趙生武
(甘肅省永登縣第一中學 730300)
帶電粒子在等效重力場中的圓周運動模型能夠充分體現(xiàn)高考評價體系中“綜合性”的考查要求,高考備考過程中應當高度重視.問題的設置會涉及受力分析、力的合成、牛頓運動定律、圓周運動、電場能的性質(zhì)以及功能關系等主干知識的綜合,問題解決需要物理學中的等效、類比、合成等物理思想方法.由于學生缺乏對物理知識的系統(tǒng)化、結構化建構意識和物理思想方法的深刻理解及靈活應用,所以難以全面分析和求解此類運動模型問題.基于學生從簡單到復雜、從直觀到抽象的認知邏輯規(guī)律,依據(jù)如圖1所示的思維路徑,將帶電粒子在電場中的圓周運動模型作為思維橋梁,應用等效、類比、遷移思想,逐步進階,不斷深入,就能取得事半功倍的學習效果.
圖1
進階一:物體在重力場中豎直平面內(nèi)的圓周運動
全面理解物體在重力場中豎直平面內(nèi)圓周運動的運動學特征是求解帶電粒子在等效重力場中圓周運動的基礎.
圖2
特征一:若小球處于平衡狀態(tài),則小球會靜止在最低點A,即最低點A為小球的平衡位置,最高點B到最低點A的連線方向恰好為重力加速度g的方向,圓心等高點C與圓心的連線OC垂直于最高點B到最低點A的連線方向.
特征二:小球在圓軌道內(nèi)側運動過程中,通過最低點A時,小球的速度最大,軌道對小球的彈力最大.
進階二:帶電粒子在電場中的圓周運動
分析帶電粒子在勻強電場中做圓周運動情景時,運用等效類比思想確定等效最低點、等效最高點和等效圓心等高點,合理應用進階一的五個特征是分析帶電粒子在等效重力場中運動問題的思維橋梁.
圖3
進階三:帶電粒子在等效重力場中的圓周運動
正確分析帶電粒子在重力場、電場中的受力情況,將重力和電場力合成,并將其合力看作等效重力,將重力場、電場看作等效重力場,進而確定等效重力加速度、等效最低點、等效最高點、等效圓心等高點.這是處理帶電粒子在等效重力場中運動問題的關鍵.
圖4
例題1 如圖5所示,勻強電場中有一半徑為r的光滑絕緣圓軌道,軌道平面與電場方向平行.a、b為軌道直徑的兩端,該直徑與電場方向平行.一電荷量為q(q>0)的質(zhì)點沿軌道內(nèi)側運動,經(jīng)過a點和b點時對軌道壓力的大小分別為Na和Nb,不計重力,求電場強度大小E和質(zhì)點經(jīng)過a點和b點的動能.
圖5
點評試題考查牛頓第二定律與動能定理的綜合應用.分析質(zhì)點的運動模型,類似于豎直平面內(nèi)的圓周運動.通過類比方法可以更加清晰地理解質(zhì)點的動力學特征和能量特征.
例題2 如圖6所示,細線一端固定在O點,另一端拴一帶電小球,處于豎直向下的勻強電場中.現(xiàn)給小球某一初速度,使小球在豎直平面內(nèi)做圓周運動,則( ).
圖6
A.小球可能做勻速圓周運動
B.當小球運動到最高點時,細線的拉力一定最小
C.當小球運動到最低點時,小球的線速度一定最大
D.當小球運動到最低點時,小球的電勢能一定最大
點評試題考查小球在電場力、重力和線拉力作用下的圓周運動問題分析.運用等效思想建構等效重力場模型,根據(jù)受力分析確定等效重力場中圓周運動的等效最高點、等效最低點位置,將重力場中小球做圓周運動的特征遷移應用到等效重力場,便能分析帶電小球在不同帶電情景下的運動規(guī)律.
例題3 如圖7所示,在豎直平面內(nèi)固定的圓形絕緣軌道的圓心在O點,半徑為r,內(nèi)壁光滑,A、B兩點分別是圓形軌道的最低點和最高點.該區(qū)域存在方向水平向右的勻強電場,一質(zhì)量為m、帶負電的小球在軌道內(nèi)側做完整的圓周運動(電荷量不變),經(jīng)過C點時速度最大,O、C連線與豎直方向的夾角θ=60°,重力加速度為g.求:
圖7
(1)小球受到的電場力的大?。?/p>
(2)小球在A點的速度v0多大時,小球經(jīng)過B點時對軌道的壓力最小.
帶電粒子在等效重力場中的圓周運動模型體現(xiàn)力學規(guī)律在電學中的靈活應用,是高考復習的重點和難點內(nèi)容.基于學生的認知規(guī)律,運用等效類比的物理思想逐步進階、不斷深入,既能體現(xiàn)物理思想方法的重要性,又能有效培養(yǎng)學生的思維能力.