王冰菁 張惠琴 謝俊霞 王俊
[摘要] 目的 探討枸櫞酸鐵銨(FAC)對未分化MO3.13少突膠質(zhì)細(xì)胞鐵代謝相關(guān)蛋白表達(dá)的影響。方法 將MO3.13細(xì)胞分為對照組和FAC組。對照組給予細(xì)胞培養(yǎng)液處理,F(xiàn)AC組用加入100 μmol/L FAC的細(xì)胞培養(yǎng)液處理。處理24 h后采用蛋白質(zhì)免疫印跡實(shí)驗(yàn)檢測兩組細(xì)胞轉(zhuǎn)鐵蛋白受體1(TfR1)和鐵轉(zhuǎn)運(yùn)蛋白1(FPN1)的表達(dá)水平。結(jié)果 與對照組相比,F(xiàn)AC組細(xì)胞TfR1表達(dá)水平降低(t=2.695,P<0.05),F(xiàn)PN1表達(dá)水平無明顯變化(t=0.210,P>0.05)。結(jié)論 FAC可引起少突膠質(zhì)細(xì)胞TfR1表達(dá)降低,而FPN1表達(dá)不變。
[關(guān)鍵詞]鐵;少突神經(jīng)膠質(zhì);受體,轉(zhuǎn)鐵蛋白;轉(zhuǎn)鐵蛋白類
[中圖分類號]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2022)03-0367-03
doi:10.11712/jms.2096-5532.2022.58.100
EFFECT OF FERRIC AMMONIUM CITRATE ON THE EXPRESSION OF IRON METABOLISM-RELATED PROTEINS IN OLIGODENDROCYTES
WANG Bingjing, ZHANG Huiqin, XIE Junxia, WANG Jun
(Department of Physiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effect of ferric ammonium citrate (FAC) on the expression of iron metabolism-related proteins in undifferentiated MO3.13 oligodendrocytes.?Methods MO3.13 cells were divided into control group and FAC group. The cells in the control group were treated with a cell culture medium, and those in the FAC group were treated with the cell culture medium containing 100 μmol/L FAC. After treatment for 24 hours, Western blotting was used to measure the expression levels of transferrin receptor 1 (TfR1) and ferroportin 1 (FPN1) in both groups.?Results Compared with the control group, the FAC group had a significant reduction in the expression level of TfR1 (t=2.695,P<0.05) and had no significant change in the expression of FPN1 (t=0.210,P>0.05).?Conclusion FAC can reduce the expression of TfR1 in oligodendrocytes, while the expression of FPN1 remains unchanged.
[KEY WORDS] iron; oligodendroglia; receptors, transferrin; transferrins
帕金森病(PD)被認(rèn)為是世界上第二常見的神經(jīng)退行性疾病,其主要病理特征是黑質(zhì)致密部多巴胺能神經(jīng)元的缺失[1]。近年來,隨著磁共振成像技術(shù)的進(jìn)步,越來越多的證據(jù)表明,PD病人黑質(zhì)中的鐵沉積增加[2-3]。鐵是一種過渡金屬,在生物圈中廣泛分布參與電子轉(zhuǎn)移的化學(xué)反應(yīng),對正常細(xì)胞功能至關(guān)重要。在鐵、亞鐵和三價(jià)鐵之間的氧化還原循環(huán)存在于生命所必需的各種反應(yīng)中[4]。過量的鐵會產(chǎn)生有害的活性氧。在大腦中,鐵對于維持神經(jīng)組織的高代謝和能量需求至關(guān)重要,并且還參與髓鞘合成、神經(jīng)遞質(zhì)合成和代謝[5-6]。生成髓鞘的少突膠質(zhì)細(xì)胞維持著大腦中最高的鐵濃度[7-8]。少突膠質(zhì)細(xì)胞中含有大量的鐵結(jié)合蛋白,如鐵蛋白和轉(zhuǎn)鐵蛋白[9]。已有實(shí)驗(yàn)結(jié)果證明,在小膠質(zhì)細(xì)胞內(nèi),高鐵引起二價(jià)金屬離子轉(zhuǎn)運(yùn)蛋白1表達(dá)下調(diào),鐵轉(zhuǎn)運(yùn)蛋白1(FPN1)表達(dá)上調(diào)[10]。然而高鐵環(huán)境對少突膠質(zhì)細(xì)胞內(nèi)鐵代謝相關(guān)蛋白的影響目前仍不清楚。本實(shí)驗(yàn)旨在探討枸櫞酸鐵銨(FAC)對MO3.13少突膠質(zhì)細(xì)胞內(nèi)鐵代謝相關(guān)蛋白表達(dá)的影響。
1材料和方法
1.1實(shí)驗(yàn)材料
MO3.13少突膠質(zhì)細(xì)胞購于上海拜力生物科技有限公司。DMEM高糖培養(yǎng)液、胎牛血清購于以色列BI公司,胰酶購于美國Hyclone公司,F(xiàn)AC購于美國Sigma公司,轉(zhuǎn)鐵蛋白受體1(TfR1)抗體和FPN1抗體均購于Abcam公司,HRP-IgG標(biāo)記的二抗購于Absin公司,BCA蛋白定量檢測試劑盒購于TherGmo公司,PVDF膜、ECL發(fā)光液均購于美國Millipore公司,其他試劑均為國產(chǎn)分析純。
1.2實(shí)驗(yàn)分組及處理
將未分化的MO3.13少突膠質(zhì)細(xì)胞以6×104/cm2密度接種于6孔板,每孔加入2 mL細(xì)胞混懸液培養(yǎng)。為了觀察鐵過載對TfR1和FPN1表達(dá)的影響,將細(xì)胞隨機(jī)分為對照組和FAC組。FAC組用加入100 μmol/L FAC的細(xì)胞培養(yǎng)液處理24 h,對照組用無血清細(xì)胞培養(yǎng)液處理。
1.3蛋白質(zhì)免疫印跡實(shí)驗(yàn)檢測TfR1和FPN1蛋白表達(dá)
藥物處理結(jié)束以后,收集6孔板內(nèi)細(xì)胞蛋白,應(yīng)用BCA蛋白定量試劑盒檢測蛋白濃度,按照每孔總蛋白20 μg計(jì)算每個(gè)樣本的上樣量。蛋白經(jīng)電泳(80 V、30 min和120 V、90 min)、轉(zhuǎn)膜(300 mA、90 min)后,用100 g/L的脫脂奶粉室溫封閉1.5 h,再分別加入FPN1(1∶1 000)、TfR1(1∶1 000)和β-actin(1∶10 000)抗體,4 ℃搖床上孵育過夜,然后用TBST溶液洗膜3次(每次10 min),加入山羊抗兔(1∶10 000)的HRP-IgG二抗室溫孵育1 h,再用TBST溶液洗膜3次(每次10 min),以ECL發(fā)光液顯影后用Image J軟件分析條帶灰度值。結(jié)果以TfR1和FPN1與β-actin的灰度值比值表示。實(shí)驗(yàn)重復(fù)8次。
1.4統(tǒng)計(jì)學(xué)分析
應(yīng)用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,結(jié)果以x±s表示,兩組間比較采用t檢驗(yàn),以P<0.05為差異有顯著性。
2結(jié)果
蛋白質(zhì)免疫印跡實(shí)驗(yàn)檢測結(jié)果顯示,F(xiàn)AC組細(xì)胞TfR1表達(dá)水平明顯低于對照組,差異有統(tǒng)計(jì)學(xué)意義(t=2.695,P<0.05),而兩組細(xì)胞FPN1表達(dá)水平比較差異無統(tǒng)計(jì)學(xué)意義(t=0.210,P>0.05)。見表1。
3討論
許多神經(jīng)退行性疾病的特點(diǎn)是中樞神經(jīng)系統(tǒng)或周圍神經(jīng)系統(tǒng)特定區(qū)域的局部鐵積累[11]。鐵的積累最終可能超過鐵的儲存能力,從而氧化還原活性鐵促進(jìn)氧化應(yīng)激[12]。細(xì)胞內(nèi)鐵主要用于線粒體合成血紅素和鐵硫簇。鐵也參與DNA合成,核糖核苷酸還原酶是鐵依賴性酶,可在真核生物中催化脫氧核糖核苷酸的合成[13]。
少突膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的髓鞘形成細(xì)胞,除了維持髓鞘的功能外,該細(xì)胞還維持軸突的完整性,支持軸突代謝,幫助神經(jīng)元存活[14-15]。神經(jīng)元和膠質(zhì)細(xì)胞在許多方面都需要鐵,包括電子傳遞、還原型輔酶Ⅱ活性的維持、軸突髓鞘形成以及作為參與神經(jīng)遞質(zhì)合成的幾種酶的輔助因子[16]。細(xì)胞內(nèi)鐵含量主要取決于鐵吸收和釋放蛋白的表達(dá),TfR1被認(rèn)為是少突膠質(zhì)細(xì)胞生存、生長和成熟的必要條件[17]。TfR1通過受體介導(dǎo)的內(nèi)吞作用介導(dǎo)細(xì)胞對鐵的攝取,并在中樞神經(jīng)系統(tǒng)的神經(jīng)元和少突膠質(zhì)細(xì)胞中高度表達(dá)[18]。少突膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞通過FPN1途徑介導(dǎo)鐵外排[19]。參與腦細(xì)胞鐵輸出的蛋白質(zhì)缺失或表達(dá)減少可能導(dǎo)致大腦中鐵的過度積累和神經(jīng)退行性變,而FPN是哺乳動物中唯一已知的輸出細(xì)胞內(nèi)鐵的蛋白質(zhì)[20-21]。哺乳動物的鐵代謝受鐵調(diào)節(jié)蛋白(IRPs)的調(diào)節(jié),IRPs表達(dá)降低,則TfR1表達(dá)降低,F(xiàn)PN1表達(dá)增加,反之亦然[22]。同時(shí)細(xì)胞FPN1的表達(dá)還受到鐵調(diào)素(hepcidin)的影響,hepcidin介導(dǎo)FPN1的細(xì)胞內(nèi)吞,hepcidin表達(dá)增加,則FPN1表達(dá)降低[23]。Hepcidin的表達(dá)主要由鐵或炎癥刺激誘導(dǎo),鐵的攝入刺激hepcidin表達(dá)防止高鐵血癥和進(jìn)一步的膳食鐵吸收[24-25]。已有研究表明,在6-羥基多巴胺處理的小膠質(zhì)細(xì)胞中,二價(jià)金屬離子轉(zhuǎn)運(yùn)蛋白1和IRP1表達(dá)增加,hepcidin表達(dá)降低,F(xiàn)PN1表達(dá)無明顯變化,F(xiàn)PN1無明顯變化可能與IRP1表達(dá)增加和hepcidin表達(dá)降低有關(guān)[26]。而本實(shí)驗(yàn)結(jié)果顯示,未分化的MO3.13少突膠質(zhì)細(xì)胞用100 μmol/L FAC處理后TfR1蛋白表達(dá)下降,F(xiàn)PN1蛋白表達(dá)不變,F(xiàn)PN1蛋白表達(dá)不變可能與hepcidin表達(dá)增多和IRP1表達(dá)下降共同調(diào)節(jié)有關(guān)。
綜上所述,高鐵環(huán)境下少突膠質(zhì)細(xì)胞內(nèi)TfR1表達(dá)下降,F(xiàn)PN1表達(dá)不變,鐵轉(zhuǎn)入降低,鐵轉(zhuǎn)出不變,以防止細(xì)胞鐵聚集。本文結(jié)果為PD的治療提供了新的思路和靶點(diǎn)。
[參考文獻(xiàn)]
[1]HAN K, JIN X F, GUO X, et al. Nrf2 knockout altered brain iron deposition and mitigated age-related motor dysfunction in aging mice[J].? Free Radical Biology & Medicine, 2021,162:592-602.
[2]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J].? Progress in Neurobio-logy, 2017,155:96-119.
[3]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J].? The Lancet Neurology, 2014,13(10):1045-1060.
[4]GALARIS D, BARBOUTI A, PANTOPOULOS K. Iron homeostasis and oxidative stress: an intimate relationship[J].? Biochimica et Biophysica Acta Molecular Cell Research, 2019,1866(12):118535.
[5]THIRUPATHI A, CHANG Y Z. Brain iron metabolism and CNS diseases[J].? Advances in Experimental Medicine and Biology, 2019,1173:1-19.
[6]M?LLER H E, BOSSONI L, CONNOR J R, et al. Iron, myelin, and the brain: neuroimaging meets neurobiology[J].? Trends in Neurosciences, 2019,42(6):384-401.
[7]NOBUTA H, YANG N, NG Y H, et al. Oligodendrocyte death in pelizaeus-merzbacher disease is rescued by iron chelation[J].? Cell Stem Cell, 2019,25(4):531-541.e6.
[8]BIRKL C, BIRKL-TOEGLHOFER A M, ENDMAYR V, et al. The influence of brain iron on myelin water imaging[J].? NeuroImage, 2019,199:545-552.
[9]MUKHERJEE C, KLING T, RUSSO B, et al. Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain[J].? Cell Metabolism, 2020,32(2):259-272.e10.
[10]孟大鵬,謝俊霞,王俊. 枸櫞酸鐵銨對BV2小膠質(zhì)細(xì)胞DMT1和FPN1表達(dá)影響[J].? 青島大學(xué)醫(yī)學(xué)院學(xué)報(bào), 2017,53(1):12-13,17.
[11]MOCHIZUKI H, YASUDA T. Iron accumulation in Parkinsons disease[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2012,119(12):1511-1514.
[12]DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J].? Nature Chemical Biology, 2014,10(1):9-17.
[13]DE FREITAS J M, MENEGHINI R. Iron and its sensitive balance in the cell[J].? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001,475(1-2):153-159.
[14]BANKSTON A N, MANDLER M D, FENG Y. Oligodendroglia and neurotrophic factors in neurodegeneration[J].? Neuroscience Bulletin, 2013,29(2):216-228.
[15]FNFSCHILLING U, SUPPLIE L M, MAHAD D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J].? Nature, 2012,485(7399):517-521.
[16]KE Y, QIAN Z M. Brain iron metabolism: neurobiology and neurochemistry[J].? Progress in Neurobiology, 2007,83(3):149-173.
[17]JIANG D H, KE Y, CHENG Y Z, et al. Distribution of ferroportin1 protein in different regions of developing rat brain[J].? Developmental Neuroscience, 2002,24(2-3):94-98.
[18]CONNOR J R, FINE R E. The distribution of transferrin immunoreactivity in the rat central nervous system[J].? Brain Research,1986,368(2):319-328.
[19]QIAN Z M, KE Y. Brain iron transport[J].? Biological Reviews, 2019,94(5):1672-1684.
[20]CHEN P H, WU J L, DING C C, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron meta-bolism[J].? Cell Death and Differentiation, 2020,27(3):1008-1022.
[21]MA X Y, DAS N K, CASTILLO C, et al. SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes[J].? The Journal of Biological Chemistry, 2019,294(11):3974-3986.
[22]HUANG B W, MIYAZAWA M, TSUJI Y. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels[J].? Cellular Signalling, 2014,26(12):2702-2709.
[23]HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango: regulation of Mammalian iron metabolism[J].? Cell, 2010,142(1):24-38.
[24]WANG S M, FU L J, DUAN X L, et al. Role of hepcidin in murine brain iron metabolism[J].? Cellular and Molecular Life Sciences: CMLS, 2010,67(1):123-133.
[25]DU F, QIAN C, QIAN Z M, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway[J].? Glia, 2011,59(6):936-945.
[26]孟大鵬. 6-OHDA對BV2小膠質(zhì)細(xì)胞鐵代謝的影響[D].? 青島:青島大學(xué), 2017.
(本文編輯馬偉平)