儲樂平, 李 巍, 趙瑞云, 劉 松, 張?zhí)K飛, 李 楷, 王延林, 石艷芳
(1. 海洋石油工程股份有限公司, 天津 300451;2. 大連理工大學(xué) 船舶工程學(xué)院, 遼寧 大連 116024;3. 大連理工大學(xué) 海洋科學(xué)與技術(shù)學(xué)院, 遼寧 盤錦 124221)
在海洋平臺樁腿上設(shè)置氣泡幕降噪系統(tǒng),用以降低打樁噪聲,避免對施工區(qū)域附近的海豚、白鰭豚等海生物的棲息活動造成影響。氣泡幕降噪系統(tǒng)由壓縮機、壓縮空氣分配/控制/顯示單元、氣泡發(fā)生管等3部分組成,其工作原理是壓縮空氣經(jīng)過氣泡發(fā)生管后產(chǎn)生大量氣泡,氣泡與海水混合形成一個氣泡與水的混合帷幕(氣泡幕),利用聲音在不同介質(zhì)間傳播的衰減特性起到降噪的作用。
20世紀(jì)70年代以來,西方發(fā)達國家海軍的大中型反潛水面艦艇相繼引入氣泡幕降噪系統(tǒng),美國海軍稱其為“Masker”系統(tǒng)。1990年,王虹斌等[1]分析“Masker”系統(tǒng)及其設(shè)計思想,說明降噪系統(tǒng)的布置與艦艇的使命任務(wù)、總體布置、經(jīng)濟代價、戰(zhàn)斗使用準(zhǔn)則等息息相關(guān),并針對不同的艦艇需要指定合理的布置措施。蔣興舟等[2]和莊宏業(yè)[3]均通過水洞試驗驗證氣泡幕在魚雷航行過程中不僅能提高螺旋槳壓力,而且能減少空泡,降低輻射噪聲與自噪聲。2005年,王虹斌等[4]以水池船模為試驗對象,采用控制變量法研究噴氣管布置方式、噴孔直徑、噴氣量等因素對船模降噪效果的影響,試驗結(jié)果表明為了得到最佳降噪效果,對噴氣環(huán)布置方式、噴氣環(huán)與發(fā)射器聲源之間的相對位置、噴孔直徑分布、船速和最佳噴氣量進行控制都是必不可少的。同年,該團隊以特種艦艇模型為試驗對象,再一次驗證氣泡幕對其具有良好的降噪效果,可見氣泡幕降噪具有非常高的實用性和經(jīng)濟價值。
近些年,氣泡幕降噪技術(shù)已逐漸從軍事領(lǐng)域轉(zhuǎn)向海洋工程領(lǐng)域。海洋中生物活動、風(fēng)力作用、機械運動都會產(chǎn)生大量氣泡,氣泡群是水中的強散射體,其對透過的聲波有很強的衰減和散射作用。孫佳偉[5]通過試驗研究水下氣泡幕的聲透射特性,對氣泡幕降噪原理進行深層次分析。苗天丞[6]將試驗分析與數(shù)值模擬相結(jié)合,系統(tǒng)研究浸沒式排氣的流動與噪聲變化規(guī)律,并從浸沒式排氣噪聲產(chǎn)生機理出發(fā)提出多種降噪方案。韓蕊[7]基于邊界積分法(Boundary Integral Method,BIM)建立多氣泡非線性耦合數(shù)值模型,解決三維氣泡融合、多個環(huán)狀氣泡耦合作用等問題,并對水幕反導(dǎo)、大尺度爆炸中氣泡的生長過程進行分析。劉競婷[8]針對水下排氣過程,采用理論、數(shù)值模擬、試驗相結(jié)合的方式,對氣液兩相流流動狀態(tài)的演化過程和輻射聲學(xué)特性進行研究,提供水下排氣噪聲預(yù)報方法,為解決工程上的噪聲問題提供思路。
與此同時,國外研究者也在對氣泡幕的降噪性能進行研究。GIMALTDINOV等[9]研究甲烷氣體在處于水合物形成過程時對聲波的影響,研究發(fā)現(xiàn),在低頻區(qū)(小于1 kHz),水合物形成過程對傳播速率、衰減系數(shù)和波反射值有較大影響,特別是在水合物形成過程中,波的衰減系數(shù)增加2個數(shù)量級以上。PHAM等[10]研究非線性共振氣泡幕對聲波的散射,驗證2個重要的效應(yīng):陣列內(nèi)的氣泡比孤立的氣泡具有更大的輻射阻尼;由于氣泡-氣泡相互作用,可探測到與聲源施加的聲壓不同的壓力。BRYSON等[11]提出一種改進的方法用來預(yù)測沖擊波產(chǎn)生的峰值入射壓力和能流密度,結(jié)果表明加入衰減系數(shù)后的衰減方程與實測數(shù)據(jù)吻合較好。
本文在前人研究的基礎(chǔ)上,以海洋平臺氣泡發(fā)生管為對象,研究氣泡發(fā)生管的噴孔數(shù)量、排列方式、孔徑、通氣量對最終形成的氣泡幕的體積分?jǐn)?shù)的影響。
針對氣泡發(fā)生管模型的特點,給出2點假設(shè):(1) 忽略2排孔產(chǎn)生氣體的相互作用,只研究單排孔的體積分?jǐn)?shù)變化;(2) 將氣體與液體相互作用視為三維非穩(wěn)態(tài)過程,噴孔附近屬于完全湍流狀態(tài)。
聲波在水中氣泡幕層的衰減主要與氣泡幕的混合密度和壓縮性有關(guān)。
水中氣泡幕層混合密度ρ的計算公式為
ρ=(1-α)ρw+αρg
(1)
式中:ρw為水的密度;ρg為空氣密度;α為氣泡幕內(nèi)空氣體積分?jǐn)?shù),α計算公式為
(2)
式中:Vg為氣泡幕層內(nèi)空氣體積;Vw為氣泡幕內(nèi)水的體積。
水中氣泡幕層壓縮性β為
β=(1-α)βw+αβg
(3)
式中:βw為水的壓縮性;βg為空氣壓縮性。
對于頻率遠(yuǎn)低于氣泡幕層氣泡共振頻率的聲波,其在氣泡幕層中的傳播速度Cot為
(4)
試驗表明:只要水中含少量空氣,如α=0.001,在接近水面處,聲速從1 500 m/s下降至305 m/s;當(dāng)α=0.5時,聲速最小,Cot=20 m/s[12]。
連續(xù)性方程、動量守恒方程和能量守恒方程是流體力學(xué)中的3個基本方程,此次計算不涉及能量的交換,因此主要介紹連續(xù)性方程和動量守恒方程。針對計算模型的特點,須考慮兩相流體(水和空氣)間的耦合作用,采用歐拉多相分離流模型,該模型在所有相共用一個壓力場時對每個相的質(zhì)量、動量和能量傳輸方程進行求解。
湍流流動是日常生活中較常見的現(xiàn)象,如圓柱繞流、大氣的流動等通常是湍流狀態(tài),湍流的運動狀態(tài)極其復(fù)雜,通常利用計算機對其進行模擬。計算的主要方法包括直接數(shù)值模擬(Direct Numerical Simulation,DNS)方法、大渦模擬(Large Eddy Simulation,LES)方法和雷諾平均N-S(Reynolds Average N-S,RANS)方法,前兩者受計算力的限制,在復(fù)雜工程問題上無法應(yīng)用。RANS是STAR-CCM+中常用的數(shù)值模擬方法,常用的湍流模型包括Spalart-Allmaras(一方程湍流模型),k-ε和k-ω系列(二方程模型)以及雷諾應(yīng)力模型(Reynolds Stress Model,RSM)。RSM對層流中各向異性湍流的狀況適用性較好,但計算成本較高。二方程模型是最簡單的完整湍流模型,常用的二方程模型包括SSTk-ω、Standardk-ω、RNGk-ε、Standardk-ε、Realizablek-ε。
本文使用Standardk-ε湍流模型,該模型引入湍動能k和耗散率,其運輸方程為
(5)
(6)
式(5)和式(6)中:t為時間;μ為流體動力黏度;σk、σε、Cε1、Cε2為模型因數(shù),取值分別為1.00、1.30、1.44、1.92;Pk和Pε分別為浮力和湍流產(chǎn)生項;ε0為抵消湍流衰減的源項;Sk和Sε為用戶定義源項;f2為阻尼項;Te和T0為時間尺度項;μt為湍流黏度,其計算公式為
μt=ρCμfμkT
(7)
式中:Cμ為模型因數(shù),取值為0.09;fμ為阻尼項;T為湍流時間尺度。
為計算氣泡幕中空氣壓縮系數(shù)和氣泡幕混合層密度,需要建立氣泡發(fā)生管三維模型。截取氣泡發(fā)生管的一段進行分析以降低計算成本。氣泡發(fā)生管的計算模型截取長度為1 000 mm,包含5排共20個氣泡發(fā)生孔,孔間距為200 mm、孔徑為2 mm,直列分布,如圖1所示。除直列分布外,還有將每排相鄰噴孔分別錯開50 mm的螺旋狀分布,如圖2和圖3所示。
圖1 氣泡發(fā)生管(直列)
單位:mm圖2 螺旋狀氣泡發(fā)生管開孔
圖3 氣泡發(fā)生管(螺旋狀)
STAR-CCM+能夠劃分多種形式的網(wǎng)格,包括四面體、六面體、多面體、柱體等。此次計算利用多面體網(wǎng)格對整個計算域進行網(wǎng)格劃分。網(wǎng)格設(shè)置相關(guān)參數(shù)如表1所示。
表1 網(wǎng)格設(shè)置
為兼顧計算成本與計算精度,在劃分網(wǎng)格時,通過體網(wǎng)格和面網(wǎng)格加密功能,對計算域、氣泡發(fā)生管周圍和噴孔進行局部加密,加密尺寸如表2所示。
表2 網(wǎng)格加密尺寸
計算域模型縮尺比為1∶1,計算域高度為0.70 m、寬度為0.25 m,兩側(cè)離氣泡發(fā)生管距離不等,靠近氣泡發(fā)生管一側(cè)的距離為0.05 m。邊界條件設(shè)置為壁面,遠(yuǎn)離管的一側(cè)設(shè)為速度入口,速度為0 m/s,用于模擬無限水域,計算域長度方向根據(jù)計算孔數(shù)進行修改。計算域模型如圖4所示。噴孔設(shè)置為速度入口,用于模擬管內(nèi)氣體噴入流域;計算域沿管長方向設(shè)為對稱邊界,上邊界設(shè)為壓力出口,初始相為水相。
圖4 計算域模型
此外,為了避免對稱邊界距噴孔過近發(fā)生邊界反射,計算域在沿管長方向?qū)ΨQ地各延長2倍孔間距,如圖5所示,其中da為實際排氣區(qū)域的距離。對于有n排噴孔的模型,da=50 mm(孔間距)×n。
圖5 孔計算域模型管長方向長度示例
物理模型選用三維隱式不定常湍流模型,考慮重力作用并啟動單元質(zhì)量校正。為了模擬氣泡從氣泡發(fā)生管產(chǎn)生及在水中的演變過程,采用歐拉多相分離流模型,設(shè)置水和空氣兩相,并給出相間相互作用尺度,其中相互作用尺度是指氣泡幕中離散氣泡的平均直徑。氣體和液體的材料屬性如表3所示。
表3 氣液材料屬性
采用控制變量法研究氣泡幕體積分?jǐn)?shù)的變化規(guī)律,將可能對體積分?jǐn)?shù)產(chǎn)生影響的因素羅列出來,包括噴孔數(shù)量、噴孔排列方式、孔徑、通氣量。這4個因素的可行域如表4所示。
表4 氣泡幕體積分?jǐn)?shù)影響因素及其可行域
此外,由于計算域的尺寸會隨著所研究影響因素的改變而改變,如孔數(shù)增加,計算域的長度也會增大,因此計算時應(yīng)將計算域換算成有效體積:
Ve=wdh
(8)
式中:Ve為計算域的有效體積;d為有效長度;w和h分別為計算域的寬度和高度,根據(jù)第2.2節(jié),w=0.25 m,h=0.70 m。實際計算域體積V為
V=wLh
(9)
式中:L為計算域長度,其與孔數(shù)的關(guān)系為L=d+(4×50) mm。L的幾何含義為在有效區(qū)域的基礎(chǔ)上沿管長方向向兩側(cè)各擴充2倍孔距的距離,以防止產(chǎn)生壁面效應(yīng)。
實際的氣泡幕體積分?jǐn)?shù)αe的計算式為
(10)
(1) 研究噴孔數(shù)量對氣泡幕體積分?jǐn)?shù)的影響。排列方式選用螺旋排列,孔徑為2 mm,通氣量為0.025 m3/min。計算得到不同噴孔數(shù)量下氣泡幕體積分?jǐn)?shù)的計算結(jié)果,如圖6所示。由圖6可知:隨著噴孔數(shù)量的增加,氣泡幕的有效體積分?jǐn)?shù)穩(wěn)定在3.76%,即氣泡幕體積分?jǐn)?shù)與噴孔數(shù)量的多少無關(guān)。
圖6 氣泡幕體積分?jǐn)?shù)隨噴孔數(shù)量變化
(2) 研究噴孔排列方式對氣泡幕體積分?jǐn)?shù)的影響。孔數(shù)設(shè)置為4孔(螺旋式的一個排列循環(huán)),孔徑為2 mm,通氣量為0.025 m3/min。不同排列方式下氣泡幕體積分?jǐn)?shù)如圖7所示。由圖7可知,螺旋式排列方式的氣泡幕體積分?jǐn)?shù)較直列而言略有提高。
圖7 不同排列方式下氣泡幕體積分?jǐn)?shù)柱狀圖
分析原因在于,直列布置時同一排孔在鉛錘方向上共面,相鄰孔之間的氣泡幕會出現(xiàn)耦合現(xiàn)象,如圖8所示。在氣泡幕耦合作用下,相同體積下的氣泡幕體積減小,使得體積分?jǐn)?shù)減小。
圖8 直列排列下相鄰孔間氣泡幕耦合
(3) 研究不同孔徑對氣泡幕體積分?jǐn)?shù)的影響。孔數(shù)設(shè)為4孔,排列方式選擇螺旋排列,通氣量為0.025 m3/min。計算結(jié)果如圖9所示。由圖9可知:隨著孔徑增大,氣泡幕體積分?jǐn)?shù)沒有明顯變化,基本穩(wěn)定在2.98%。
圖9 氣泡幕體積分?jǐn)?shù)隨孔徑變化
(4) 研究通氣量對氣泡幕體積分?jǐn)?shù)的影響??讛?shù)設(shè)為4孔,排列方式為螺旋排列,孔徑為2 mm。計算結(jié)果如圖10所示。由圖10可知,隨著通氣量增大,氣泡幕體積分?jǐn)?shù)也隨之增加。
圖10 氣泡幕體積分?jǐn)?shù)隨通氣量變化
(1) 針對螺旋排列模型,孔數(shù)和孔徑對氣泡幕有效體積分?jǐn)?shù)的影響較小,原因是兩孔間氣泡幕的耦合作用較小,孔數(shù)增加,計算域體積增大,氣泡幕量與體積之間近似為正比關(guān)系。
(2) 與直列排列相比,螺旋排列的氣泡幕體積分?jǐn)?shù)更大,原因是直列使同排相鄰孔氣泡幕間產(chǎn)生耦合作用,使得體積分?jǐn)?shù)減小。
(3) 通氣量對氣泡幕體積分?jǐn)?shù)影響較大,且為正相關(guān),通氣量越大,氣泡幕有效體積分?jǐn)?shù)越大。