陸小寧, 王永亮, 王昆, 臧其威
色素上皮衍生因子通過調(diào)控巨噬細(xì)胞極化改善心肌梗死小鼠心功能*
陸小寧, 王永亮, 王昆, 臧其威△
(宿遷市第一人民醫(yī)院,江蘇 宿遷 223812)
探究色素上皮衍生因子(pigment epithelium-derived factor, PEDF)對(duì)心肌梗死(myocardial infarction, MI)小鼠心功能的影響及其機(jī)制。將雄性C57BL/6J小鼠分為假手術(shù)(sham)組、模型組(MI組)、MI+PEDF過表達(dá)對(duì)照(MI+vehicle)組和MI+PEDF過表達(dá)(MI+PEDF)組。通過左冠狀動(dòng)脈前降支結(jié)扎手術(shù)構(gòu)建MI模型。qRT-PCR和Western blot檢測(cè)小鼠心肌組織PEDF表達(dá);超聲心動(dòng)圖、TTC染色及Masson染色評(píng)估小鼠心肌結(jié)構(gòu)變化和心肌損傷情況;HE染色、免疫組織化學(xué)染色及ELISA評(píng)估小鼠心肌炎癥;Western blot和流式細(xì)胞術(shù)評(píng)估M1型和M2型巨噬細(xì)胞極化;Western blot檢測(cè)過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor-γ, PPAR-γ)和核因子κB(nuclear factor-κB, NF-κB)相關(guān)蛋白水平。與sham組比較,MI組心肌組織PEDF表達(dá)顯著降低,心功能出現(xiàn)障礙,心肌炎癥程度顯著升高,M1型巨噬細(xì)胞標(biāo)志物及NF-κB相關(guān)蛋白表達(dá)均顯著上調(diào),M2型巨噬細(xì)胞標(biāo)志物及PPAR-γ蛋白水平均顯著下調(diào)(<0.05)。而當(dāng)PEDF慢病毒載體干預(yù)后,PEDF表達(dá)顯著升高,心功能障礙得到緩解,心肌炎癥程度顯著降低,M1型巨噬細(xì)胞標(biāo)志物及NF-κB相關(guān)蛋白表達(dá)均顯著下調(diào),M2型巨噬細(xì)胞標(biāo)志物及PPAR-γ蛋白水平均顯著上調(diào)(<0.05)。PEDF通過上調(diào)PPAR-γ和抑制NF-κB促進(jìn)巨噬細(xì)胞M2型極化,從而改善MI小鼠心功能。
色素上皮衍生因子;心肌梗死;巨噬細(xì)胞;炎癥
由冠狀動(dòng)脈暫時(shí)性或永久性血栓形成引起的心肌梗死(myocardial infarction, MI)在全球有較高的發(fā)病率和死亡率。MI后心肌組織的病理變化依次為炎癥、增殖和壞死[1-2]。在MI的炎癥期間,壞死的心肌細(xì)胞釋放損傷相關(guān)蛋白,刺激先天免疫通路和巨噬細(xì)胞組織浸潤(rùn),從而驅(qū)動(dòng)炎癥和心肌重塑[3]。在MI的增殖期間,巨噬細(xì)胞可通過激活抗炎程序誘導(dǎo)成纖維細(xì)胞分化,進(jìn)而導(dǎo)致梗死區(qū)域細(xì)胞外基質(zhì)蛋白的沉積[4]。以上說明,巨噬細(xì)胞是一種參與調(diào)控MI炎癥反應(yīng)的重要細(xì)胞類型。據(jù)報(bào)道,巨噬細(xì)胞M1型與M2型極化的轉(zhuǎn)變?cè)贛I中具有重要作用,其中由M1型巨噬細(xì)胞調(diào)控的過度炎癥在MI的發(fā)生和發(fā)展中具有關(guān)鍵作用,而抗炎性的M2型極化則可有效減輕MI后的炎癥反應(yīng)[5]。然而,介導(dǎo)巨噬細(xì)胞參與調(diào)控MI的相關(guān)機(jī)制仍有待探究。
色素上皮衍生因子(pigment epithelium-derived factor, PEDF)是50 kD的內(nèi)源性分泌多功能蛋白,屬于絲氨酸蛋白酶抑制劑超家族[6]。PEDF通常在正常組織中表達(dá),并與許多心血管疾病有關(guān)[7]。作為心臟環(huán)境的重要調(diào)節(jié)劑,PEDF在心臟血管的增殖和發(fā)育中起重要作用。早期研究顯示,PEDF通過上調(diào)PPAR-γ來抑制心臟血管生成[8]。然而,MI后PEDF調(diào)控過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor-γ, PPAR-γ)對(duì)巨噬細(xì)胞極化引發(fā)的炎癥反應(yīng)的調(diào)節(jié)作用仍不清楚。因此,本研究通過構(gòu)建MI小鼠模型,并在其心肌中過表達(dá)PEDF,探究PEDF過表達(dá)對(duì)MI心功能、巨噬細(xì)胞極化以及炎癥反應(yīng)的調(diào)節(jié)機(jī)制,以期為PEDF改善MI后的心功能提供新的參考。
8~10周齡雄性C57BL/6J小鼠購(gòu)自北京科宇動(dòng)物養(yǎng)殖中心公司,生產(chǎn)許可證號(hào)為SCXK(京)2017-0002。
PEDF慢病毒載體及其病毒顆粒對(duì)照(vehicle)購(gòu)自上海吉瑪(GenePharma)制藥技術(shù)有限公司;TRIzol試劑(R0016)和cDNA合成試劑盒(D7170L)購(gòu)自上海碧云天(Beyotime)生物技術(shù)有限公司;SuperReal PreMix Plus (SYBR Green,F(xiàn)P205)購(gòu)自天根(TIANGEN)生化科技(北京)有限公司;PEDF抗體(ab227295)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase, iNOS)抗體(ab178945)、白細(xì)胞介素12(interleukin-12, IL-12)抗體(ab133751)、精氨酸酶1(arginase-1,Arg-1)抗體(ab233548)、樹突狀細(xì)胞相關(guān)C型凝集素1(dendritic cell-associated C-type lectin-1, dectin-1)抗體(ab140039)、PPAR-γ抗體(ab272718)、核因子κB(nuclear factor-κB, NF-κB) p65抗體(ab207297)、磷酸化NF-κB(phosphorylated NF-κB, p-NF-κB) p65抗體(ab239882)、IκBα抗體(ab32518)、磷酸化IκBα(phosphorylated IκBα, p-IκBα)抗體(ab133462)、GAPDH抗體(ab8245)、CD86抗體(ab239075)、F4/80抗體(ab16911)、CD16抗體(ab246222)和CD206抗體(ab270647)均購(gòu)自Abcam;2,3,5-三苯基氯化四氮唑(2,3,5-triphenyltetrazolium chloride, TTC)染色液(SH-0451)購(gòu)自北京凱詩(shī)源生物科技有限公司;Masson染色液(WLA045a)和HE染色試劑盒(WLA051a)購(gòu)自沈陽(yáng)萬類生物科技有限公司;腫瘤壞死因子α(tumor necrosis factor-α, TNF-α) ELISA試劑盒(70-EK282/3)和IL-6 ELISA試劑盒(70-EK206/3-24)購(gòu)自杭州聯(lián)科生物技術(shù)有限公司。
3.1MI小鼠模型構(gòu)建和分組MI小鼠模型根據(jù)先前公布的左冠狀動(dòng)脈前降支(left anterior descending coronary artery, LAD)結(jié)扎手術(shù)法[9]構(gòu)建,以小鼠活動(dòng)減弱、左心室前壁顏色變白和心電圖V2導(dǎo)聯(lián)顯示ST段抬高為判定造模成功的標(biāo)準(zhǔn)。簡(jiǎn)而言之,在麻醉后,將小鼠胸腔左側(cè)第3、4肋間隙切開一個(gè)長(zhǎng)約5 mm的切口;打開心包后,用7-0普里林縫合線結(jié)扎LAD。假手術(shù)小鼠除未結(jié)扎LAD,其余程序均相同。及時(shí)對(duì)造模失敗或死亡的小鼠補(bǔ)齊。
所有動(dòng)物實(shí)驗(yàn)均經(jīng)本醫(yī)院動(dòng)物護(hù)理和使用委員會(huì)的批準(zhǔn)。將小鼠分為以下4組:假手術(shù)(sham)組、模型組(MI組)、MI+PEDF過表達(dá)對(duì)照(MI+vehicle)組和MI+PEDF過表達(dá)(MI+PEDF)組。除了sham組之外的其余小鼠在MI模型構(gòu)建成功后均分為3組,每組24只。MI+vehicle組和MI+PEDF組采用心肌直接注射的方法,分別于MI的第7~28天每隔一天在梗死邊緣通過30號(hào)針頭將vehicle或PEDF(10 mg/kg)注射到心肌內(nèi)。閉合肋間傷口,將胸腔負(fù)壓抽取后縫合切口,等到小鼠可以自主呼吸后拔出氣管插管。實(shí)驗(yàn)結(jié)束后,將小鼠麻醉并實(shí)施安樂死,隨后收集心肌組織。
3.2qRT-PCR檢測(cè)使用TRIzol試劑提取各組小鼠心肌組織總RNA,并通過cDNA合成試劑盒合成cDNA。使用GeneAmp 7700型熒光定量PCR儀(Applied Biosystems)通過SYBR Green將cDNA用于qRT-PCR檢測(cè)。內(nèi)參照為GAPDH。采用2-ΔΔCt法對(duì)目的基因的相對(duì)表達(dá)水平進(jìn)行計(jì)算。PEDF正向引物序列為5'-CTACGATCTGTACCGCCTGA-3',反向引物序列為5'-GTTCAGCTCCCAGAGAAAGG-3';GAPDH正向引物序列為5'-AACTTTGGCATTGTGGAAGG-3',反向引物序列為5'-ACACATTGGGGGTAGGAACA-3'。
3.3Western blot分析從各組小鼠心肌組織提取總蛋白,通過SDS-PAGE將蛋白質(zhì)分離后轉(zhuǎn)移到PVDF膜上,將蛋白質(zhì)與Ⅰ抗(PEDF、iNOS、IL-12、Arg-1、dectin-1、PPAR-γ、p-NF-κB p65、NF-κB p65、p-IκBα、IκBα和內(nèi)參照GAPDH抗體,均以1∶1 000稀釋)在4 ℃下孵育過夜。孵育Ⅱ抗后通過ECL發(fā)光試劑顯影并由ChemiDoc MP成像系統(tǒng)(Bio-Rad)捕獲圖像。
3.4超聲心動(dòng)圖評(píng)估如前人所述[10],對(duì)小鼠進(jìn)行胸超聲心動(dòng)圖檢測(cè)。1.5%異氟醚麻醉小鼠,使用10 MHz線性陣列超聲轉(zhuǎn)換器進(jìn)行超聲心動(dòng)圖檢測(cè)以獲得M型超聲心動(dòng)圖數(shù)據(jù)。獲取左心室舒張末期內(nèi)徑(left ventricular end-diastolic diameter, LVEDd)和左心室收縮末期內(nèi)徑(left ventricular end-systolic diameter, LVESd),計(jì)算左心室射血分?jǐn)?shù)(left ventricular ejection fraction, LVEF)和左心室短軸縮短率(left ventricular fractional shortening, LVFS)。每組至少6只小鼠接受胸超聲心動(dòng)圖檢查。
3.5組織學(xué)分析如文獻(xiàn)所述[10],各組小鼠隨機(jī)取6只小鼠,經(jīng)靜脈注射1% TTC后處死并取出心臟組織,將心臟組織包埋并切成1 mm厚的切片,固定后通過顯微鏡觀察評(píng)估MI小鼠心肌梗死面積。心肌梗死面積(%)=切片白色梗死面積/切片總面積×100%。
接受胸超聲心動(dòng)圖檢查6只小鼠的6個(gè)心臟組織用多聚甲醛固定后包埋在石蠟中,切成5 μm切片后進(jìn)行Masson染色,藍(lán)色區(qū)域表示瘢痕,通過ImageJ軟件對(duì)左心室的瘢痕周長(zhǎng)進(jìn)行測(cè)量。同時(shí)對(duì)組織切片(4 μm)進(jìn)行HE染色,在光學(xué)顯微鏡下觀察炎癥細(xì)胞浸潤(rùn),并進(jìn)行組織病理學(xué)評(píng)分。瘢痕周長(zhǎng)(%)=切片藍(lán)色瘢痕周長(zhǎng)/切片總周長(zhǎng)×100%。以炎癥細(xì)胞浸潤(rùn)來評(píng)估組織學(xué)得分:無浸潤(rùn)為0分,<5%為1分,5%~25%為2分,25%~50%為3分,50%~75%為4分,>75%為5分。
對(duì)巨噬細(xì)胞進(jìn)行CD86免疫組織化學(xué)染色:切片脫水后在高溫高壓下進(jìn)行抗原修復(fù),使用8%山羊血清封閉;將切片與CD86抗體(1∶100)一起孵育過夜。使用Ⅱ抗孵育后通過DAB試劑盒進(jìn)行著色。統(tǒng)計(jì)每組切片中CD86的細(xì)胞數(shù)量(每個(gè)切片6個(gè)視野)。
3.6ELISA分析收集各組心肌組織,勻漿后收集上清液,應(yīng)用TNF-α和IL-6相應(yīng)的ELISA試劑盒檢測(cè)二者的表達(dá)情況。
3.7流式細(xì)胞術(shù)將從各組小鼠(每組6只)中取出的心肌組織切成小塊,并添加含100 mg/L膠原酶IV的PBS消化。經(jīng)過5次消化后,樣品通過100 μm尼龍細(xì)胞過濾器過濾、離心并重新懸浮。用紅細(xì)胞裂解液(600 μL)去除紅細(xì)胞,然后用10 mL FACS緩沖液洗滌細(xì)胞,收獲細(xì)胞并用含有3%牛血清白蛋白封閉30 min,并用F4/80、CD16和CD206抗體及相應(yīng)Ⅱ抗孵育。隨后上流式細(xì)胞儀進(jìn)行檢測(cè),使用ExpressPlus程序。用FITC同種型和PE同種型孵育的細(xì)胞以排除熒光抗體的非特異性結(jié)合。M1型巨噬細(xì)胞定義為F4/80+和CD16+;M2型巨噬細(xì)胞定義為F4/80+和CD206+。
實(shí)驗(yàn)數(shù)據(jù)使用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。組間差異通過單因素方差分析和Turkey檢驗(yàn)進(jìn)行分析。<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
如圖1所示,MI組心肌組織中PEDF的表達(dá)水平明顯低于與sham組(<0.05),而PEDF慢病毒載體轉(zhuǎn)染后PEDF的表達(dá)水平明顯增高(<0.05)。
Figure 1. The mRNA (A) and protein (B) expression of PEDF in myocardial tissue of MI mice. Mean±SD. *P<0.05 vs sham group; #P<0.05 vs MI+vehicle group.
如表1和圖2所示,MI模型小鼠的心功能明顯降低,主要體現(xiàn)在LVEDd和LVESd顯著增加,LVEF和LVFS顯著降低,同時(shí)心肌梗死面積和瘢痕周長(zhǎng)均顯著增加(<0.05);PEDF慢病毒載體轉(zhuǎn)染后,小鼠心功能明顯改善,即LVEDd和LVESd顯著減小,LVEF和LVFS顯著升高,且心肌梗死面積和瘢痕周長(zhǎng)均顯著減少(<0.05)。
表1 PEDF過表達(dá)可減少小鼠MI后的心功能不全
*<0.05 vs sham group;#<0.05 vs MI+vehicle group.
Figure 2. Effects of PEDF overexpression on infarction area (A; TTC staining) and scar circumference (B; Masson staining) in myocardial tissue of MI mice. Mean±SD. n=6. *P<0.05 vs sham group; #P<0.05 vs MI+vehicle group.
如圖3和表2所示,sham組小鼠心肌組織排列整齊,細(xì)胞核染色均勻,大小均一;而MI模型小鼠心肌組織出現(xiàn)大量炎癥細(xì)胞浸潤(rùn),心肌細(xì)胞排列紊亂,細(xì)胞核破壞嚴(yán)重;MI+vehicle組與之相似,而MI+vehicle組中小鼠的心肌病理?yè)p傷較MI組明顯減輕。具體表現(xiàn)為:與sham組相比,MI組組織學(xué)評(píng)分顯著升高,CD86標(biāo)記的巨噬細(xì)胞數(shù)量顯著增多,且炎癥細(xì)胞因子TNF-α和IL-6水平顯著上調(diào)(<0.05);與MI+vehicle組相比,MI+PEDF組組織學(xué)評(píng)分顯著降低,CD86標(biāo)記的巨噬細(xì)胞數(shù)量顯著減少,且炎癥細(xì)胞因子TNF-α和IL-6水平顯著下調(diào)(<0.05)。
Figure 3. Effect of PEDF overexpression on inflammation in myocardial tissue of MI mice. A: HE staining of mouse myocardial tissue (arrows indicate lesion areas; ×200); B: immunohistochemical staining for CD86 in mouse myocardial tissue (×200). Mean±SD. n=6. *P<0.05 vs sham group; #P<0.05 vs MI+vehicle group.
表2 PEDF過表達(dá)可降低MI小鼠心肌組織炎癥細(xì)胞因子水平
*<0.05sham group;#<0.05MI+vehicle group.
如圖4所示,與sham組相比,MI組巨噬細(xì)胞M1極化標(biāo)志物iNOS和IL-12表達(dá)及CD16+細(xì)胞比例均顯著升高,巨噬細(xì)胞M2極化標(biāo)志物Arg-1和dectin-1表達(dá)及CD206+細(xì)胞比例均顯著降低(<0.05);與MI+vehicle組相比,MI+PEDF組iNOS和IL-12表達(dá)及CD16+細(xì)胞比例均顯著降低,Arg-1和dectin-1表達(dá)及CD206+細(xì)胞比例均顯著升高(<0.05)。
Figure 4. Overexpression of PEDF promoted polarization of M2 macrophages from M1 macrophages. A: the protein levels of iNOS, IL-12, Arg-1 and dectin-1 were detected by Western blot; B: the expression levels of CD16 and CD206 were detected by flow cytometry. Mean±SD. n=6. *P<0.05 vs sham group; #P<0.05 vs MI+vehicle group.
如圖5所示,與sham組相比,MI組心肌組織中PPAR-γ表達(dá)顯著下調(diào),而p-NF-κB p65和p-IκBα表達(dá)均顯著上調(diào)(<0.05);與MI+vehicle組比較,MI+PEDF組心肌組織中PPAR-γ表達(dá)顯著上調(diào),而p-NF-κB p65和p-IκBα表達(dá)均顯著下調(diào)(<0.05)。
Figure 5. The effect of PEDF overexpression on the expression of PPAR-γ and NF-κB detected by Western blot. Mean±SD. n=6. *P<0.05 vs sham group; #P<0.05 vs MI+vehicle group.
由先天免疫系統(tǒng)導(dǎo)致的炎癥反應(yīng)在MI后的心功能障礙過程中具有重要作用,MI后的先天免疫系統(tǒng)和炎癥反應(yīng)可通過調(diào)節(jié)心功能的穩(wěn)態(tài)來進(jìn)行心臟修復(fù)。然而,過度的炎癥反應(yīng)會(huì)使心功能惡化,進(jìn)而發(fā)生不良的重塑[11]。巨噬細(xì)胞已被公認(rèn)為MI后炎癥和纖維化的重要調(diào)節(jié)劑和參與者[12]。本研究結(jié)果顯示,MI后PEDF表達(dá)下調(diào),暗示PEDF可能對(duì)心功能惡化具有促進(jìn)作用。進(jìn)一步研究顯示,巨噬細(xì)胞的M2型極化和PPAR-γ介導(dǎo)的抑炎信號(hào)是PEDF在MI中發(fā)揮心功能保護(hù)作用的重要機(jī)制。本研究揭示了PEDF在MI的病理過程中發(fā)揮的作用及相關(guān)機(jī)制。
PEDF是絲氨酸蛋白酶抑制劑超家族的非抑制性成員,在多種人體組織中廣泛表達(dá),尤其是在心臟組織中[13]。以往研究表明,PEDF在正常心臟和梗死心肌中均顯示出多種生物學(xué)效應(yīng)。據(jù)報(bào)道,PEDF可以通過抗氧化機(jī)制改善缺血性心功能,保護(hù)培養(yǎng)的H9c2細(xì)胞和原代心肌細(xì)胞在缺氧條件下免于凋亡和壞死性凋亡[14]。Zhang等[15]研究表明,PEDF可以通過減少細(xì)胞凋亡、抑制血管通透性和限制MI后梗死面積來改善小鼠心功能。本研究結(jié)果顯示,在MI后過表達(dá)PEDF可有效改善心功能,表明PEDF在MI后發(fā)揮心臟保護(hù)作用。另外,模型組中出現(xiàn)了部分梗死,分析可能的原因是在飼養(yǎng)過程中由于環(huán)境或飲食引發(fā)部分小鼠出現(xiàn)其他引發(fā)梗死病變的疾病,如冠心病、動(dòng)脈粥樣硬化等,但具體造成這種情況的原因還需進(jìn)一步分析。正常情況下,LVEDd越大、LVESd越小,說明心肌舒張和收縮功能越好。而在本研究中MI模型中出現(xiàn)了LVEDd和LVESd共同增大,猜測(cè)其可能的原因是出現(xiàn)了小鼠擴(kuò)張性心臟病。
越來越多的證據(jù)表明,炎癥反應(yīng)是愈合過程和心肌梗死后重塑的重要事件。MI后的心臟修復(fù)由強(qiáng)烈的組織炎癥啟動(dòng),然后是主動(dòng)抑制或消退[16]。許多細(xì)胞或分子因素影響MI后傷口的愈合和修復(fù)。組織再生高度依賴于巨噬細(xì)胞的表型或極化狀態(tài)[17]。此外,巨噬細(xì)胞通常分為2種表型:M1(促炎)和M2(抗炎)。M1型巨噬細(xì)胞分泌各種促炎細(xì)胞分子,如TNF-α、IL-6、IL-12和iNOS等,所有的這些都會(huì)導(dǎo)致炎癥的發(fā)生;相比之下,M2型巨噬細(xì)胞下調(diào)促炎因子,上調(diào)抗炎細(xì)胞因子等[18]。本研究結(jié)果顯示,MI后小鼠心肌組織中炎癥水平升高,心肌組織中巨噬細(xì)胞以促炎的M1型細(xì)胞為主;而在PEDF過表達(dá)后,促炎因子(TNF-α和IL-6)及M1型相關(guān)因子(IL-12、iNOS和CD16)表達(dá)均被明顯抑制,而M2型相關(guān)因子(Arg-1、dectin-1和CD206)表達(dá)被顯著促進(jìn),表明PEDF可通過促進(jìn)巨噬細(xì)胞向M2型轉(zhuǎn)化進(jìn)而降低炎癥反應(yīng)。然而,PEDF是如何調(diào)控巨噬細(xì)胞M2型極化尚未可知。
已有研究證實(shí),PEDF上調(diào)PPAR-γ抑制心臟血管生成[8]。于是,推測(cè)PPAR-γ可能在PEDF調(diào)控巨噬細(xì)胞極化中發(fā)揮重要作用。PPAR-γ是核受體PPAR亞家族的成員,在包括心肌在內(nèi)的多種組織中廣泛表達(dá)[19]。研究顯示,激活PPAR-γ可通過調(diào)節(jié)巨噬細(xì)胞極化進(jìn)而減輕肝纖維化[20]。Zhou等[21]研究證實(shí),上調(diào)PPAR-γ可減輕MI后的病理性心臟重構(gòu)。另外,PPAR-γ可以通過與NF-κB相互作用來調(diào)節(jié)炎癥反應(yīng)[22]。且有研究證實(shí),在MI后激活PPAR-γ表達(dá),抑制NF-κB表達(dá)有助于改善心功能[23]。本研究結(jié)果顯示,MI后的心肌組織中PPAR-γ表達(dá)降低,NF-κB通路相關(guān)蛋白(p-NF-κB p65和p-IκBα)的表達(dá)均升高,而PEDF過表達(dá)可明顯逆轉(zhuǎn)MI模型中PPAR-γ和NF-κB的表達(dá)情況。表明PEDF可通過激活PPAR-γ,抑制NF-κB信號(hào)轉(zhuǎn)導(dǎo)進(jìn)而調(diào)節(jié)巨噬細(xì)胞極化,對(duì)MI小鼠心功能發(fā)揮保護(hù)作用。
綜上所述,本研究證明PEDF可通過激活PPAR-γ促進(jìn)M1型巨噬細(xì)胞向M2型巨噬細(xì)胞轉(zhuǎn)化,進(jìn)而改善MI小鼠心功能。本研究為MI后心功能障礙的預(yù)防和治療提供了一個(gè)有前景的分子靶點(diǎn)。
[1] Markwerth P, Bajanowski T, Tzimas I, et al. Sudden cardiac death-update[J]. Int J Legal Med, 2021, 135(2):483-495.
[2]劉暢, 程曉丹, 孫家安, 等. 丹酚酸B通過調(diào)控Cx43抑制鐵死亡對(duì)心肌梗死大鼠模型的保護(hù)機(jī)制研究[J]. 中國(guó)病理生理雜志, 2022, 38(6):1032-1039.
Liu C, Cheng XD, Sun JA, et al. Salvianolic acid B inhibits ferroptosis through Cx43 in myocardial infarction rat model[J]. Chin J Pathophysiol, 2022, 38(6):1032-1039.
[3] Daseke MJ, Tenkorang-Impraim MAA, Ma Y, et al. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction[J]. J Mol Cell Cardiol, 2020, 145(42):112-121.
[4] Wang Y, Li C, Zhao R, et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics, 2021, 11(13):6315-6333.
[5] Qu D, Guo H, Xu Y. Effects of tranilast on inflammasome and macrophage phenotype in a mouse model of myocardial infarction[J]. J Interferon Cytokine Res, 2021, 41(3):102-110.
[6] Miller I, Bar-Joseph H, Nemerovsky L, et al. Pigment epithelium-derived factor (PEDF) negates hyperandrogenic PCOS features[J]. J Endocrinol, 2020, 245(2):291-300.
[7] Riabinska A, Zille M, Terzi MY, et al. Pigment epithelium-derived factor improves paracellular blood-brain barrier integrity in the normal and ischemic mouse brain[J]. Cell Mol Neurobiol, 2020, 40(5):751-764.
[8] Zhang H, Wei T, Jiang X, et al. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL[J]. Apoptosis, 2016, 21(1):60-78.
[9] Xie S, Deng W, Chen J, et al. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway[J]. Int J Biol Sci, 2020, 16(1):12-26.
[10] Cheng XJ, Li L, Xin BQ. MiR-124 regulates the inflammation and apoptosis in myocardial infarction rats by targeting STAT3[J]. Cardiovasc Toxicol, 2021, 21(9):710-720.
[11] Mentkowski KI, Euscher LM, Patel A, et al. Monocyte recruitment and fate specification after myocardial infarction[J]. Am J Physiol Cell Physiol, 2020, 319(5):C797-C806.
[12] Kim Y, Nurakhayev S, Nurkesh A, et al. Macrophage polarization in cardiac tissue repair following myocardial infarction[J]. Int J Mol Sci, 2021, 22(5):2715-2726.
[13] Yang X, Wang L, Zhang Z, et al. Ginsenoside Rb1enhances plaque stability and inhibits adventitial vasa vasorum via the modulation of miR-33 and PEDF[J]. Front Cardiovasc Med, 2021, 8:654670.
[14] Zhao Q, Liu Z, Huang B, et al. PEDF improves cardiac function in rats subjected to myocardial ischemia/reperfusion injury by inhibiting ROS generation via PEDF?R[J]. Int J Mol Med, 2018, 41(6):3243-3252.
[15] Zhang H, Wang Z, Feng SJ, et al. PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis[J]. Int J Mol Sci, 2015, 16(3):5618-5634.
[16] 馮康尼, 孟平, 張敏, 等. IL-24調(diào)控巨噬細(xì)胞極化介導(dǎo)氣道炎癥在過敏性哮喘小鼠中的作用[J]. 中國(guó)病理生理雜志, 2022, 38(7):1201-1209.
Feng KN, Meng P, Zhang M, et al. Role of IL-24 in regulating macrophage polarization and airway inflammation in allergic asthmatic mice[J]. Chin J Pathophysiol, 2022, 38(7):1201-1209.
[17] Whitehead AJ, Engler AJ. Regenerative cross talk between cardiac cells and macrophages[J]. Am J Physiol Heart Circ Physiol, 2021, 320(6):H2211-H2221.
[18] Han H, Dai D, Du R, et al. Oncostatin M promotes infarct repair and improves cardiac function after myocardial infarction[J]. Am J Transl Res, 2021, 13(10):11329-11340.
[19] Zhang XD, Sun GX, Guo JJ, et al. Effects of PPARγ agonist pioglitazone on cardiac fibrosis in diabetic mice by regulating PTEN/AKT/FAK pathway[J]. Eur Rev Med Pharmacol Sci, 2021, 25(2):812-819.
[20] Chen Q, Bao L, Lv L, et al. Schisandrin B regulates macrophage polarization and alleviates liver fibrosis via activation of PPARγ[J]. Ann Transl Med, 2021, 9(19):1500-1516.
[21] Zhou Y, Yin T, Shi M, et al. Nobiletin attenuates pathological cardiac remodeling after myocardial infarction via activating PPARγ and PGC1α[J]. PPAR Res, 2021, 19(21):994-1013.
[22] Lu J, Guan H, Wu D, et al. Pseudolaric acid B ameliorates synovial inflammation and vessel formation by stabilizing PPARγ to inhibit NF-κB signalling pathway[J]. J Cell Mol Med, 2021, 25(14):6664-6678.
[23] Lv FH, Yin HL, He YQ, et al. Effects of curcumin on the apoptosis of cardiomyocytes and the expression of NF-κB, PPAR-γ and Bcl-2 in rats with myocardial infarction injury[J]. Exp Ther Med, 2016, 12(6):3877-3884.
Pigment epithelium-derived factor improves cardiac function in mice with myocardial infarction by regulating macrophage polarization
LU Xiao-ning, WANG Yong-liang, WANG Kun, ZANG Qi-wei△
(,223812,)
To explore the effect of pigment epithelium-derived factor (PEDF) on cardiac function in mice with myocardial infarction (MI) and its mechanism.Male C57BL/6J mice were randomly divided into sham group, model group (MI group), MI+PEDF overexpression control (MI+vehicle) group and MI+PEDF overexpression (MI+PEDF) group. The MI model was constructed by ligation of the left anterior descending coronary artery. The expression of PEDF in mouse myocardial tissues was detected by qRT-PCR and Western blot. Cardiac structural changes and myocardial injury in mice were assessed by echocardiography, TTC staining and Masson staining. Myocardial inflammation in mice was assessed by HE staining, immunohistochemical staining and ELISA. Western blot and flow cytometry were used to assess M1 and M2 macrophage polarization. The levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) and nuclear factor-κB (NF-κB)-related proteins were detected by Western blot.Compared with sham group, the expression of PEDF in the myocardial tissue of the mice in MI group was significantly decreased, the cardiac function was impaired, and the degree of myocardial inflammation was significantly increased. The expression levels of M1 macrophage markers and NF-κB-related proteins were significantly up-regulated, while the expression levels of M2 macrophage markers and PPAR-γ protein were significantly down-regulated (<0.05). After the intervention of PEDF lentiviral vector, the expression of PEDF in the myocardial tissue was significantly increased, the cardiac dysfunction was relieved, and the degree of myocardial inflammation was significantly reduced. The expression levels of M1 macrophage markers and NF-κB-related proteins were significantly down-regulated, while the expression levels of M2 macrophage markers and PPAR-γ protein were significantly up-regulated (<0.05).Overexpression of PEDF promotes M2 macrophage polarization via up-regulating PPAR-γ and inhibiting NF-κB, thus improving the cardiac function in MI mice.
Pigment epithelium-derived factor; Myocardial infarction; Macrophages; Inflammation
1000-4718(2022)09-1600-08
2022-05-20
2022-08-07
18012186865; E-mail: jssqzqw@163.com
R542.2+2; R363.2
A
10.3969/j.issn.1000-4718.2022.09.009
[基金項(xiàng)目]宿遷市科技計(jì)劃項(xiàng)目(No. K202008)
(責(zé)任編輯:盧萍,羅森)