張翰霆,陳 俊,陳根永
基于SEELM多專家模型的分布式光伏系統(tǒng)負(fù)荷預(yù)測(cè)方法
張翰霆1,陳 俊1,陳根永2
(1.湖北工業(yè)大學(xué)電氣與電子工程學(xué)院,湖北 武漢 430068;2.鄭州大學(xué)電氣工程學(xué)院,河南 鄭州 450001)
針對(duì)分布式光伏系統(tǒng)負(fù)荷所具有的非線性和非平穩(wěn)等數(shù)據(jù)分布特性,基于神經(jīng)網(wǎng)絡(luò)與掛起規(guī)則,提出一種基于多模型集成式極限學(xué)習(xí)機(jī)的分布式光伏負(fù)荷預(yù)測(cè)方法。首先,設(shè)計(jì)多個(gè)神經(jīng)網(wǎng)絡(luò)作為子專家模型,并隨機(jī)選取每一個(gè)網(wǎng)絡(luò)的初始輸入權(quán)值。構(gòu)建掛起規(guī)則,依據(jù)數(shù)值波動(dòng)范圍在相應(yīng)時(shí)間節(jié)點(diǎn)劃分各神經(jīng)網(wǎng)絡(luò)的類別。針對(duì)其中數(shù)值波動(dòng)較大的大誤差網(wǎng)絡(luò),基于對(duì)應(yīng)數(shù)值概率分布實(shí)施在線動(dòng)態(tài)更新,以實(shí)現(xiàn)訓(xùn)練誤差、輸入權(quán)值的雙維度同步優(yōu)化。最后,將各個(gè)子專家模型的優(yōu)化結(jié)果進(jìn)行整合,并匯總輸出,從而降低初始權(quán)值選取步驟中潛在誤差波動(dòng)的不利影響?;谀车貐^(qū)實(shí)際分布式光伏系統(tǒng)實(shí)施實(shí)證仿真,結(jié)果表明:在光伏負(fù)荷高波動(dòng)這一特殊數(shù)據(jù)環(huán)境下,所提出預(yù)測(cè)模型在預(yù)測(cè)精度以及輸出穩(wěn)定性兩方面均能夠保持一定優(yōu)勢(shì),可進(jìn)一步推動(dòng)并改善光伏接入背景下系統(tǒng)負(fù)荷預(yù)測(cè)的性能與效果。
光伏系統(tǒng);負(fù)荷預(yù)測(cè);多專家模型;SEELM
近年來(lái),我國(guó)能源短缺、環(huán)境污染問(wèn)題日益突出。得益于光伏發(fā)電在經(jīng)濟(jì)性與環(huán)保性兩方面的優(yōu)勢(shì),使得分布式光伏電源接入電網(wǎng)成為當(dāng)前研究熱點(diǎn)[1-2]。但有別于傳統(tǒng)發(fā)電方式,光伏出力具有較強(qiáng)的隨機(jī)性與波動(dòng)性,這使得電網(wǎng)在調(diào)峰、調(diào)頻以及系統(tǒng)調(diào)度和運(yùn)行等環(huán)節(jié)面臨嚴(yán)峻考驗(yàn)[3-4]。因此,實(shí)現(xiàn)高效準(zhǔn)確的分布式光伏系統(tǒng)負(fù)荷預(yù)測(cè),能夠助推電網(wǎng)安全運(yùn)行和系統(tǒng)持續(xù)優(yōu)化。
光伏電源出力同時(shí)受到較多因素共同作用,但具有一定時(shí)空分布規(guī)律。從空間分布上看,光伏電源的出力大小受所在位置氣候、所處時(shí)段日照與云量等諸多因素影響[5-6]。因此,眾多學(xué)者在這一背景下進(jìn)行深入研究[7-11]。
現(xiàn)行光伏負(fù)荷預(yù)測(cè)方法可依據(jù)對(duì)應(yīng)實(shí)現(xiàn)機(jī)理,劃分為數(shù)學(xué)統(tǒng)計(jì)和人工智能方法。文獻(xiàn)[12]針對(duì)光伏接入環(huán)境下熱電能源系統(tǒng)的無(wú)功控制過(guò)程,構(gòu)建了一種多時(shí)間尺度下的無(wú)功優(yōu)化策略;文獻(xiàn)[13]設(shè)計(jì)了一種改進(jìn)的有限集模型預(yù)測(cè)控制(FCS-MPC)策略;文獻(xiàn)[14]構(gòu)建了基于多元自適應(yīng)回歸樣條(MARS)的光伏系統(tǒng)輸出功率預(yù)測(cè)方法。此類方法都以時(shí)間、氣溫等因素為自變量,建立光伏負(fù)荷數(shù)學(xué)統(tǒng)計(jì)模型,揭示光伏發(fā)電變化規(guī)律。此外,文獻(xiàn)[15]建立了基于LSTM神經(jīng)網(wǎng)絡(luò)和綜合天氣預(yù)報(bào)的短期光伏功率預(yù)測(cè);文獻(xiàn)[16]提出了依據(jù)二次自適應(yīng)支持向量機(jī)的光伏輸出功率預(yù)測(cè);文獻(xiàn)[17]搭建了一種基于SAPSO-BP和分位數(shù)回歸的光伏功率區(qū)間預(yù)測(cè)方法。此類方法利用機(jī)器學(xué)習(xí)手段,建立各特征因素與光伏出力間的映射關(guān)系實(shí)施光伏預(yù)測(cè)模型[18-19]。但上述兩類方法大多面向確定性預(yù)測(cè),即每一時(shí)刻對(duì)應(yīng)一個(gè)確定值。當(dāng)面對(duì)突發(fā)狀況(如極端天氣)時(shí),確定性預(yù)測(cè)難以保持精度,也難以滿足系統(tǒng)穩(wěn)定性要求。
為此,另一類光伏負(fù)荷預(yù)測(cè)方法主要基于概率預(yù)測(cè),即可預(yù)測(cè)下一時(shí)刻光伏出力狀況的對(duì)應(yīng)概率[20-22]。文獻(xiàn)[23]提出了一種基于高斯混合模型的光伏發(fā)電功率概率區(qū)間預(yù)測(cè)方法,實(shí)施光伏出力大小概率數(shù)值區(qū)間的預(yù)測(cè);文獻(xiàn)[24]針對(duì)光伏出力爬坡現(xiàn)象預(yù)測(cè)過(guò)程中潛在的誤報(bào)和漏報(bào),基于模糊概率設(shè)計(jì)了一種預(yù)測(cè)方法;文獻(xiàn)[25]利用貝葉斯概率原理采用預(yù)測(cè)偏移率(POR)、預(yù)測(cè)調(diào)整率(PAR)以及預(yù)測(cè)誤差的偽方差(PVPE)三個(gè)指標(biāo)對(duì)DFM模型實(shí)施了修正,進(jìn)而利用PSO優(yōu)化算法加權(quán)尋優(yōu)得到最終的光伏出力組合預(yù)測(cè)模型;文獻(xiàn)[26]構(gòu)建了一種基于雙輸入規(guī)則模組的深度模糊分析方法,能夠提升短期光伏預(yù)測(cè)性能;文獻(xiàn)[27]針對(duì)光伏出力的日負(fù)荷預(yù)測(cè),設(shè)計(jì)了一種基于CNN-LSTM神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)方法,可在優(yōu)化過(guò)程中計(jì)及多相關(guān)變量。此類方法在維持預(yù)測(cè)結(jié)果精度的同時(shí),提高了應(yīng)對(duì)突發(fā)狀況的適應(yīng)性能。但在光伏數(shù)據(jù)具備強(qiáng)隨機(jī)性這一背景下,這類概率型方法在輸出穩(wěn)定性上仍有進(jìn)一步提升的空間。
為此,本文通過(guò)整合多個(gè)神經(jīng)網(wǎng)絡(luò)模型,構(gòu)建了掛起多模型集成極限學(xué)習(xí)機(jī)算法(Suspend Ensemble Extreme Learning Machine, SEELM),針對(duì)分布式光伏接入系統(tǒng)的負(fù)荷實(shí)施預(yù)測(cè)。首先,隨機(jī)生成各神經(jīng)網(wǎng)絡(luò)的初始權(quán)重;然后,設(shè)計(jì)并行架構(gòu)下的掛起規(guī)則,實(shí)施動(dòng)態(tài)優(yōu)化;在優(yōu)化過(guò)程中區(qū)分小誤差以及大誤差網(wǎng)絡(luò),采用不同途徑實(shí)施子專家模型權(quán)重的動(dòng)態(tài)調(diào)整;最終,依據(jù)各子專家模型的輸出結(jié)果,綜合修正預(yù)測(cè)輸出,能夠抑制初始權(quán)重隨機(jī)選擇這一步驟中產(chǎn)生的額外不確定度,降低匯總結(jié)果的誤差波動(dòng)?;谀硡^(qū)域光伏接入系統(tǒng)實(shí)際運(yùn)行數(shù)據(jù)進(jìn)行實(shí)例仿真分析,結(jié)果表明:所提出SEELM模型在光伏系統(tǒng)具備更強(qiáng)負(fù)荷波動(dòng)這一背景下,仍保持較好的預(yù)測(cè)精度及輸出穩(wěn)定性能。
圖1 單隱層前饋神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)示意圖
通過(guò)整合帶有數(shù)據(jù)樣本的訓(xùn)練數(shù)據(jù)集,式(1)可改寫為矩陣形式。
式中:
其次,結(jié)合式(7)可得
然后,結(jié)合Woodbury定理,可求得
根據(jù)式(11),可求解掛起模型的輸出,其數(shù)學(xué)表達(dá)式為
綜上所述,當(dāng)輸入數(shù)據(jù)更新時(shí),每個(gè)子模型都會(huì)通過(guò)掛起規(guī)則進(jìn)行判斷,并通過(guò)模型掛起或更新分別進(jìn)行優(yōu)化,最后得出總的平均值。在確保整個(gè)網(wǎng)絡(luò)輸出結(jié)果準(zhǔn)確性的前提下,可進(jìn)一步提升方法的運(yùn)算效率。
本文設(shè)計(jì)SEELM模型實(shí)施分布式光伏接入系統(tǒng)負(fù)荷預(yù)測(cè)。其中的主要步驟如下:
1) 實(shí)施歷史數(shù)據(jù)預(yù)處理。主要包括對(duì)電力負(fù)荷和影響因素(氣象因素、時(shí)間因素)的歸一化處理,得到訓(xùn)練模型樣本數(shù)據(jù)。
2) 確定SEELM多專家模型的拓?fù)浣Y(jié)構(gòu),并對(duì)參數(shù)進(jìn)行初始化。
5) 分別運(yùn)行掛起模型或更新模型。
7) 返回步驟4),并重復(fù)上述過(guò)程,直至預(yù)測(cè)結(jié)束。
本文基于東北某地區(qū)分布式光伏接入網(wǎng)絡(luò)實(shí)施算例仿真。其中,每組樣本數(shù)據(jù)由當(dāng)天需求負(fù)荷值、昨日需求負(fù)荷值、日期以及氣象特征(日平均溫度、相對(duì)濕度、日降水量、風(fēng)向、平均風(fēng)速、天氣類型、云量等)組成。在去除異常數(shù)據(jù)和缺失數(shù)據(jù)后,共計(jì)2 906組數(shù)據(jù)。算例數(shù)據(jù)具有較為顯著的波動(dòng)性,經(jīng)統(tǒng)計(jì)可得,樣本數(shù)據(jù)中“當(dāng)天需求負(fù)荷值”、“昨日需求負(fù)荷值”兩組特征數(shù)據(jù)的變異系數(shù)分別為69.35%與58.83%。因此,本文采用交叉驗(yàn)證,以所包含的2 034組(70%)作為訓(xùn)練集,436組(15%)作為驗(yàn)證集,436組(15%)作為測(cè)試集。
首先,選擇SEELM模型訓(xùn)練函數(shù)。為分析在不同訓(xùn)練函數(shù)下SEELM模型的預(yù)測(cè)性能優(yōu)劣,依據(jù)訓(xùn)練步長(zhǎng)對(duì)以下常用訓(xùn)練函數(shù)實(shí)施驗(yàn)證對(duì)比: Trainrp彈性法、Traingdx自適應(yīng)學(xué)習(xí)速率法、Traincgf共扼梯度法、Trainbfg擬牛頓法、Trainlm Levenberg-Marquardt法。上述訓(xùn)練函數(shù)的最優(yōu)訓(xùn)練步長(zhǎng)對(duì)比如圖2所示。
圖2 不同訓(xùn)練函數(shù)的模型最優(yōu)訓(xùn)練步長(zhǎng)對(duì)比
由圖2可得,采用traingdx的SEELM模型訓(xùn)練步長(zhǎng)最大,為136;采用trainlm的訓(xùn)練步長(zhǎng)最小,步長(zhǎng)僅為8;而其他三種BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練步長(zhǎng)差異不大,最優(yōu)訓(xùn)練步長(zhǎng)均在30左右。由此,采用Levenberg-Marquardt訓(xùn)練函數(shù)的SEELM模型預(yù)測(cè)性能更強(qiáng),其訓(xùn)練步長(zhǎng)曲線如圖3所示。
由圖3可知,Levenberg-Marquardt訓(xùn)練函數(shù)的步長(zhǎng)訓(xùn)練由0向1增大時(shí),均方誤差迅速下降,其后下降速度放緩,訓(xùn)練步長(zhǎng)到達(dá)8步時(shí)的均方誤差為0.028 539。
高比例光伏系統(tǒng)負(fù)荷具有“非平穩(wěn)”特征,采用不同的方法會(huì)對(duì)非平穩(wěn)時(shí)間序列預(yù)測(cè)結(jié)果產(chǎn)生影響[28],為驗(yàn)證SEELM模型的預(yù)測(cè)性能,以PSO、BPNN、LSTM模型的預(yù)測(cè)結(jié)果進(jìn)行對(duì)比[29-30]?;诓糠譁y(cè)試數(shù)據(jù),本文所提SEELM預(yù)測(cè)模型的預(yù)測(cè)示例如圖4所示,其中負(fù)荷曲線下方散點(diǎn)為相應(yīng)時(shí)間點(diǎn)的誤差值。
圖3 Levenberg-Marquardt法訓(xùn)練步長(zhǎng)曲線
圖4 SEELM模型預(yù)測(cè)誤差
為整體分析各預(yù)測(cè)模型性能,分別對(duì)比了各模型負(fù)荷預(yù)測(cè)的準(zhǔn)確度及運(yùn)算效率。一方面,預(yù)測(cè)準(zhǔn)確度基于平均絕對(duì)百分比誤差(MAPE)及均方根誤差(RMSE)實(shí)施評(píng)估,結(jié)果如表1所示。
表1 預(yù)測(cè)模型準(zhǔn)確性對(duì)比
從表1中整體誤差對(duì)比可得,SEELM預(yù)測(cè)模型的平均絕對(duì)誤差最小,低于0.07,其單位均方根誤差也相對(duì)最低,表明其具有更優(yōu)秀的預(yù)測(cè)性能。相較之下,PSO模型由于在結(jié)果反饋性能上存在限制,從而導(dǎo)致預(yù)測(cè)效果稍差。此外,同樣基于神經(jīng)網(wǎng)絡(luò)原理的LSTM及BPNN的預(yù)測(cè)誤差仍相對(duì)較高。對(duì)比結(jié)果充分體現(xiàn)了SEELM模型針對(duì)神經(jīng)網(wǎng)絡(luò)模型的改進(jìn)作用。所提出模型在神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,通過(guò)掛起規(guī)則將多個(gè)神經(jīng)網(wǎng)絡(luò)的結(jié)果進(jìn)行合理整合,能夠顯著降低隨機(jī)選取這一步驟造成的誤差。
另一方面,基于同一主機(jī)實(shí)施相同預(yù)測(cè),對(duì)比各模型的運(yùn)算效率,結(jié)果如表2所示。
表2 預(yù)測(cè)模型運(yùn)算效率對(duì)比
由表2可得,SEELM模型在預(yù)測(cè)效率上同樣具有一定優(yōu)勢(shì)。結(jié)合準(zhǔn)確性對(duì)比結(jié)果,SEELM模型在應(yīng)對(duì)波動(dòng)性較大的數(shù)據(jù)環(huán)境下,能夠保持較強(qiáng)的綜合預(yù)測(cè)性能。因此,該模型可適用于分布式光伏系統(tǒng)的負(fù)荷預(yù)測(cè)場(chǎng)景。
針對(duì)高比例光伏系統(tǒng)負(fù)荷所具有的非線性、非平穩(wěn)、異方差數(shù)據(jù)特性,本文提出一種基于多模型集成極限學(xué)習(xí)模型的負(fù)荷預(yù)測(cè)方法,能夠有效改善預(yù)測(cè)結(jié)果的穩(wěn)定度,從而助力系統(tǒng)安全可靠運(yùn)行。本文主要工作歸納如下:
1) 設(shè)計(jì)輸出權(quán)重連接優(yōu)化模型,針對(duì)不同時(shí)間序列下的多個(gè)神經(jīng)網(wǎng)絡(luò)模型構(gòu)建并行運(yùn)算架構(gòu),綜合各神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)輸出結(jié)果,以減小單個(gè)網(wǎng)絡(luò)潛在輸出不確定度。
2) 建立掛起規(guī)則模型,在所有神經(jīng)網(wǎng)絡(luò)初始權(quán)重實(shí)行隨機(jī)設(shè)置這一前提下,依據(jù)各子模型在任意時(shí)刻下的輸出誤差,分類型實(shí)施針對(duì)權(quán)重自適應(yīng)調(diào)整,降低存在較大誤差的子模型權(quán)重,從而降低整體輸出結(jié)果的誤差波動(dòng)。
[1] 潘晴宇. 考慮分布式電源接入的變電站規(guī)劃關(guān)鍵技術(shù)研究[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(6): 98-104.
PAN Qingyu. Research on key technologies of substation planning considering distributed power access[J]. Power System Protection and Control, 2021, 49(6): 98-104.
[2] 肖異瑤, 熊寧, 周晨曦, 等. 計(jì)及分布式電源的鄉(xiāng)村地區(qū)變電站動(dòng)態(tài)升壓規(guī)劃[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(7): 86-93.
XIAO Yiyao, XIONG Ning, ZHOU Chenxi, et al. Booster planning considering dynamic development of load and distributed generator for substations in low-load density areas[J]. Power System Protection and Control, 2021, 49(7): 86-93.
[3] 黎嘉明, 艾小猛, 文勁宇, 等. 光伏發(fā)電功率持續(xù)時(shí)間特性的概率分布定量分析[J]. 電力系統(tǒng)自動(dòng)化, 2017, 41(6): 30-36.
LI Jiaming, AI Xiaomeng, WEN Jinyu, et al. Quantitative analysis of probability distribution for duration time characteristic of photovoltaic Power[J]. Automation of Electric Power Systems, 2017, 41(6): 30-36.
[4] FARIAS-BASULTO G, REYES-FIGUEROA P, ULBRICH C, et al. Validation of a multiple linear regression model for CIGSSE photovoltaic module performance and PMPP prediction[J]. Solar Energy, 2020, 208(1): 859-865.
[5] 方保民, 李紅志, 孔祥鵬, 等. 含高比例光伏出力的長(zhǎng)期分布式儲(chǔ)能配置研究[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(2): 121-129.
FANG Baomin, LI Hongzhi, KONG Xiangpeng, et al. Research on long-term distributed energy storage configuration with a high proportion of photovoltaic output[J]. Power System Protection and Control, 2021, 49(2): 121-129.
[6] ZHU H, SHI Y, WANG H, et al. New feature extraction method for photovoltaic array output time series and its application in fault diagnosis[J]. IEEE Journal of Photovoltaics, 2020, 10(4): 1133-1141.
[7] 王連民, 李瑋, 張克甲, 等. 分布式光伏電源并網(wǎng)可靠性研究[J]. 制造業(yè)自動(dòng)化, 2021, 43(3): 156-159.
WANG Lianmin, LI Wei, ZHANG Kejia, et al. Research on grid connected reliability of distributed photovoltaic power generation[J]. Manufacturing Automation, 2021, 43(3): 156-159.
[8] 徐可寒, 張哲, 劉慧媛, 等. 光伏電源故障特性研究及影響因素分析[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(2): 359-371.
XU Kehan, ZHANG Zhe, LIU Huiyuan, et al. Study on fault characteristics and its related impact factors of photovoltaic generator[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 359-371.
[9] 郭杉, 張?jiān)礈Y, 賈俊青, 等. 基于蒙特卡洛的配電網(wǎng)光伏消納能力評(píng)估[J]. 浙江電力, 2021, 40(6): 8-14.
GUO Shan, ZHANG Yuanyuan, JIA Junqing, et al. Evaluation of photovoltaic consumption capacity of distribution network based on Monte Carlo method[J]. Zhejiang Electric Power, 2021, 40(6): 8-14.
[10] CHEN W, DUAN Y, GUO L, et al. Modeling and prediction of radiated emission from solar cellina photovoltaic generation system[J]. IEEE Journal of Photovoltaics, 2016, 6(2): 540-545.
[11] HASHEMI B, TAHERI S, CRETU A M, et al. Systematic photovoltaic system power losses calculation and modeling using computational intelligence techniques[J]. Applied Energy, 2021(1): 284-297.
[12] 張宏, 董海鷹, 陳釗, 等. 基于模型預(yù)測(cè)控制的光熱-光伏系統(tǒng)多時(shí)間尺度無(wú)功優(yōu)化控制策略研究[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(9): 135-142.
ZHANG Hong, DONG Haiying, CHEN Zhao, et al. Multi-time scale reactive power optimal control strategy of a CSP-PV system based on model predictive control[J]. Power System Protection and Control, 2020, 48(9): 135-142.
[13] 李立雄, 陽(yáng)同光, 袁越陽(yáng), 等. 基于改進(jìn)有限集模型預(yù)測(cè)控制策略的光伏發(fā)電系統(tǒng)最大功率點(diǎn)追蹤算法[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(17): 28-37.
LI Lixiong, YANG Tongguang, YUAN Yueyang, et al. Maximum power point tracking algorithm of a photovoltaic power generation system based on an improved finite set model predictive control strategy[J]. Power System Protection and Control, 2021, 49(17): 28-37.
[14] 鮑長(zhǎng)庚, 閆貽鵬, 黃一楠, 等. 基于多元自適應(yīng)回歸樣條的光伏并網(wǎng)系統(tǒng)日輸出功率預(yù)測(cè)[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(5): 124-131.
BAO Changgeng, YAN Yipeng, HUANG Yinan, et al. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines[J]. Power System Protection and Control, 2021, 49(5): 124-131.
[15] 殷豪, 陳云龍, 孟安波, 等. 基于二次自適應(yīng)支持向量機(jī)的光伏輸出功率預(yù)測(cè)[J]. 太陽(yáng)能學(xué)報(bào), 2019, 48(7): 1866-1873.
YIN Hao, CHEN Yunlong, MENG Anbo, et al. Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta Energiae Solaris Sinica, 2019, 48(7): 1866-1873.
[16] HOSSAIN M, MAHMOOD H. Short term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast[J]. IEEE Access, 2020, 8(1): 172524-172533.
[17] 賈德香, 呂干云, 林芬, 等. 基于SAPSO-BP和分位數(shù)回歸的光伏功率區(qū)間預(yù)測(cè)[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(10): 20-26.
JIA Dexiang, Lü Ganyun, LIN Fen, et al. Photovoltaic power interval prediction based on SAPSO-BP and quantile regression[J]. Power System Protection and Control, 2021, 49(10): 20-26.
[18] 安鵬躍, 孫堃. 基于相似日和回聲狀態(tài)網(wǎng)絡(luò)的光伏發(fā)電功率預(yù)測(cè)[J]. 智慧電力, 2020, 48(8): 38-43.
AN Pengyue, SUN Kun. Photovoltaic power prediction based on similar day and echo state networks[J]. Smart Power, 2020, 48(8): 38-43.
[19] 陸爽, 徐偉明, 劉維亮, 等.基于聚類再回歸方法的光伏發(fā)電量短期預(yù)測(cè)[J]. 浙江電力, 2020, 39(7): 48-54.
LU Shuang, XU Weiming, LIU Weiliang, et al. Short-term forecasting of PV power generation based on clustering and later regression[J]. Zhejiang Electric Power, 2020, 39(7): 48-54.
[20]田浩含, 撖奧洋, 于立濤, 等. 基于GRA-LSTM神經(jīng)網(wǎng)絡(luò)的區(qū)域綜合能源系統(tǒng)多元負(fù)荷短期預(yù)測(cè)模型[J]. 廣東電力, 2020, 33(5): 44-51.
TIAN Haohan, HAN Aoyang, YU Litao, et al. Research on multi-load short-term forecasting model of regional integrated energy system based on GRA-LSTM neural network[J]. Guangdong Electric Power, 2020, 33(5): 44-51.
[21] GU B, SHEN H, LEI X, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299(1): 117-129.
[22] PEYGHAMI S, WANG Z, BLAABJERG F. A guideline for reliability prediction in power electronic converters[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10958-10968.
[23] 周帆, 鄭常寶, 胡存剛, 等. 基于高斯混合模型的光伏發(fā)電功率概率區(qū)間預(yù)測(cè)[J]. 科學(xué)技術(shù)與工程, 2021, 21(24): 10284-10290.
ZHOU Fan, ZHENG Changbao, HU Cungang, et al. Prediction of photovoltaic power generation probability interval based on gaussian mixture model[J]. Science Technology and Engineering, 2021, 21(24): 10284-10290.
[24] 朱文立, 張利, 楊明, 等. 考慮日周期性影響的光伏功率爬坡事件非精確概率預(yù)測(cè)[J]. 電力系統(tǒng)自動(dòng)化, 2019, 43(20): 31-38.
ZHU Wenli, ZHANG Li, YANG Ming, et al. Imprecise probabilistic prediction of photovoltaic power ramp event considering daily periodic effect[J]. Automation of Electric Power Systems, 2019, 43(20): 31-38.
[25] 張雪松, 李鵬, 周亦堯, 等. 基于貝葉斯概率的光伏出力組合預(yù)測(cè)方法[J]. 太陽(yáng)能學(xué)報(bào), 2021, 42(10): 80-86.
ZHANG Xuesong, LI Peng, ZHOU Yiyao, et al. Photovoltaic output combination forecasting method based on Bayesian probability[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 80-86.
[26] CL A, CZ A, WEI P, et al. Accurate prediction of short-term photovoltaic power generation via a novel double-input- rule-modules stacked deep fuzzy method[J]. Energy, 2020, 212(1): 192-201.
[27] QU J, QIAN Z, PEI Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy, 2021, 232(1): 131-142.
[28] NOGUERA A, CASTELLANOS L, SILVA L, et al. Optimum design of a hybrid diesel-ORC/photovoltaic system using PSO: case study for the city of Cujubim, Brazil[J]. Energy, 2017, 142(1): 33-45.
[29] 賈嶸, 李云橋, 張惠智, 等. 基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的光伏陣列多傳感器故障檢測(cè)定位方法[J]. 太陽(yáng)能學(xué)報(bào), 2018, 39(1): 110-116.
JIA Rong, LI Yunqiao, ZHANG Huizhi, et al. Multi-sensor fault detection and positioning method of photovoltaic array based on improved BP neural network[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 110-116.
[30] HAO Z, DNA B, KWA B, et al. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information[J]. Energy, 2021, 231(1): 120-130.
An SEELM-based ensemble method for load forecasting in a distributed photovoltaic systems
ZHANG Hanting1, CHEN Jun1, CHEN Genyong2
(1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China;2.School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China)
Given the nonlinear and non-stationary data distribution characteristics of distributed photovoltaic system load, this paper proposes a suspended ensemble extreme learning machine (SEELM) method based on neural networks and a hanging criterion to implement power load prediction in distributed photovoltaic systems. First, multiple neural network models are built, and the initial input weights of each model are randomly assigned. Then the hanging criteria are designed to divide the models into two parts according to the numerical fluctuation ranges at different time spots. For large error models with larger fluctuation ranges, the online updates will be carried out in a probabilistic way to optimize the training error and input weights simultaneously. Finally, the outputs of all submodels are taken for the final output, which can reduce the error fluctuation impacts in the initial weight selection step. Based on an empirical simulation of the actual distributed photovoltaic system in a region, the advantages of the proposed method in terms of prediction accuracy and output stability under the scenarios of large fluctuation in photovoltaic load can be verified, and better capability and performance of load forecasting in the high-proportion photovoltaic systems can thus be achieved.
photovoltaic systems; load forecast; ensemble systems; SEELM
10.19783/j.cnki.pspc. 220116
國(guó)家自然科學(xué)基金項(xiàng)目資助(61803343)
This work is supported by the National Natural Science Foundation of China (No. 61803343).
2022-01-25;
2022-02-28
張翰霆(2001—),男,本科,研究方向?yàn)殡娏ο到y(tǒng)自動(dòng)化;E-mail: 1910201408@hbut.edu.cn
陳 俊(1976—),男,博士,副教授,研究方向?yàn)榉植际桨l(fā)電系統(tǒng);E-mail : chenjun@hbut.edu.cn
陳根永(1964—),男,博士,教授,研究方向?yàn)殡娏ο到y(tǒng)規(guī)劃與運(yùn)行。
(編輯 張愛(ài)琴)