程小勇
(廣東省交通規(guī)劃設計研究院集團股份有限公司,廣州 510507)
隧道是公路交通工程中的重要構筑物,特別是深埋特長隧道往往是關鍵控制性工程,其中水文地質勘察及涌水量的預測是隧道施工設計方案的重要組成部分,但因水文地質條件的復雜性及涌水理論和公式參數(shù)的制約,通常很難精準判斷隧道涌水位置并準確預測涌水量。為此,需在水文地質試驗工作基礎上,采用合理的水文地質概念模型和水文分析方法,最大限度地評估隧址區(qū)是否存在富水段落,并估算不同水文地質條件下隧道洞身的涌水量,提前做好隧道涌水的預防措施[1-7]。
現(xiàn)場鉆孔抽水試驗和壓水試驗是獲取隧道巖體滲透系數(shù)的主要方式。鉆孔抽水試驗是通過鉆孔抽水,采用抽水量與水位降深值的函數(shù)關系式來計算含水層滲透系數(shù)的一種原位滲透試驗。鉆孔壓水試驗是按照某一指定深度將鉆孔分隔成若干鉆孔段,用不同的壓力對各試驗段進行壓水并測定其相應的流量,由此得到巖體透水率滲透系數(shù),是根據(jù)壓力和流量的關系來確定巖體滲透系數(shù)的一種原位滲透試驗[8-11]。
根據(jù)抽水試驗、壓水試驗獲取的巖土體滲透系數(shù),并結合其他綜合勘察成果,對隧道涌水量進行預測。一般常選用降水入滲系數(shù)法、裘布依理論式及古德曼經(jīng)驗式。有學者根據(jù)已建成通車的特長隧道在開挖過程中發(fā)生的涌水情況進行分析研究[12-14],認為深埋特長隧道在淋水狀出水時,多數(shù)為張性節(jié)理裂隙帶的富水所致,可采用降水入滲系數(shù)法、裘布依理論式進行預測正常涌水量;遇到高壓股狀出水時,視為較大規(guī)模斷裂構造帶導水所致,可采用古德曼經(jīng)驗式進行預測最大涌水量[3,14]。
本文依托擬建的深圳外環(huán)高速三期田頭山隧道工程,結合勘察鉆孔進行孔內抽水試驗、水位恢復試驗、壓水試驗,采用降水入滲系數(shù)法、裘布依理論式及古德曼經(jīng)驗式對隧道涌水量進行預測、分析及評價。
擬建田頭山隧道是深圳外環(huán)高速三期關鍵控制性工程,為分離式隧道,里程樁號為K82+660~K87+712,單洞長5 052 m,進口標高約61.9 m,出口標高約68.5 m,縱坡采用人字坡,最大埋深約430 m,為深埋特長隧道。隧址區(qū)位于剝蝕低山地貌區(qū),線路軸線處最高標高在K84+460,高約498 m,最低標高在隧道出口附近,約69 m,相對高差約429 m。隧道走向與山脊走向近垂直,隧址區(qū)山體地形坡度總體上陡下緩,下部自然坡度一般30°~40°,中上部自然坡度一般50°~60°,局部為巖質陡坎,山體植被發(fā)育。
隧道K82+660~K85+000段,為泥盆系上統(tǒng)雙頭群粉砂巖及其風化層;K85+000~K86+000段,為泥盆系中統(tǒng)鼎湖山群粉砂巖;K86+000~K87+500段,主要為侏羅系下統(tǒng)橋源組泥質粉砂巖;K87+500出口段,主要為侏羅系下統(tǒng)金雞組泥質粉砂巖。
隧道經(jīng)過山體為一復式褶皺發(fā)育構造,背斜位于隧道中部K85+000~K85+500附近,向斜位于K86+050~K86+400附近。背斜核部為泥盆系(D)砂巖,向斜核部為侏羅系(J)砂巖。褶皺軸向近似為東西向,垂直于隧道軸線方向。整個褶皺受到松坑-惠東北西向構造帶影響,局部被石英破碎帶所切割,核部近似平行于北東向蓮花山斷裂,受到復雜多期地質構造作用,局部褶皺發(fā)生倒轉傾倒,微褶皺也很發(fā)育,構造活動強烈,對隧道圍巖的穩(wěn)定有影響,也促成了蓄水構造。隧道縱向地質概況如圖1所示。
圖1 隧道縱剖面Fig.1 Longitudinal profile of tunnel
隧道地下水分為松散層孔隙潛水及基巖裂隙水,水量大小受巖體孔隙率、裂隙發(fā)育程度及季節(jié)變化影響,補給來源主要為大氣降水下滲補給。
1) 松散層孔隙潛水:分布于隧道洞身段上部斜坡、脊嶺地帶,賦存于第四系殘坡積粘土層孔隙中,含水層分布不連續(xù),厚度不大,處于斜坡地帶,貯水條件較差,僅季節(jié)性有水。對隧道工程施工影響小。
2) 基巖裂隙巖溶水:主要賦存于強中風化粉砂巖節(jié)理裂隙中,其富水性受大氣降水補給動態(tài)變化,在構造破碎帶及地層接觸帶富水性強,呈不均勻狀分布。由于洞身以上無地表水體,地下水主要接受大氣降水補給,隧道區(qū)地形較陡,地表徑流途徑短,流速快,入滲補給地下水總體較弱?;鶐r裂隙巖溶水為隧道區(qū)地下水主要類型,可能產生突水、突泥等現(xiàn)象。
3) 補、排條件及動態(tài)特征:區(qū)內地下水主要接受大氣降水垂直入滲補給;基巖裂隙水賦存于巖體裂隙中,主要受地形地貌控制,通過導水的裂隙系統(tǒng)補給深部含水層或向坡腳溝谷排泄。由于隧道區(qū)地形坡度較陡,地表徑流排泄條件好,其天然排泄主要為呈線狀、散點狀排泄于地形切割較深的沖溝、地貌突變處。
隧道鉆孔CSZK2位于隧道中前部K83+768埡口附近,孔深208.60 m,鉆探巖芯上部孔段較破碎,裂隙發(fā)育,巖性為中風化粉砂巖,具強富水條件,在此孔中開展抽水試驗具有代表性。
試驗過程中,流量和水位相對穩(wěn)定,并有一定延續(xù)性,根據(jù)裘布依井流理論,采用穩(wěn)定流完整井來計算隧道巖體的滲透系數(shù),計算公式如下:
(1)
在隧道鉆孔CSZK2開展抽水試驗,水位的降深次數(shù)進行3次,水位降深的最大值接近過濾器長度的1/2深度處,其余2次水位降深值,分別為最大降深值的1/3和2/3。抽水試驗時,動水位和出水量觀測的時間,在抽水開始后的第5 min、10 min、15 min、20 min、25 min、30 min各測1次,以后每隔30 min測1次。本次抽水試驗過濾器下放最大深度為120 m,水位最大降深為63 m,抽水試驗結果見表1。由公式(1)計算出隧道鉆孔CSZK2試驗段巖體的滲透系數(shù)K=0.012 4 m/d。
隧道鉆孔CSZK2巖芯顯示,中上部巖體破碎(距孔口100 m左右),為富水巖體。鉆孔下部巖體為微風化粉砂巖,巖體完整,可成為良好的隔水巖體,只有在斷層或其他導水通道聯(lián)通上部富水巖體與隧道時,才可能發(fā)生隧道涌水。
在隧道鉆孔CSZK2中開展水位恢復試驗,根據(jù)不同時刻水位恢復與時間的關系,按下式計算滲透系數(shù)。
(2)
式中:s1、s2為不同時刻水位距孔口距離,m;rw為鉆孔半徑,cm;t為水位恢復時間,s。
水位恢復試驗待隧道鉆孔CSZK2抽水試驗停止后,孔的水位恢復按第1 min、2 min、3 min、4 min、6 min、8 min、10 min、15 min、20 min、25 min、30 min、40 min、50 min、60 min、80 min、100 min、120 min進行觀測,以后每隔30 min觀測1次,在連續(xù)4 h內水位變化不超過1 cm/h,停止觀測。水位恢復試驗結果見表2。由公式(2)計算出巖體的滲透系數(shù)K=0.010 m/d,與抽水試驗結果基本吻合。
當試驗段位于地下水位以下,透水率q<10 Lu時,可根據(jù)不同階段的壓力計算巖體滲透系數(shù)。P~Q曲線類型一般為層流或紊流型。
當P~Q曲線為A型(層流)時,用第3階段的壓力值P3和流量值Q3計算巖體滲透系數(shù)。計算公式如下:
(3)
當P~Q曲線為B型(紊流)時,用第1階段的壓力值P1和流量值Q1計算巖體滲透系數(shù)。計算公式如下:
(4)
式中:Q1、Q3為第1階段、第3階段壓入流量,m3/d;Hy為試驗水頭,m;Ly為試段長度,m;r0為鉆孔半徑,m。
隧道鉆孔CSZK4,孔深370 m,為隧道區(qū)最深鉆孔,位于隧道中部K86+233,地質構造上位于向斜核部,在此鉆孔中開展壓水試驗具有典型代表性。壓水試驗位置依據(jù)鉆探巖芯選擇在中風化、破碎帶、微風化典型深度開展,壓水試驗采用三級壓力、5個階段,即P1-P2-P3-P2-P1,P1、P2、P3三級壓力分別為0.3 MPa、0.6 MPa和1 MPa。在CSZK4鉆孔中壓水對應不同深度的P~Q曲線類型如圖2所示,壓水試驗結果見表3。由公式(3)、公式(4)計算出中風化、微風化帶中巖體的滲透系數(shù)分別為0.017 2 m/d和0.006 3 m/d~0.008 1 m/d,公式(3)計算出破碎帶的滲透系數(shù)為0.765 0 m/d。
表3 CSZK4中壓水試驗結果Table 3 Results of pressure water tests in CSZK4
(a) 71.00 m~76.00 m段層流
降水入滲法是一種典型的水均衡法,其關鍵是確定降水入滲系數(shù)及集水面積。降水入滲系數(shù)作為降水補給地下水的數(shù)量指標,是降水入滲補給量與降水量之比,是地下水資源估算與大氣水、地表水、地下水三者間相互轉化研究中的重要水文參數(shù),其大小取決于地表土層和包氣帶的巖性、結構、地形、地貌特征,降水量大小及強度、時間分配以及地下水埋藏深度等因素,是一個較難準確測定的參數(shù)[15]。根據(jù)降水入滲法計算隧道涌水量,計算公式如下:
Q雙=2.74αWA
(5)
式中:Q雙為雙洞正常涌水量,m3/d;α為降水入滲系數(shù),根據(jù)隧道綜合地質特征情況,暫取0.25 m/d;W為年降水量,mm;A為隧道通過含水體的地下集水面積,km2。
根據(jù)隧址區(qū)地形及隧道范圍含水體地下集水面積范圍劃分原則,以山頂、山脊作為分水嶺或大致與隧道平行且低于隧底的山谷為界,年降水量采用當?shù)囟嗄昴昃邓浚嬎愕乃淼烙克恳姳?。采用降水入滲法公式(5)計算得出隧道單洞正常涌水量約4 295 m3/d。
表4 降水入滲法預估隧道正常涌水量結果Table 4 Prediction results of tunnel normal water inflow by precipitation infiltration method
裘布依理論式是地下水流向井內的平面流穩(wěn)定運動公式,是法國水力學家裘布依(Jules Dupuit,1 804~1 866)在達西定律的基礎上推導而出,它的假定條件為:1) 含水層是均質、各向同性、等厚、水平的;2) 地下水為層流,符合達西定律,地下水運動處于穩(wěn)定狀態(tài);3) 靜水位是水平的,抽水井具有圓柱形定水頭補給邊界;4) 對于承壓水,頂?shù)装迨峭耆羲?,對于潛水,井邊水力坡度不大?/4,底板完全隔水[9]。選用的公式如下:
(6)
根據(jù)水文地質試驗獲取得隧道圍巖巖體滲透性系數(shù),結合隧道圍巖特征,合理確定不同級別圍巖巖體的滲透系數(shù),對隧道進行分段預測涌水量,計算結果見表5。由表5可知,根據(jù)裘布依理論式(6)估算隧道左線正常涌水量為9 795 m3/d,隧道右線正常涌水量為9 943 m3/d。
表5 裘布依理論式預估隧道正常涌水量結果Table 5 Prediction results of tunnel normal water inflow by Jubey theory
古德曼經(jīng)驗式是以地下水動力學理論為基礎,對地質模型進行了較大程度的簡化,遇到高壓股狀出水時,視為較大規(guī)模斷裂構造帶導水所致,可采用古德曼經(jīng)驗式進行預測最大涌水量[3,14],計算公式如下:
(7)
式中:Q0為隧道通過含水體地段的最大涌水量,m3/d;H0為靜止水位至洞身橫斷面等價圓中心的距離,m;d為洞身橫斷面等價圓直徑,m。
結合隧道圍巖特征,采用古德曼經(jīng)驗式分段預測最大涌水量,計算結果見表6;并由式(7)估算隧道左線最大涌水量為211 163 m3/d,隧道右線最大涌水量為201 522 m3/d。古德曼經(jīng)驗式預測涌水量時,重點突出了較大規(guī)模斷裂構造帶導水通道形成后出現(xiàn)的最大涌水量,是一種上限值,其涌水預測往往高于裘布依理論式和降水入滲法一個數(shù)量級,這也在大豐華高速公路鴻圖特長隧道中得到佐證,在遇到大規(guī)模導水通道高壓涌水時,古德曼經(jīng)驗式預測的最大水量與實際出水量較為吻合[14]。
表6 古德曼經(jīng)驗式預估隧道最大涌水量結果Table 6 Results of prediction of maximum tunnel water inflow by Goodman Empirical Model
1) 田頭山隧道深埋段圍巖多為微風化粉砂巖,完整性較好,為相對隔水層,根據(jù)現(xiàn)場水文地質試驗結果,認為地下水對隧道施工影響將不會太大,但實際由于受節(jié)理裂隙發(fā)育帶、褶皺構造、強烈風化的影響,局部路段形成導水通道,在隧道施工時可能產生涌水;同時向斜軸部常是地下水富集之處,成為良好的儲水構造,開挖后會造成大量地下水涌出,必須注意巖層的坍落、漏水及涌水問題。
2) 采用降水入滲法計算得出隧道單洞正常涌水量約為4 295 m3/d;采用裘布依理論式估算隧道左線正常涌水量為9 795 m3/d,隧道右線正常涌水量為9 943 m3/d;采用古德曼經(jīng)驗式估算隧道左線最大涌水量為211 163 m3/d,隧道右線最大涌水量為201 522 m3/d。這是在極端情況下,大規(guī)模斷裂構造帶導水通道形成后,涌水量的上限值。
3) 由于復式向斜蓄水構造的存在,應密切注意隧道開挖過程中的水文地質問題。隧洞開挖時,洞壁將會有基巖裂隙水滲出,呈滴水或滲流狀,特別接近富水段落邊緣時,建議采用TSP、地質雷達、超前鉆探等手段,及時開展超前地質預報工作。遇到導水通道發(fā)生涌水時,應遵照“排堵結合,限量排放”的原則,建議對導水通道進行超前注漿措施,避免疏干方式的排水對隧址區(qū)環(huán)境造成不利影響。