解曉曼 胡子凡 楊妍卿 陳文芳
[摘要] 目的 探討胰島素樣生長因子-1(IGF-1)與淫羊藿素(ICT)合用對脂多糖(LPS)誘導的BV2小膠質細胞炎癥反應的影響。方法 常規(guī)培養(yǎng)BV2小膠質細胞,將細胞分為對照組、LPS組、IGF-1+LPS組、ICT+LPS組和IGF-1+ICT+LPS組。其中LPS組細胞加入LPS(1 mg/L)作用6 h;后3組細胞先加入IGF-1(12.5 μg/L)或(和)ICT (10 μmol/L)預保護1 h,再加入LPS (1 mg/L)共同作用6 h。應用實時熒光定量PCR檢測各組細胞環(huán)氧合酶-2(COX-2)和誘導型一氧化氮合酶(iNOS)mRNA的表達。結果 與對照組比較,LPS組COX-2和iNOS mRNA表達明顯上調(F=20.77、39.85,P<0.05);IGF-1和ICT預處理均可顯著下調LPS誘導的BV2小膠質細胞COX-2和iNOS mRNA的表達,且IGF-1和ICT聯(lián)合用藥的下調作用比單獨應用兩種藥物更顯著(F=54.84~241.68,P<0.05)。結論 IGF-1和ICT均能明顯抑制LPS誘導的BV2小膠質細胞炎癥反應,且二者聯(lián)合應用較單獨應用更有效。
[關鍵詞]胰島素樣生長因子Ⅰ;淫羊藿苷;小神經膠質細胞;炎癥;環(huán)氧化酶2;一氧化氮合酶Ⅱ型
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2022)03-0353-04
doi:10.11712/jms.2096-5532.2022.58.118
EFFECT OF INSULIN-LIKE GROWTH FACTOR-1 COMBINED WITH ICARITIN ON INFLAMMATORY RESPONSE OF BV2 MICROGLIAL CELLS
XIE Xiaoman, HU Zifan, YANG Yanqing, CHEN Wenfang
(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effect of insulin-like growth factor-1 (IGF-1) combined with icaritin (ICT) on the inflammatory response of BV2 microglial cells induced by lipopolysaccharide (LPS).?Methods BV2 microglial cells were cultured with conventional methods and were then divided into control group, LPS group, IGF-1+LPS group, ICT+LPS group, and IGF-1+ICT+LPS group. The cells in the LPS group were treated with LPS (1 mg/L) for 6 hours, and those in the other three groups were pre-protected with IGF-1 (12.5 μg/L) and/or ICT (10 μmol/L) for 1 hour, followed by the addition of LPS (1 mg/L) for 6 hours. Quantitative real-time PCR was used to measure the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in each group.?Results Compared with the control group, the LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (F=20.77,39.85;P<0.05). Pretreatment with IGF-1 and ICT significantly downregulated the mRNA expression of COX-2 and iNOS in BV2 microglial cells induced by LPS, and the combination of IGF-1 and ICT had a significantly greater downregulating effect than the two drugs used alone (F=54.84-241.68,P<0.05).?Conclusion Both IGF-1 and ICT can significantly inhibit the inflammatory response of BV2 microglial cells induced by LPS, and the combination of IGF-1 and ICT is more effective than the two drugs used alone.
[KEY WORDS] insulin-like growth factor Ⅰ;? icariin;? microglia;? inflammation;? cyclooxygenase 2;? nitric oxide synthase type Ⅱ
研究發(fā)現(xiàn),神經炎癥在神經退行性疾病的發(fā)病機制中起關鍵作用,小膠質細胞和星形膠質細胞過度激活釋放的炎性因子可導致神經元損傷[1-2]。因此,有效抑制小膠質細胞和星形膠質細胞的過度活化是中樞神經系統(tǒng)炎癥防治的有效策略[3]。胰島素樣生長因子-1(IGF-1)在肝臟中合成,可通過血-腦脊液屏障進入腦內,而腦內的神經元、小膠質細胞和星形膠質細胞也可以合成分泌IGF-1[4-5]。AYADI等[6]證實,IGF-1通過激活磷酸激酶對抗6-羥多巴胺誘導的多巴胺能神經元的進行性丟失,發(fā)揮神經保護作用。PARK等[7]報道,IGF-1可通過抑制炎癥反應對抗脂多糖(LPS)誘導的小鼠抑郁行為。本課題組前期研究表明,IGF-1能夠抑制1-甲基-4-苯基吡啶離子(MPP+)誘導的大鼠中腦星形膠質細胞炎癥反應,其機制與IGF-1受體(IGF-1R)和G蛋白偶聯(lián)雌激素膜受體介導的信號途徑有關[8]。淫羊藿素(ICT)是淫羊藿總黃酮主要活性成分淫羊藿苷的衍生物,屬于植物雌激素,具有抗炎、抗氧化和提高免疫力的功效[9-10]。本課題組前期研究證實,ICT能夠顯著抑制LPS誘導的大鼠原代皮質和中腦星形膠質細胞炎癥因子的釋放,應用IGF-1R特異性阻斷劑能夠阻斷ICT的抗炎作用,提示IGF-1R介導的信號途徑參與了ICT的抗炎作用?;贗GF-1和ICT在星形膠質細胞炎癥反應中的抑制作用均與IGF-1R有關,本研究旨在探討IGF-1和ICT是否能夠抑制LPS誘導的BV2小膠質細胞炎癥反應,以及二者合用的抗炎作用是否比單獨用藥更有效?,F(xiàn)將結果報告如下。
1材料和方法
1.1主要材料
LPS購自美國Sigma公司;ICT購自上海同田生物公司;BV2小膠質細胞屬于小鼠小膠質瘤細胞系,購自北京市協(xié)和醫(yī)學院細胞資源中心;IGF-1購自BioVision公司;DMEM購自Gibco公司;青霉素/鏈霉素儲存液購自新華制藥廠,分裝后-20 ℃保存?zhèn)溆?胎牛血清購自Hyclone公司,分裝后于-40 ℃保存?zhèn)溆?TRIzol試劑購自美國Life Technologies公司; PCR逆轉錄試劑盒購自Roche公司;SYBR Green購自美國TaKaRa公司;PCR引物由TaKaRa公司設計并合成。
1.2細胞培養(yǎng)及分組
將BV2小膠質細胞接種于培養(yǎng)瓶或12孔板中,應用高糖DMEM培養(yǎng)液(含100 kU/L青霉素、100 mg/L鏈霉素和體積分數(shù)0.10胎牛血清),置含體積分數(shù)0.05 CO2的37 ℃無菌培養(yǎng)箱中常規(guī)培養(yǎng)。光學顯微鏡觀察細胞融合度達到80%~90%時進行分組和加藥處理。將細胞分為對照組(A組)、LPS組(B組)、IGF-1+LPS組(C組)、ICT+LPS組(D組)和IGF-1+ICT+LPS組(E組)。各組細胞均給予1 μL二甲基亞砜(DMSO)處理;LPS組細胞加入LPS(1 mg/L)作用6 h;IGF-1+LPS組、ICT+LPS組和IGF-1+ICT+LPS組細胞分別加入IGF-1(12.5 μg/L)、ICT(10 μmol/L)、IGF-1(12.5 μg/L)+ICT(10 μmol/L)預保護1 h,再加入LPS(1 mg/L)共同作用6 h。
1.3實時熒光定量PCR(RT-PCR)檢測環(huán)氧合酶-2(COX-2)和誘導型一氧化氮合酶(iNOS)mRNA的表達
向12孔板中每孔加入500 μL TRIzol裂解細胞,提取總RNA。按照TaKaRa試劑盒說明書配制兩步法反應體系,將RNA逆轉錄為cDNA。配制20 μL的PCR反應體系(包括SYBR Green染料10.0 μL,RNA free water 8.2 μL,上下游引物各0.4 μL,cDNA 1.0 μL),將此反應體系放入RT-PCR儀中進行擴增。經過40個循環(huán)完成擴增后,采用2-△△CT法計算目的基因COX-2、iNOS的相對表達量(以GAPDH為內參照)。PCR擴增引物及其序列見表1。
1.4統(tǒng)計學處理
應用SPSS 23.0軟件進行統(tǒng)計學分析。計量資料結果以x±s表示,多組均數(shù)比較采用析因設計的方差分析。P<0.05表示差異有統(tǒng)計學意義。
2結果
與對照組相比,LPS組細胞炎性因子COX-2和iNOS的mRNA表達明顯升高,差異具有統(tǒng)計學意義(F=20.77、39.85,P<0.05)。析因設計方差分析顯示,IGF-1和ICT兩種藥物存在交互作用(F=18.13、28.11,P<0.05)。主效應分析顯示,IGF-1和ICT預處理均可顯著下調LPS誘導的BV2小膠質細胞COX-2和iNOS mRNA的表達,且IGF-1和ICT聯(lián)合用藥的下調作用比單獨應用兩種藥物更顯著(F=54.84~241.68,P<0.05)。見表2。
3討論
小膠質細胞是腦內的巨噬細胞,靜息狀態(tài)的小膠質細胞在神經系統(tǒng)中發(fā)揮免疫監(jiān)視作用,能夠保護神經元;而過度激活的小膠質細胞則會引發(fā)神經炎癥,導致神經元損傷[11]。當腦內受到炎癥刺激時,小膠質細胞被首先激活,過度激活的小膠質細胞會釋放促炎因子損傷神經元并激活星形膠質細胞,過度激活的星形膠質細胞進一步加重神經元損傷,提示小膠質細胞和星形膠質細胞的過度激活在中樞神經系統(tǒng)疾病的發(fā)生發(fā)展中發(fā)揮著重要作用[12]。
IGF-1作為一種神經營養(yǎng)因子,參與中樞神經系統(tǒng)細胞生長和增殖、神經發(fā)生、細胞遷移等生理過程[13-15]。同時,IGF-1也能夠對抗缺血低氧、神經毒素等對神經元的損傷[16-17]。GRINBERG等[18]應用大鼠海馬腦片研究發(fā)現(xiàn),IGF-1能夠通過抑制小膠質細胞氧化應激和腫瘤壞死因子-α(TNF-α)信號途徑,發(fā)揮神經保護作用。ICT是由淫羊藿苷經人體腸道代謝生成的小分子化合物,能夠改善阿爾茨海默病模型小鼠中樞神經系統(tǒng)線粒體的損傷[19-20]。WU等[21]研究發(fā)現(xiàn),在1-甲基-4-苯基-1,2,3,6-四氫吡啶誘導的小鼠帕金森病模型中,ICT通過抑制NLRP3炎性小體的激活,減少白細胞介素-1β的分泌,從而減輕神經炎癥。本課題組的前期研究證實,IGF-1通過IGF-1R/PI3-K/MAPK信號通路對抗1-甲基-4-苯基吡啶離子(MPP+)誘導的大鼠中腦星形膠質細胞的炎癥反應。在原代皮質和中腦星形膠質細胞炎癥模型中,ICT能夠抑制LPS誘導的促炎因子iNOS和TNF-α的基因表達,其抗炎機制可能與IGF-1R信號途徑的激活有關[22-23]。
為進一步探討IGF-1、ICT及二者合用對小膠質細胞炎癥反應的影響,本研究應用LPS誘導BV2小膠質細胞建立神經炎癥模型。本課題組前期研究表明,12.5 μg/L的IGF-1可抑制MPP+誘導的原代星形膠質細胞iNOS和COX-2的表達;ICT對LPS誘導的星形膠質細胞iNOS和COX-2的表達也有劑量依賴性的抑制作用,以10 μmol/L的ICT炎癥抑制作用最佳。故本研究應用上述濃度的IGF-1和ICT,分別檢測兩種藥物單用和聯(lián)合應用對LPS誘導的BV2小膠質細胞iNOS和COX-2 mRNA表達的影響。結果顯示,IGF-1和ICT均可以顯著抑制iNOS和COX-2 mRNA表達,二者合用的抗炎作用更加顯著。IGF-1R是一種酪氨酸激酶受體,被配體激活后,可以通過其下游的PI3-K和Ras-Raf-MEK信號途徑,促進細胞有絲分裂、增殖和存活等。雌激素受體(ER)在中樞神經系統(tǒng)也有廣泛表達,大量研究顯示,ER與IGF-1R介導的信號途徑具有交互作用[24-25]。
AZCOITIA等[26]利用海藻酸誘導的去卵巢雌性大鼠海馬損傷模型,研究IGF-1和雌二醇對海馬神經元保護作用的機制,結果表明,雌二醇的神經保護作用同時依賴于ER和IGF-1R,而IGF-1的保護作用也依賴于ER。在帕金森病的實驗模型中,ER和IGF-1R可以通過交互作用保護神經元[27-28]。在6-羥基多巴胺(6-OHDA)誘導的去卵巢雌性大鼠帕金森病模型中,皮下注射雌激素或IGF-1可顯著抑制6-OHDA誘導的黑質致密帶神經元損失和紋狀體中酪氨酸羥化酶的免疫反應性,改善大鼠前肢運動障礙,而IGF-1R拮抗劑JB-1可阻斷雌激素或IGF-1的上述神經保護作用[29]。在老年去卵巢動物模型中,雌激素已被證明能改善記憶功能,該效應可被JB-1消除,表明雌激素可能通過IGF-1R信號通路發(fā)揮部分作用[30]。
ICT是一種植物雌激素,它可能通過ER和IGF-1R信號途徑的交互作用,與IGF-1共同激活下游的信號分子發(fā)揮抗炎作用,其詳細的信號途徑還有待于進一步探討。
綜上所述,IGF-1和ICT均能明顯抑制LPS誘導的BV2小膠質細胞炎癥反應,且二者聯(lián)合應用較單獨應用更有效。
[參考文獻]
[1]KWON H S, KOH S H. Neuroinflammation in neurodegene-rative disorders: the roles of microglia and astrocytes[J].? Translational Neurodegeneration, 2020,9(1):42.
[2]CIANCIULLI A, PORRO C, CALVELLO R, et al. Microglia mediated neuroinflammation: focus on PI3K modulation[J].? Biomolecules, 2020,10(1):E137.
[3]YANG Q Q, ZHOU J W. Neuroinflammation in the central nervous system: symphony of glial cells[J].? Glia, 2019,67(6):1017-1035.
[4]BIANCHI V, LOCATELLI V, RIZZI L. Neurotrophic and neuroregenerative effects of GH/IGF1[J].? International Journal of Molecular Sciences, 2017,18(11):2441.
[5]DYER A H, VAHDATPOUR C, SANFELIU A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity[J].? Neuroscience, 2016,325:89-99.
[6]AYADI A E, ZIGMOND M J, SMITH A D. IGF-1 protectsdopamine neurons against oxidative stress: association with[CM)]changes in phosphokinases[J].? Experimental Brain Research,2016,234(7):1863-1873.
[7]PARK S E, LAWSON M, DANTZER R, et al. Insulin-like growth factor-Ⅰ peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide[J].? Journal of Neuroinflammation, 2011,8:179.
[8]YUAN L J, ZHANG M, CHEN S, et al. Anti-inflammatory effect of IGF-1 is mediated by IGF-1R cross talk with GPER in MPTP/MPP+-induced astrocyte activation[J].? Molecular and Cellular Endocrinology, 2021,519:111053.
[9]ZHANG W, XING B C, YANG L L, et al. Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats[J].? The American Journal of Chinese Medicine, 2015,43(6):1083-1097.
[10]LAI X Q, YE Y X, SUN C H, et al. Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model[J].? International Immunopharmacology, 2013,16(1):41-49.
[11]TANSEY M G, GOLDBERG M S. Neuroinflammation in Parkinsons disease: its role in neuronal death and implications for therapeutic intervention[J].? Neurobiology of Disease, 2010,37(3):510-518.
[12]JOERS V, TANSEY M G, MULAS G, et al. Microglial phenotypes in Parkinsons disease and animal models of the di-sease[J].? Progress in Neurobiology, 2017,155:57-75.
[13]MAIRET-COELLO G, TURY A, DICICCO-BLOOM E. Insulin-like growth factor-1 promotes G1/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex[J].? Journal of Neuroscience, 2009,29(3):775-788.
[14]NIETO-ESTVEZ V, DEFTERALI ?, VICARIO-ABEJN C. IGF-Ⅰ: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain[J].? Frontiers in Neuroscience, 2016,10:52.
[15]PUGLIANIELLO A, GERMANI D, ROSSI P, et al. IGF-Ⅰ stimulates chemotaxis of human neuroblasts. Involvement of type 1 IGF receptor, IGF binding proteins, phosphatidylinositol-3 kinase pathway and plasmin system[J].? The Journal of Endocrinology, 2000,165(1):123-131.
[16]SERHAN A, AERTS J L, BODDEKE E W G M, et al. Neuroprotection by insulin-like growth factor-1 in rats with ischemic stroke is associated with microglial changes and a reduction in neuroinflammation[J].? Neuroscience, 2020,426:101-114.
[17]FELDMAN E L, SULLIVAN K A, KIM B, et al. Insulin-like growth factors regulate neuronal differentiation and survival[J].? Neurobiology of Disease, 1997,4(3/4):201-214.
[18]GRINBERG Y Y, DIBBERN M E, LEVASSEUR V A, et al. Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression[J].? Journal of Neurochemistry, 2013,126(5):662-672.
[19]WU H L, KIM M, HAN J. Icariin metabolism by human intestinal microflora[J].? Molecules (Basel, Switzerland), 2016,21(9):1158.
[20]CHEN Y J, ZHENG H Y, HUANG X X, et al. Neuroprotective effects of icariin on brain metabolism, mitochondrial functions, and cognition in triple-transgenic Alzheimers disease mice[J].? CNS Neuroscience & Therapeutics, 2016,22(1):63-73.
[21]WU H, LIU X, GAO Z Y, et al. Icaritin provides neuroprotection in Parkinsons disease by attenuating neuroinflammation, oxidative stress, and energy deficiency[J].? Antioxidants (Basel, Switzerland), 2021,10(4):529.
[22]陳夙,朱夢琳,宋加昊,等. 淫羊藿素對LPS誘導原代皮質星形膠質細胞炎性反應影響[J].? 青島大學學報(醫(yī)學版), 2021,57(2):167-170.
[23]楊葉,姜國弈,金明睿,等. LPS激活中腦膠質細胞條件性培養(yǎng)液對神經元損傷及淫羊藿素的神經保護作用[J].? 青島大學學報(醫(yī)學版), 2021,57(2):182-185.
[24]QUESADA A, MICEVYCH P E. Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxdopamine lesions[J].? Journal of Neuroscience Research, 2004,75(1):107-116.
[25]GONZ?LEZ C, D?AZ F, ALONSO A. Neuroprotective effects of estrogens: cross-talk between estrogen and intracellular insulin signalling[J].? Infectious Disorders Drug Targets, 2008,8(1):65-67.
[26]AZCOITIA I, SIERRA A, GARCIA-SEGURA L M. Neuroprotective effects of estradiol in the adult rat Hippocampus: interaction with insulin-like growth factor-Ⅰ signalling[J].? Journal of Neuroscience Research, 1999,58(6):815-822.
[27]GARCIA-SEGURA L M, CARDONA-GMEZ G P, CHOWEN J A, et al. Insulin-like growth factor-Ⅰ receptors and estrogen receptors interact in the promotion of neuronal survival and neuroprotection[J].? Journal of Neurocytology, 2000,29(5-6):425-437.
[28]GARCIA-SEGURA L M, SANZ A, MENDEZ P. Cross-talk between IGF-Ⅰ and estradiol in the brain: focus on neuroprotection[J].? Neuroendocrinology, 2006,84(4):275-279.
[29]QUESADA A, MICEVYCH P E. Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxdopamine lesions[J].? Journal of Neuroscience Research, 2004,75(1):107-116.
[30]WITTY C F, GARDELLA L P, PEREZ M C, et al. Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the Hippocampus: a role for insulin-like growth factor-Ⅰ[J].? Endocrinology, 2013,154(2):842-852.
(本文編輯馬偉平)