflammation via the microRNA-29c/TNFRSF1A signaling pathway[J]. Med Sci Monit, 2019, 25:5594-5605.
[12] Koh EJ, Seo YJ, Choi J, et al. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice[J]. Molecules, 2017, 22(8):1363.
[13] Xu Z, Lu Y, Wang J, et al. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca2+homeostasis in mouse hippocampal HT22 cells[J]. Biomed Pharmacother, 2017, 91:664-672.
[14] Wang SS, Jia J, Wang Z. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice[J]. J Alzheimers Dis, 2018, 61(3):1005-1013.
[15] Zhao N, Xu X, Jiang Y, et al. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation[J]. J Neuroinflammation, 2019, 16(1):168.
[16] Yang G, Song Y, Zhou X, et al. DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor[J]. Mol Med Rep, 2015, 12(1):1435-1442.
[17] Wang L, Chang X, Feng J, et al. TRADD mediates RIPK1-independent necroptosis induced by tumor necrosis factor[J]. Front Cell Dev Biol, 2019, 7:393.
[18] 商華, 任憲輝, 楊紅欣, 等. 姜黃素對(duì)Aβ25-35誘導(dǎo)的PC12細(xì)胞caspase-3、caspase-8和caspase-9表達(dá)的影響[J]. 中國(guó)病理生理雜志, 2018, 34 (1):168-172, 182.
Shang H, Ren XH, Yang HX, et al. Effects of curcumin on expression of caspase-3, caspase-8 and caspase-9 in PC12 cells induced by Aβ25-35[J]. Chin J Pathophysiol, 2018, 34(1):168-172, 182.
[19] Zelová H, Ho?ek J. TNF-α signalling and inflammation: interactions between old acquaintances[J]. Inflamm Res, 2013, 62(7):641-651.
[20] Liu W, Vetreno RP, Crews FT. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder[J]. Mol Psychiatry, 2021, 26(6):2254-2262.
[21] Thompson SJ, Ashley MD, St?hr S, et al. Suppression of TNF receptor-1 signaling in anmodel of epileptic tolerance[J]. Int J Physiol Pathophysiol Pharmacol, 2011, 3(2):120-132.
[22] Wang H, Liu Y, Guo Z, et al. Aconitine induces cell apoptosis via mitochondria and death receptor signaling pathways in hippocampus cell line[J]. Res Vet Sci, 2022, 143:124-133.
[23] D'Amato G, Luxán G, del Monte-Nieto G, et al. Sequential Notch activation regulates ventricular chamber development[J]. Nat Cell Biol, 2016, 18(1):7-20.
miR-29c attenuates TNF-α-induced injury of mouse hippocampal neuronal HT22 cells via inhibition of TNFR1 signaling pathway
LI Bo, LU Ying, WAN Qi, LIANG Xuan, YANG Yi-wen, HAN Yong, ZENG Jun-wei△
(,,563000,)
To investigate the effect and mechanism of microRNA-29c (miR-29c) on tumor necrosis factor-α (TNF-α)-induced mouse hippocampal neuronal HT22 cell injury.Overexpression and low expression of miR-29c were performed by lentivirus (LV) transfection in mouse hippocampal neuronal HT22 cells. The HT22 cells were divided into LV-vector (cell line with empty vector) group, LV-vector+TNF-α group, LV-miR-29c (cell line with overexpression of miR-29c)+TNF-α group and LV-miR-29c sponge (cell line with low expression of miR-29c)+TNF-α group. The toxicity of TNF-α to HT22 cells was evaluated by CCK-8 and lactate dehydrogenase (LDH) release assays. The expression of tumor necrosis factor receptor 1 (TNFR1) was observed by immunofluorescence staining. The expression of miR-29c and TNFR1 mRNA was detected by RT-qPCR. The protein levels of TNFR1, TNFR-associated death domain protein (TRADD), Fas-associated death domain protein (FADD), pro-caspase-8, cleaved caspase-8, pro-caspase-3 and cleaved caspase-3 were determined by Western blot. Apoptosis was observed via TUNEL staining and Hoechst 33258 staining.(1) The results of CCK-8 and LDH release assays showed that compared with LV-vector group, the cell viability was significantly decreased in LV-vector+TNF-α group (<0.05), and the release of LDH was significantly increased (<0.05). Compared with LV-vector+TNF-α group, the cell viability was significantly increased in LV-miR-29c+TNF-α group (<0.05), and the release of LDH was significantly decreased (<0.05). However, decreased cell viability induced by TNF-α was substantially deteriorated in LV-miR-29c sponge+TNF-α group. (2) The results of RT-qPCR and immunofluorescence staining showed that compared with LV-vector group, the expression of TNFR1 in LV-vector+TNF-α group was significantly increased (<0.05). Compared with LV-vector+TNF-α group, the expression of TNFR1 in LV-miR-29c+TNF-α group was significantly decreased (<0.05), while that in LV-miR-29c sponge+TNF-α group was significantly increased (<0.05). (3) The results of Western blot showed that compared with LV-vector group, the protein levels of TNFR1, TRADD, FADD, cleaved caspase-8 and cleaved caspase-3 in LV-vector+TNF-α group were significantly increased (<0.05). Compared with LV-vector+TNF-α group, the protein levels of TNFR1, TRADD, FADD, cleaved caspase-8 and cleaved caspase-3 in LV-miR-29c+TNF-α group were significantly decreased (<0.05), while those in LV-miR-29c sponge+TNF-α group were significantly increased (<0.05). (4) The results of Hoechst and TUNEL staining showed that the number of apoptotic cells in LV-vector group was significantly increased after TNF-α application (<0.05). Compared with LV-vector+TNF-α group, the number of apoptotic cells in LV-miR-29c+TNF-α group was significantly decreased (<0.05), while that in LV-miR-29c sponge+TNF-α group was significantly increased (<0.05).miR-29c attenuates the injury of mouse hippocampal neuronal HT22 cells induced by TNF-α, and its mechanism may be related to the inhibition of TNFR1 signaling pathway.
MicroRNA-29c; Tumor necrosis factor-α; TNFR1 signaling pathway; Apoptosis; Hippocampal neurons
1000-4718(2022)09-1537-10
2022-04-07
2022-07-29
13765253805; E-mail: junweizeng@sohu.com
R338.2; R363.2
A
10.3969/j.issn.1000-4718.2022.09.001
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 31860291);貴州省教育廳創(chuàng)新群體重大研究項(xiàng)目(黔教合KY字[2018]025)
(責(zé)任編輯:宋延君,李淑媛)