亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于WPT和參數(shù)優(yōu)化的VMD諧波檢測方法

        2022-08-16 02:08:30施瑤王雅靜梅宇劉士綺
        電測與儀表 2022年8期
        關(guān)鍵詞:模態(tài)信號檢測

        施瑤,王雅靜,梅宇,劉士綺

        (山東理工大學(xué) 電氣與電子工程學(xué)院,山東 淄博 255049)

        0 引 言

        隨著新能源分布式電源的并網(wǎng)運(yùn)行,以及各種電力電子元件在電力系統(tǒng)中被大量地使用,由此引發(fā)的電力系統(tǒng)安全穩(wěn)定問題受到了廣泛地關(guān)注[1-2]。這些非線性負(fù)載與設(shè)備運(yùn)行使得電力系統(tǒng)受到的諧波污染加重,準(zhǔn)確地測量出諧波分量并對這些諧波分量進(jìn)行處理對電力系統(tǒng)安全可靠地運(yùn)行具有重要意義[3-4]。

        目前,諧波檢測常用方法包括傅里葉變換 (Fast Fourier Transform, FFT) 算法[5]、小波變換算法[6]、經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition, EMD) 算法[7]等。FFT計(jì)算速度快,但其頻率分辨較低,對相近的頻率成分無法檢測,且算法存在頻譜泄漏和柵欄效應(yīng)等問題[8]。小波變換算法能夠克服FFT的缺點(diǎn),具有較好的時(shí)頻特性,但其分析結(jié)果易受所選擇的小波基函數(shù)影響,且相近頻率無法有效分離,限制了其應(yīng)用[9]。EMD算法具有不需要選擇基,實(shí)現(xiàn)簡單的優(yōu)點(diǎn),但信號若存在噪聲時(shí),不易分解出單一分量,且存在模態(tài)混疊問題,無法保障檢測精度[10]。

        變分模態(tài)分解(Variational Mode Decomposition, VMD)算法是一種新的信號處理方法[11]。VMD算法將信號分解為K個(gè)解析分量,K值需要提前設(shè)定,若K值選擇合適則能克服模態(tài)混疊問題。文獻(xiàn)[12]首次將VMD用于諧波檢測,但并未說明如何選取合適的K值。文中以VMD分解在諧波檢測中的瞬時(shí)頻率為基礎(chǔ),提出一種新的K值選擇方法,并考慮到在實(shí)際的采集中往往伴有噪聲干擾[13],影響VMD分解的諧波質(zhì)量,文章先利用小波包降噪(WPT)方法對諧波信號進(jìn)行降噪處理[14],對降噪后信號進(jìn)行VMD預(yù)分解,通過瞬時(shí)頻率變化選擇合適的K值,最后對信號進(jìn)行最優(yōu)K值VMD分解并利用希爾伯特變換提取參數(shù)。仿真結(jié)果與對比驗(yàn)證了文章算法的有效性與準(zhǔn)確性。

        1 變分模態(tài)分解

        VMD將諧波信號分解為K個(gè)有限帶寬的模態(tài)分量,通過迭代搜索變分模型最優(yōu)解確定每個(gè)本征模態(tài)分量(Intrinsic Mode Function,IMF)的中心頻率和帶寬[15]。

        uk(t)=Ak(t)cos(φt(t))

        (1)

        式中Ak(t)為IMF分量uk(t)的瞬時(shí)幅值;φt(t)為瞬時(shí)相位函數(shù),且φt(t)≥0;IMF的瞬時(shí)頻率為ωk(t)=dφk(t)/d(t),同樣ωk(t)≥0。

        1.1 變分模型

        諧波信號經(jīng)過VMD算法處理后得到K個(gè)IMF分量,通過如下方式估算每個(gè)IMF的中心頻率和帶寬:

        (1)利用對模態(tài)分量uk的Hilbert變換計(jì)算得到uk(t)的解析信號;

        (2)加入指數(shù)項(xiàng)ejωkt估計(jì)每個(gè)解析信號的中心頻率,并將uk(t)的頻譜調(diào)制到基頻帶上;

        (3)計(jì)算解調(diào)信號梯度的平方L2范數(shù),估計(jì)帶寬。

        通過上述步驟得到的變分約束模型為:

        (2)

        式中δ(t)為單位脈沖信號;j為虛數(shù)單位;*表示卷積;?t表示對函數(shù)求時(shí)間t的偏導(dǎo)數(shù)。

        1.2 變分模型求解

        將約束變分問題轉(zhuǎn)化為非約束變分問題,引入拉格朗日懲罰算子λ(t)和二次懲罰因子α,增廣拉格朗日表達(dá)式如式(3)所示:

        L({uk},{ωk},λ)=

        (3)

        VMD利用交替乘法算子方法求解變分模型式(3)的最優(yōu)解,具體流程如下:

        (2)令n=n+1,開始執(zhí)行整個(gè)迭代;

        (3)令k=1,k

        (4)

        (4)k

        (5)

        (5)更新λ:

        (6)

        (6)循環(huán)步驟(2)~步驟(5),直至滿足式(7)迭代停止條件,結(jié)束循環(huán):

        (7)

        式中ε為判別精度,且ε>0。

        通過上述步驟,VMD算法將諧波信號分解為K個(gè)IMF分量。

        2 WPT-K值優(yōu)化VMD諧波檢測方法

        2.1 小波包降噪

        VMD算法易受噪聲影響,分解得到的調(diào)幅-調(diào)頻模態(tài)分量uk波形產(chǎn)生畸變,無法保障后續(xù)測量的準(zhǔn)確性[16]。因此,需要對含噪諧波信號進(jìn)行降噪預(yù)處理,降低噪聲對VMD算法影響。

        小波包降噪理論基礎(chǔ)完善,降低噪聲的同時(shí)能夠較好地保留信號有效信息,保障后續(xù)測量的準(zhǔn)確性,因此被廣泛地運(yùn)用在各個(gè)領(lǐng)域信號降噪中[17-18]。文章采用小波包降噪方法對含噪的諧波信號進(jìn)行降噪預(yù)處理,降低噪聲對VMD算法的影響。

        小波包降噪理論依據(jù):含噪信號經(jīng)過小波包分解后,代表有效信號的小波包分解系數(shù)幅值大于噪聲的分解系數(shù)幅值,選擇合適的閾值對有效信號幅值保留,將代表噪聲的分解系數(shù)幅值設(shè)為零,最后重構(gòu)信號,獲得降噪處理后的信號。

        小波包降噪的關(guān)鍵在于選取合適閾值,文章選擇運(yùn)用廣泛的默認(rèn)閾值λ,并采用小波軟閾值去噪函數(shù)進(jìn)行降噪處理,具體計(jì)算公式為:

        (8)

        2.2 K值優(yōu)化

        VMD在對諧波信號進(jìn)行處理時(shí)需要預(yù)先設(shè)定分解個(gè)數(shù)K。若K取值過小,會使諧波信號欠分解,導(dǎo)致IMF分量信息丟失或者產(chǎn)生模態(tài)混疊現(xiàn)象;若K取值過大,會使諧波信號過分解,過分解得到的IMF分量并不是諧波信號中的有效成分,對過分解量進(jìn)行參數(shù)檢測將直接導(dǎo)致檢測結(jié)果錯(cuò)誤[19]。

        VMD算法通過迭代搜索變分模型的方式來提取每一個(gè)IMF分量,在IMF分量的時(shí)間域[t-δ,t+δ](δ=2π/ωk(t))上,瞬時(shí)頻率ωk(t)相較于相位φk(t)的變化是緩慢的,可以認(rèn)為每個(gè)分量都是頻率為ωk(t)的諧波信號。

        當(dāng)VMD發(fā)生過分解時(shí),其過分解產(chǎn)生的分量是在原分量的基礎(chǔ)上分解得到的,過分解的分量特別是在高頻,模態(tài)分量的瞬時(shí)頻率發(fā)生跳變,信號斷裂,斷裂處的瞬時(shí)頻率ωk(t)為0,導(dǎo)致該模態(tài)分量的平均瞬時(shí)頻率降低。基于此,文章提出一種以模態(tài)分量瞬時(shí)頻率均值變化為基礎(chǔ)的最優(yōu)K值選取方法。

        假設(shè)第i個(gè)IMF分量有M個(gè)采樣點(diǎn),第j個(gè)采樣點(diǎn)的瞬時(shí)頻率為fij,瞬時(shí)頻率均值如式(9)所示:

        (9)

        式中N為該IMF分量的瞬時(shí)頻率個(gè)數(shù)。

        諧波信號經(jīng)VMD分解得到從低頻到高頻依次排列的模態(tài)分量。建立坐標(biāo)軸,y軸為平均瞬時(shí)頻率值,x軸為模態(tài)序列數(shù),在坐標(biāo)軸中畫出該IMF分量的瞬時(shí)頻率均值點(diǎn)并用直線連接,當(dāng)瞬時(shí)頻率產(chǎn)生跳變時(shí),曲線發(fā)生彎折,同時(shí)考慮到欠分解的干擾,選取曲線平滑時(shí)最大分解模態(tài)個(gè)數(shù),即為最優(yōu)分解K值。

        2.3 算法步驟

        算法主要分三部分:第一步,對待測信號進(jìn)行WPT降噪處理;第二步,將降噪處理后的信號采用VMD預(yù)分解,并進(jìn)行參數(shù)K的優(yōu)化選取;第三步,VMD分解,通過HT進(jìn)行諧波的參數(shù)提取。文中算法框圖如圖1所示。

        圖1 算法框圖

        3 諧波檢測

        3.1 算法仿真

        使用一種典型的負(fù)載電流模型,含有諧波的電流信號如式(10)所示:

        x(t)=100sin(100πt)+40sin(300πt)+

        30sin(500πt)+20sin(700πt)+v(t)

        (10)

        式中第一項(xiàng)為電流的基波成分,頻率為50 Hz,幅值為100 A。公式的后三項(xiàng)分別為3次、5次、7次諧波,頻率分別為150 Hz、250 Hz、350 Hz,幅值分別為40 A、30 A、20 A。v(t)為加入的高斯白噪聲,加入噪聲后的信號信噪比為20 dB。

        首先,對待檢測的電流諧波信號進(jìn)行WPT降噪處理,信號采樣頻率為1 000 Hz,采樣點(diǎn)數(shù)為1 000。取前300個(gè)采樣點(diǎn)顯示,WPT降噪前后的諧波信號波形圖如圖2所示。

        圖2 原始信號WPT降噪

        由圖2可以觀察到,信號經(jīng)WPT去噪預(yù)處理后,波形得到了較為明顯的改善。

        對降噪后的諧波信號進(jìn)行VMD預(yù)處理,并畫出模態(tài)分量的瞬時(shí)頻率均值曲線圖,圖形如圖3所示。

        由圖3可知,當(dāng)VMD出現(xiàn)了過分解,過分解得到諧波模態(tài)分量的瞬時(shí)頻率發(fā)生跳變,導(dǎo)致瞬時(shí)頻率均值曲線圖發(fā)生彎折。由于欠分解導(dǎo)致的模態(tài)混疊問題,K為2時(shí)曲線平滑,且K為3時(shí)曲線僅存微小的彎折,為避免欠分解對K值選取的干擾,選擇曲線平滑時(shí)對應(yīng)的最大K值即可。

        諧波信號存在四個(gè)諧波分量,由VMD算法對分解得到的IMF分量定義可知,最優(yōu)的分解模態(tài)個(gè)數(shù)為4,觀察圖3發(fā)現(xiàn),曲線平滑時(shí)最大K值為4。選擇K=4為最優(yōu)參數(shù),分別對原始信號與降噪預(yù)處理后的信號進(jìn)行VMD分解,分解結(jié)果如圖4、圖5所示。

        圖3 IMF分量瞬時(shí)頻率均值變化

        圖4 原始信號VMD分解結(jié)果

        圖5 去噪信號VMD分解結(jié)果

        觀察圖4、圖5,原始信號經(jīng)VMD分解得到IMF分量受到噪聲干擾,波形發(fā)生了嚴(yán)重畸變。對諧波信號進(jìn)行降噪預(yù)處理并利用VMD分解所得到的IMF分量受到干擾較小,有利于后續(xù)諧波參數(shù)提取。

        利用VMD算法直接提取IMF分量的頻率,希爾伯特變換檢測IMF分量的幅值。頻率、幅值檢測結(jié)果分別如表1、表2所示。

        表1 頻率檢測結(jié)果

        表2 幅值檢測結(jié)果

        由表1、表2可知,頻率檢測方面,文章在150 Hz、250 Hz、350 Hz時(shí)的檢測誤差分別為0.011%、0.016%、0.012%,顯然文中在高頻檢測上擁有較好的檢測精度。幅值檢測方面,文章算法降低了噪聲的影響,在100 A與40 A時(shí)的檢測誤差為0.270%與0.522%,幅值檢測結(jié)果較為精確。諧波參數(shù)檢測結(jié)果表明文章提出的算法能夠有效地抑制噪聲的影響并選取VMD分解的最優(yōu)K值,保障后續(xù)諧波參數(shù)測量的準(zhǔn)確性。

        3.2 實(shí)驗(yàn)數(shù)據(jù)處理

        采用RIGOLDG4062波形發(fā)生器設(shè)置相關(guān)參數(shù)產(chǎn)生1次、3次、5次諧波,幅值分別為2.5 V、0.632 V、0.632 V,頻率為50 Hz、150 Hz、250 Hz,將波形發(fā)生器的輸出端與Tektronix MDO3024示波器相連接,U盤與Tektronix MDO3024示波器的USB接口相接采集數(shù)據(jù),并在其中加入一定的噪聲,波形圖如圖6所示。

        圖6 采集信號波形圖

        對采集到的信號做WPT降噪預(yù)處理,降噪后的信號波形圖如圖7所示。

        圖7 去噪后采集信號波形圖

        利用瞬時(shí)頻率均值法確定最優(yōu)的VMD分解模態(tài)個(gè)數(shù)K,瞬時(shí)頻率均值曲線變化如圖8所示。

        圖8 瞬時(shí)頻率均值變化

        由圖8可知,選取K=3作為VMD最優(yōu)分解個(gè)數(shù),對降噪后信號進(jìn)行VMD最優(yōu)分解,分解結(jié)果如圖9所示。

        圖9 VMD分解結(jié)果

        利用VMD算法直接提取頻率,HT算法提取IMF分量的幅值,實(shí)現(xiàn)諧波參數(shù)檢測。檢測結(jié)果如表3所示。

        表3 諧波檢測結(jié)果

        由表3可知,文章算法在高頻檢測中具有較好的檢測精度,150 Hz與250 Hz的檢測誤差為0.03%與0.02%。幅值檢測方面,三個(gè)諧波成分的幅值檢測誤差均在1%以下。實(shí)驗(yàn)數(shù)據(jù)的檢測結(jié)果驗(yàn)證了文中算法的有效性, 且具有較好的檢測精度。

        3.3 算法比較

        VMD算法諧波檢測是針對EMD算法在諧波測量中存在問題提出的一種新的算法。VMD算法分解結(jié)果與EMD分解結(jié)果類似,但VMD算法分解模態(tài)個(gè)數(shù)K選擇合適能夠克服模態(tài)混疊問題。

        文獻(xiàn)[10]采用CEEMDAN方法進(jìn)行諧波檢測,CEEMDAN算法是一種改進(jìn)的EMD算法,在諧波檢測中同樣能夠有效的抑制噪聲的干擾,克服模態(tài)混疊問題。采用文獻(xiàn)[20]中的系統(tǒng)模型和參數(shù),用文中方法參數(shù)測量得到的檢測結(jié)果和文獻(xiàn)[20]得到的測量結(jié)果進(jìn)行比較,結(jié)果如表4、表5所示。

        表4 頻率檢測結(jié)果

        表5 幅值檢測結(jié)果

        從表4和表5觀察可知,頻率檢測方面,文中算法在低頻與高頻的檢測精度均高于文獻(xiàn)[20]的檢測精度,尤其在150 Hz與250 Hz檢測中,文中算法的檢測結(jié)果更加接近原始數(shù)據(jù)。幅值檢測方面,文章在5.4 V與10 V的檢測誤差要低于文獻(xiàn)方法的檢測誤差。綜合評價(jià),文章算法在諧波參數(shù)檢測中要優(yōu)于文獻(xiàn)[20]的檢測算法。

        4 結(jié)束語

        文章提出一種WPT-K值優(yōu)化的VMD算法模型,采用WPT降低噪聲對VMD分解影響,并根據(jù)VMD算法自身分解特點(diǎn),通過解析分量瞬時(shí)頻率均值變化曲線進(jìn)行最優(yōu)模態(tài)分解數(shù)K選取,實(shí)現(xiàn)信號最優(yōu)K值VMD分解。

        將文章算法應(yīng)用于含噪的諧波信號檢測中,仿真與比較結(jié)果驗(yàn)證了算法的有效性,且參數(shù)檢測結(jié)果更加精確。

        猜你喜歡
        模態(tài)信號檢測
        “不等式”檢測題
        “一元一次不等式”檢測題
        “一元一次不等式組”檢測題
        信號
        鴨綠江(2021年35期)2021-04-19 12:24:18
        完形填空二則
        基于FPGA的多功能信號發(fā)生器的設(shè)計(jì)
        電子制作(2018年11期)2018-08-04 03:25:42
        小波變換在PCB缺陷檢測中的應(yīng)用
        基于LabVIEW的力加載信號采集與PID控制
        國內(nèi)多模態(tài)教學(xué)研究回顧與展望
        基于HHT和Prony算法的電力系統(tǒng)低頻振蕩模態(tài)識別
        色婷婷久久免费网站| 国产精品无码一区二区三区电影 | 亚洲 欧美 国产 日韩 精品| 久久久亚洲精品无码| 人妻无码一区二区三区四区 | 能看的网站中文字幕不卡av| 桃色一区一区三区蜜桃视频| 深夜福利啪啪片| 国产精品久久久久乳精品爆| 66lu国产在线观看| 成在线人免费无码高潮喷水| 人妖在线一区二区三区| 国语自产偷拍在线观看| 精品乱码久久久久久中文字幕| 无码成人AV在线一区二区 | 久久精品国产久精国产爱| 久久久久久久岛国免费观看| 亚洲色成人网一二三区| 日韩av在线免费观看不卡| 狠狠色噜噜狠狠狠狠97首创麻豆| 50岁熟妇的呻吟声对白| 2021年最新久久久视精品爱| 日本加勒比一道本东京热| 无套熟女av呻吟在线观看| 亚洲五月天综合| 亚洲色欲色欲大片WWW无码| 亚洲成人激情深爱影院在线| 国产精品99无码一区二区| 午夜家庭影院| 免费一区二区三区av| 在厨房拨开内裤进入毛片| 亚洲18色成人网站www| av草草久久久久久久久久久| 国产亚洲综合另类色专区| 97久久久久人妻精品区一| 丰满少妇被猛烈进入无码| 国际无码精品| 精品一区二区中文字幕| 亚洲国产成人av二区| 东京无码熟妇人妻av在线网址| 国产在线不卡视频|