李映慧 謝俊霞 王俊
[摘要] 目的 研究鐵螯合試劑去鐵胺(DFO)對(duì)脂多糖(LPS)誘導(dǎo)的小鼠黑質(zhì)多巴胺能神經(jīng)元損傷的影響。方法 將40只12月齡雄性C57BL/6小鼠隨機(jī)分為對(duì)照組、LPS組、DFO組和LPS+DFO組。對(duì)照組黑質(zhì)注射生理鹽水,LPS組和DFO組分別注射LPS和DFO,LPS+DFO組注射LPS和DFO的混合液。注射1周后處死小鼠,采用免疫組織化學(xué)方法檢測黑質(zhì)酪氨酸羥化酶(TH)陽性多巴胺能神經(jīng)元數(shù)量。結(jié)果 與對(duì)照組相比,LPS組黑質(zhì)TH陽性神經(jīng)元明顯減少(F=106.15,P<0.05);與LPS組相比,LPS+DFO組黑質(zhì)TH陽性神經(jīng)元明顯增多(F=60.74,P<0.05)。結(jié)論 DFO對(duì)LPS誘導(dǎo)的小鼠黑質(zhì)多巴胺能神經(jīng)元損傷具有保護(hù)作用。
[關(guān)鍵詞]去鐵胺;脂多糖類;多巴胺能神經(jīng)元;酪氨酸單氧化酶;黑質(zhì);小鼠
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2022)03-0364-03
doi:10.11712/jms.2096-5532.2022.58.094
PROTECTIVE EFFECT OF DEFEROXAMINE AGAINST LIPOPOLYSACCHARIDE-INDUCED INJURY TO SUBSTANTIA NIGRA DOPAMINERGIC NEURONS IN MICE
LI Yinghui, XIE Junxia, WANG Jun
(Department of Physiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT] Objective To study the effect of iron-chelating agent deferoxamine (DFO) on lipopolysaccharide (LPS)-induced injury to the nigral dopaminergic neuron of mice.?Methods Forty 12-month-old male C57BL/6 mice were randomly divi-ded into control group, LPS group, DFO group, and LPS+DFO group to receive an injection of saline, LPS, DFO, and a mixture of LPS and DFO into the substantia nigra, respectively. All mice were sacrificed one week after injection. Immunohistochemistry was used to determine the number of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra.?ResultsThe number of TH-positive dopaminergic neurons in the substantia nigra was significantly decreased in the LPS group than in the control group (F=106.15,P<0.05). Compared with the LPS group, the LPS+DFO group showed a significantly increased number of TH-positive dopaminergic neurons in the substantia nigra (F=60.74,P<0.05).?Conclusion DFO has a protective effect against LPS-induced injury to the nigral dopaminergic neurons of C57BL/6 mice.
[KEY WORDS] deferoxamine; lipopolysaccharides; dopaminergic neurons; tyrosine 3-monooxygenase; substantia nigra; mice
帕金森病(PD)是一種進(jìn)展緩慢的神經(jīng)退行性疾病,其發(fā)病機(jī)制迄今尚不明確,許多研究表明慢性炎癥參與了PD的發(fā)病[1-2]。脂多糖(LPS)作為一種炎癥源,已被證明是實(shí)驗(yàn)動(dòng)物黑質(zhì)紋狀體多巴胺能神經(jīng)元死亡的有效引發(fā)劑[3]。C57BL/6小鼠黑質(zhì)、紋狀體、側(cè)腦室內(nèi)注射LPS均可以誘導(dǎo)黑質(zhì)酪氨酸羥化酶(TH)陽性的多巴胺能神經(jīng)元脫失、運(yùn)動(dòng)行為改變和紋狀體多巴胺減少[4]。有研究表明,黑質(zhì)中鐵的異常沉積在PD的發(fā)病中起著關(guān)鍵作用[5-6]。過量的鐵可以通過Fenton反應(yīng)促進(jìn)羥自由基的生成,造成細(xì)胞損傷。LPS在小鼠模型中引發(fā)的神經(jīng)元損傷,與腦鐵積累和一系列炎癥級(jí)聯(lián)反應(yīng)有關(guān)[7]。本實(shí)驗(yàn)通過黑質(zhì)注射LPS及鐵螯合劑去鐵胺(DFO),采用免疫組織化學(xué)方法檢測黑質(zhì)中TH陽性多巴胺能神經(jīng)元的數(shù)量,探討DFO對(duì)LPS誘導(dǎo)的多巴胺能神經(jīng)元損傷是否具有保護(hù)作用。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物及試劑
SPF級(jí)雄性C57BL/6小鼠40只,8周齡,體質(zhì)量(20±2)g,購于北京維通利華實(shí)驗(yàn)動(dòng)物有限公司。小鼠單籠飼養(yǎng)于有適量食物和水的潔凈動(dòng)物房內(nèi),可以自由飲食。動(dòng)物房室溫(20±2)℃,濕度(50±2)%,12/12 h晝夜循環(huán)光照。小鼠適應(yīng)性飼養(yǎng)1周進(jìn)行后續(xù)實(shí)驗(yàn)。動(dòng)物使用和管理經(jīng)青島大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn)。主要試劑:LPS、DFO購于美國Sigma公司,TH兔抗多克隆抗體購于英國Abcam公司,其余試劑均從當(dāng)?shù)卦噭┕举徺I。
1.2動(dòng)物分組與處理
將40只實(shí)驗(yàn)小鼠隨機(jī)分為對(duì)照組、LPS組、DFO組和LPS+DFO組,每組10只。小鼠用異戊烷麻醉后固定在腦立體定位儀上,調(diào)整耳桿使小鼠頭部位于同一平面。碘附消毒后剪開小鼠顱腦背側(cè)皮膚,用體積分?jǐn)?shù)0.03的過氧化氫溶液擦拭顱骨表面至顱縫和前后囟清晰可見。黑質(zhì)定位坐標(biāo):前囟后3.1 mm,左右旁開1.5 mm,深度4.1 mm。通過顯微注射針以0.2 μL/min的流量注射完畢后留針10 min。對(duì)照組注射生理鹽水1 μL,LPS組注射1 mg/L的LPS 1 μL,DFO組注射50 mmol/L的DFO 1 μL,DFO+LPS組注射1 mg/L LPS和50 mmol/L DFO的混合液1 μL,繼續(xù)喂養(yǎng)7 d進(jìn)行后續(xù)檢測[8]。
1.3TH陽性神經(jīng)元檢測
采用免疫組織化學(xué)法檢測TH陽性神經(jīng)元的數(shù)量。小鼠灌注取腦,制備20 μm厚切片,每只小鼠留腦片4張。腦片以40 g/L多聚甲醛溶液固定10 min,應(yīng)用0.01 mol/L PBS溶液洗3次(每次10 min),山羊血清封閉2 h,加TH一抗孵育過夜;用0.01 mol/L PBS 溶液洗3次(每次10 min),加二抗孵育;以0.01 mol/L PBS溶液洗3次(每次10 min),DAB顯色,中性樹膠封片。在20倍物鏡下計(jì)數(shù)每張腦片黑質(zhì)區(qū)陽性神經(jīng)元,將每張腦片中的陽性神經(jīng)元總數(shù)再乘以 4,即得到黑質(zhì)區(qū) TH陽性神經(jīng)元總數(shù)。
1.4統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 23.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。計(jì)量資料結(jié)果以x±s表示,針對(duì)LPS和DFO兩種處理因素,采用析因設(shè)計(jì)的方差分析進(jìn)行統(tǒng)計(jì)處理。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
對(duì)照組、DFO組、LPS組和LPS+DFO組黑質(zhì)區(qū)TH陽性神經(jīng)元總數(shù)分別為(14.75±1.75)×103、(12.14±2.32)×103、(5.26±1.42)×103和(11.14±1.18)×103(n=6)。析因設(shè)計(jì)的方差分析顯示,DFO和LPS兩種因素存在交互作用(F=36.40,P<0.05)。主效應(yīng)分析顯示,LPS組與對(duì)照組相比,TH陽性神經(jīng)元總數(shù)明顯降低,差異有統(tǒng)計(jì)學(xué)意義(F=55.58,P<0.05);DFO組與對(duì)照組相比,TH陽性神經(jīng)元總數(shù)降低,差異亦有統(tǒng)計(jì)學(xué)意義(F=5.58,P<0.05)。單獨(dú)效應(yīng)分析顯示,DFO組與對(duì)照組相比,TH陽性神經(jīng)元總數(shù)差異無顯著性(F=4.84,P=0.05);LPS組與對(duì)照組相比較,TH陽性神經(jīng)元總數(shù)差異有統(tǒng)計(jì)學(xué)意義(F=106.15,P<0.05);LPS+DFO組與LPS組相比較,TH陽性神經(jīng)元總數(shù)差異有統(tǒng)計(jì)學(xué)意義(F=60.74,P<0.05);而LPS+DFO組與DFO組相比,TH陽性神經(jīng)元總數(shù)差異無顯著性(F=0.88,P=0.37)。
3討論
PD作為僅次于阿爾茨海默病的第二大神經(jīng)退行性疾病,其主要病理特征是中腦黑質(zhì)多巴胺能神經(jīng)元的進(jìn)行性喪失和紋狀體多巴胺耗竭[8],與小膠質(zhì)細(xì)胞誘導(dǎo)的神經(jīng)炎癥、氧化應(yīng)激及線粒體功能障礙密切相關(guān)[9-10]。大量研究結(jié)果表明,神經(jīng)炎癥在PD的發(fā)病過程中起著關(guān)鍵作用,源自非神經(jīng)元細(xì)胞(包括小膠質(zhì)細(xì)胞)的炎癥遞質(zhì),如活性氧(ROS)、一氧化氮、腫瘤壞死因子α(TNF-α)和白細(xì)胞介素1β(IL-1β)均可以調(diào)節(jié)PD中神經(jīng)元細(xì)胞死亡的進(jìn)程[11-13]。紋狀體內(nèi)注射LPS可激活小膠質(zhì)細(xì)胞,引起炎癥反應(yīng),導(dǎo)致羥自由基的產(chǎn)生及細(xì)胞外多巴胺、谷氨酸和腺苷水平上升,并引發(fā)多巴胺能神經(jīng)元損傷反應(yīng)[14]。
鐵作為中樞神經(jīng)系統(tǒng)生長及發(fā)育所必需的微量元素,在正常衰老和神經(jīng)退行性疾病的許多生物過程中起著重要作用,不僅參與調(diào)節(jié)線粒體產(chǎn)生能量,還與中樞神經(jīng)系統(tǒng)的正常髓鞘形成密切相關(guān)[15]。大量研究顯示,PD病人存在鐵代謝異常,病人腦中鐵逐漸積累,特別是在黑質(zhì)致密部[16-17]。鐵介導(dǎo)的多巴胺能神經(jīng)元損傷與其參與ROS的生成有關(guān),過氧化氫在多巴胺氧化脫氨基過程中產(chǎn)生,它與Fe2+反應(yīng),產(chǎn)生羥基自由基,破壞蛋白質(zhì)、核酸和膜磷脂等,進(jìn)而引起多巴胺能神經(jīng)元損傷[18]。
鐵螯合劑作為PD的潛在治療藥物,通過降低不穩(wěn)定的鐵的水平來預(yù)防和治療模型小鼠PD[15]。DFO可以螯合過多的三價(jià)鐵,清除過量游離鐵,抑制羥自由基生成,從而抑制氧化應(yīng)激反應(yīng),起到保護(hù)多巴胺能神經(jīng)元的作用。有研究證實(shí),DFO預(yù)處理可以改善LPS誘導(dǎo)的小膠質(zhì)細(xì)胞激活和降低海馬中升高的IL-1β和TNF-α水平,阻止LPS誘導(dǎo)的海馬中丙二醛和超氧化物歧化酶水平的增加,并降低其誘導(dǎo)的鐵積累[7]。本實(shí)驗(yàn)室前期研究證實(shí),神經(jīng)炎癥會(huì)激活小膠質(zhì)細(xì)胞,通過白細(xì)胞介素6信號(hào),刺激星形膠質(zhì)細(xì)胞釋放鐵調(diào)素,向神經(jīng)元發(fā)送信號(hào),調(diào)節(jié)神經(jīng)元鐵代謝相關(guān)蛋白的表達(dá),導(dǎo)致神經(jīng)元鐵的沉積,進(jìn)而引起神經(jīng)元損傷[19-21]。本實(shí)驗(yàn)結(jié)果顯示,與LPS組相比,DFO聯(lián)合LPS處理組黑質(zhì)TH陽性多巴胺能神經(jīng)元數(shù)量明顯增多,這可能與DFO螯合鐵從而降低ROS水平有關(guān)。
總之,本實(shí)驗(yàn)結(jié)果表明,鐵螯合劑DFO具有防止LPS誘導(dǎo)的多巴胺能神經(jīng)元死亡的神經(jīng)保護(hù)作用。在此基礎(chǔ)上,我們將繼續(xù)探索其相關(guān)機(jī)制,為對(duì)抗神經(jīng)炎癥的生物學(xué)效應(yīng)開辟一條新的途徑,也為PD的治療提供新的實(shí)驗(yàn)和理論基礎(chǔ)。
[參考文獻(xiàn)]
[1]GAO Y J, WILSON G R, STEPHENSON S E M, et al. The emerging role of Rab GTPases in the pathogenesis of Parkinsons disease[J].? Movement Disorders, 2018,33(2):196-207.
[2]PAJARES M, I ROJO A, MANDA G, et al. Inflammation in Parkinsons disease: mechanisms and therapeutic implications[J].? Cells, 2020,9(7):E1687.
[3]KIM W G, MOHNEY R P, WILSON B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2000,20(16):6309-6316.
[4]HUNTER R L, CHENG B H, CHOI D Y, et al. Intrastriatal lipopolysaccharide injection induces Parkinsonism in C57/B6 mice[J].? Journal of Neuroscience Research, 2009,87(8):1913-1921.
[5]MOCHIZUKI H, CHOONG C J, BABA K. Parkinsons di-sease and iron[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2020,127(2):181-187.
[6]THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinsons disease[J].? Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(4):418-425.
[7]ZHANG X Y, CAO J B, ZHANG L M, et al. Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice[J].? Journal of Neuroinflammation, 2015,12:20.
[8]ZHANG Z, ZHANG K K, DU X R, et al. Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration[J].? Molecular Medicine Reports, 2012,5(2):562-566.
[9]JANG Y, KWON I, SONG W, et al. Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD[J].? Life Sciences, 2018,209:455-465.
[10]ROCHA E M, DE MIRANDA B, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuro-inflammation in Parkinsons disease[J].? Neurobiology ofDisease, 2018,109:249-257.
[11]GAO H M, ZHOU H, ZHANG F, et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2011,31(3):1081-1092.
[12]ZHANG J W, ZHENG Y L, LUO Y, et al. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells[J].? Molecular Immunology, 2019,116:29-37.
[13]NAM H Y, NAM J H, YOON G, et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice[J].? Journal of Neuroinflammation, 2018,15(1):271.
[14]NOWORYTA-SOKOOWSKA K, GRSKA A, GOEM-BIOWSKA K. LPS-induced oxidative stress and inflammatory reaction in the rat striatum[J].? Pharmacological Reports, 2013,65(4):863-869.
[15]APOSTOLAKIS S, KYPRAIOU A M. Iron in neurodegenerative disorders: being in the wrong place at the wrong time[J]?? Reviews in the Neurosciences, 2017,28(8):893-911.
[16]SIAN-H?LSMANN J, MANDEL S, YOUDIM M B, et al. The relevance of iron in the pathogenesis of Parkinsons di-sease[J].? Journal of Neurochemistry, 2011,118(6):939-957.
[17]MOCHIZUKI H, YASUDA T. Iron accumulation in Parkinsons disease[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2012,119(12):1511-1514.
[18]GUTTERIDGE J M C. Iron and oxygen radicals in brain[J].? Annals of Neurology,1992,32(S1):S16-S21.
[19]CUI J T, GUO X L, LI Q J, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J].? Frontiers in Cellular Neuroscience, 2020,14:47.
[20]YOU L H, YAN C Z, ZHENG B J, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis[J].? Cell Death & Disease, 2017,8(3):e2676.
[21]WANG J, SONG N, JIANG H, et al. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons[J].? Biochimica et Biophysica Acta, 2013,1832(5):618-625.
(本文編輯馬偉平)