王雪 宓曉晴 宋寧
[摘要] 目的 探討PC12細(xì)胞高表達(dá)野生型(WT)α-突觸核蛋白(α-Syn)對(duì)ferroportin(FPN)、鐵調(diào)節(jié)蛋白1(IRP1)蛋白表達(dá)以及鐵調(diào)素mRNA表達(dá)的影響。方法 PC12細(xì)胞用基礎(chǔ)培養(yǎng)液處理24 h(對(duì)照組)或用2 mg/L多西環(huán)素(DOX)處理24 h(DOX處理組)。采用免疫印跡法檢測(cè)α-Syn、FPN和IRP1蛋白表達(dá)情況,采用實(shí)時(shí)熒光定量PCR檢測(cè)鐵調(diào)素mRNA表達(dá)情況。結(jié)果 2 mg/L DOX可誘導(dǎo)PC12細(xì)胞α-Syn高表達(dá)(t=5.245,P<0.05)。與對(duì)照組相比,DOX處理組細(xì)胞鐵調(diào)素mRNA表達(dá)水平顯著升高(t=4.162,P<0.05),但FPN和IRP1蛋白表達(dá)水平?jīng)]有明顯變化(t=0.092、0.268,P>0.05)。結(jié)論 α-Syn高表達(dá)不影響PC12細(xì)胞FPN和IRP1蛋白表達(dá),但可以誘導(dǎo)鐵調(diào)素mRNA水平升高。
[關(guān)鍵詞]α突觸核蛋白;PC12細(xì)胞;轉(zhuǎn)鐵蛋白;鐵調(diào)節(jié)蛋白質(zhì)類
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2022)03-0341-04
doi:10.11712/jms.2096-5532.2022.58.092
EFFECTS OF α-SYNUCLEIN OVEREXPRESSION ON EXPRESSION OF FERROPORTIN, IRON REGULATORY PROTEIN 1, AND HEPCIDIN IN PC12 CELLS
WANG Xue, MI Xiaoqing, SONG Ning
(Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effects of wild-type α-synuclein (α-Syn) overexpression on the protein expression of ferroportin (FPN), iron regulatory protein 1 (IRP1) and the mRNA expression of hepcidin in PC12 cells.MethodsPC12 cells were treated with basic culture medium (control group) or 2 mg/L doxycycline (DOX group) for 24 hours. Western blotting was used to determine the protein expression of α-Syn, FPN, and IRP1. Quantitative real-time PCR was performed to measure the mRNA expression of hepcidin.Results DOX at 2 mg/L induced α-Syn overexpression in PC12 cells (t=5.245,P<0.05). Compared with the control group, the DOX group showed a significantly upregulated hepcidin mRNA level (t=4.162,P<0.05). There were no significant differences in FPN and IRP1 protein expression between the two groups (t=0.092,0.268;P>0.05).Conclusion α-Syn overexpression does not alter the protein expression of FPN and IRP1, but can upregulate the mRNA expression of hepcidin in PC12 cells.
[KEY WORDS] alpha-synuclein; PC12 cell; transferrin; iron-regulatory proteins
帕金森?。≒D)是一種緩慢進(jìn)展的神經(jīng)退行性疾病,以運(yùn)動(dòng)障礙、肌僵直、靜止性震顫及姿勢(shì)反射障礙等為特征性表現(xiàn),其主要病理學(xué)特征是黑質(zhì)致密部多巴胺能神經(jīng)元的丟失以及紋狀體多巴胺釋放減少[1-5]。PD病因涉及遺傳、環(huán)境和衰老等多種因素,但確切病因尚不完全清楚[6]。α-突觸核蛋白(α-Syn)聚集體構(gòu)成的路易小體廣泛存在于PD受損的多巴胺能神經(jīng)元中,被認(rèn)為是PD發(fā)病機(jī)制的關(guān)鍵因素。α-Syn是由140個(gè)氨基酸組成的蛋白,以分子伴侶的形式參與多項(xiàng)生理功能,但其聚集體會(huì)導(dǎo)致線粒體功能障礙,誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激,破壞內(nèi)質(zhì)網(wǎng)-高爾基體轉(zhuǎn)運(yùn)等[7-10]。鐵是人體必需的微量元素之一,其缺乏會(huì)導(dǎo)致細(xì)胞死亡,但過量的鐵也具有細(xì)胞毒性[11-16]。鐵會(huì)隨著年齡的增加沉積于黑質(zhì)等腦區(qū),但是這種現(xiàn)象在PD中尤為嚴(yán)重。細(xì)胞內(nèi)的鐵通過ferroportin(FPN)從細(xì)胞中轉(zhuǎn)出。FPN是一種跨膜的鐵轉(zhuǎn)出蛋白,是目前唯一已知的細(xì)胞內(nèi)鐵釋放的通路,主要受鐵調(diào)節(jié)蛋白和鐵調(diào)素調(diào)節(jié)[17]。近年來大量研究表明,細(xì)胞內(nèi)鐵沉積和α-Syn聚集存在緊密的相互作用,共同參與多巴胺能神經(jīng)元損傷,并可能導(dǎo)致PD病理的惡性循環(huán)[18]。α-Syn調(diào)控鐵代謝的機(jī)制尚未闡明,本實(shí)驗(yàn)旨在探究α-Syn高表達(dá)對(duì)PC12細(xì)胞FPN、鐵調(diào)節(jié)蛋白1(IRP1)蛋白表達(dá)和鐵調(diào)素mRNA水平的影響。
1材料與方法
1.1實(shí)驗(yàn)細(xì)胞及主要試劑
PC12細(xì)胞由英國(guó)劍橋醫(yī)學(xué)研究所醫(yī)學(xué)遺傳系David C. Rubinsztein教授饋贈(zèng)。該細(xì)胞攜帶人源野生型(WT)α-Syn基因,在NheⅠ/SalⅠ位點(diǎn)將該基因插入pTRE2hyg載體,并在該載體中插入調(diào)控轉(zhuǎn)基因表達(dá)的多西環(huán)素(DOX)開關(guān)。DMEM高糖培養(yǎng)液、胎牛血清和馬血清均購(gòu)于美國(guó)Gibco公司,DOX購(gòu)于美國(guó)Sigma公司;α-Syn抗體購(gòu)于美國(guó)CST公司,F(xiàn)PN抗體購(gòu)于以色列Alomonelabs公司,IRP1抗體購(gòu)于英國(guó)Abcam公司,兔抗β-actin購(gòu)于中國(guó)博奧森公司,羊抗兔IgG購(gòu)于中國(guó)愛必信公司;TRIzol和PCR逆轉(zhuǎn)錄試劑盒購(gòu)于美國(guó)Thermo Fisher公司,SYBR Green購(gòu)于美國(guó)QIAGEN公司,鐵調(diào)素引物購(gòu)于中國(guó)Takara公司。
1.2細(xì)胞分組與處理
將PC12細(xì)胞用完全培養(yǎng)液(DMEM高糖培養(yǎng)液168.9 mL、胎牛血清10.0 mL、馬血清20.0 mL、潮霉素B 0.3 mL、G418 0.8 mL)重懸后,以3×108/L的密度接種于6孔板內(nèi),每孔2 mL,當(dāng)細(xì)胞融合達(dá)到80%左右時(shí)將其分為對(duì)照組和DOX處理組,分別用基礎(chǔ)培養(yǎng)液(DMEM高糖培養(yǎng)液)和2 mg/L的DOX處理24 h。共進(jìn)行3次獨(dú)立實(shí)驗(yàn)。
1.3免疫印跡法檢測(cè)α-Syn、FPN和IRP1蛋白的表達(dá)
藥物處理24 h后,使用RIPA裂解液提取蛋白,應(yīng)用BCA試劑盒檢測(cè)提取蛋白的濃度,按照每孔20 μg計(jì)算上樣量,加入Loading Buffer,95 ℃加熱蛋白5 min,將蛋白樣本進(jìn)行電泳(電壓為80 V和120 V),然后將蛋白轉(zhuǎn)移至PDVF膜上(電流為300 mA)。用50 g/L的牛血清清蛋白封閉2 h后分別加入α-Syn、FPN、IRP1、β-actin一抗,于4 ℃搖床上孵育過夜。用TBST洗30 min后加入二抗室溫孵育1 h,以TBST洗30 min后應(yīng)用ECL發(fā)光液顯影。應(yīng)用Image J軟件進(jìn)行分析,α-Syn、FPN和IRP1蛋白表達(dá)水平以三者與β-actin灰度值之比來表示。
1.4實(shí)時(shí)熒光定量PCR檢測(cè)鐵調(diào)素mRNA表達(dá)
每1 mL TRIzol試劑裂解的樣品中加入0.2 mL的氯仿室溫孵育2~3 min,于4 ℃下以12 000 r/min離心15 min。取上層水相并加入異丙醇,以上述同樣條件離心10 min,用體積分?jǐn)?shù)0.75的乙醇清洗后,使用反轉(zhuǎn)錄試劑盒進(jìn)行反轉(zhuǎn)錄合成cDNA。采用SYBR Green染料法定量檢測(cè)基因的表達(dá)。按照說明書進(jìn)行PCR體系循環(huán)擴(kuò)增,使用2-ΔΔCt法計(jì)算目的基因相對(duì)于內(nèi)參照基因GAPDH的表達(dá)量。PCR引物序列見表1。
1.5統(tǒng)計(jì)學(xué)處理
應(yīng)用Prism 5軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量數(shù)據(jù)以x±s表示,組間比較采用t檢驗(yàn)。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1DOX對(duì)PC12細(xì)胞α-Syn表達(dá)的影響
對(duì)照組和DOX處理組細(xì)胞內(nèi)α-Syn蛋白表達(dá)水平分別為1.001±0.331和2.851±0.137(n=6),DOX處理組α-Syn蛋白表達(dá)水平是對(duì)照組的2.85倍,差異有統(tǒng)計(jì)學(xué)意義(t=5.245,P<0.05)。
2.2α-Syn 高表達(dá)對(duì)PC12細(xì)胞FPN和IRP1蛋白表達(dá)的影響
對(duì)照組和DOX處理組細(xì)胞內(nèi)FPN蛋白表達(dá)水平分別為1.000±0.032和0.993±0.063(n=6),IRP1蛋白表達(dá)水平分別為0.998±0.107和0.965±0.042(n=6),DOX處理組細(xì)胞內(nèi)FPN蛋白表達(dá)水平是對(duì)照組的99.3%,IRP1蛋白表達(dá)水平是對(duì)照組的96.9%,DOX處理組FPN和IRP1蛋白表達(dá)水平與對(duì)照組比較沒有明顯變化,差異無顯著意義(t=0.092、0.268,P>0.05)。
2.3α-Syn高表達(dá)對(duì)PC12細(xì)胞鐵調(diào)素mRNA水平的影響
對(duì)照組和DOX處理組細(xì)胞內(nèi)鐵調(diào)素mRNA表達(dá)水平分別為1.003±0.044和1.365±0.069(n=5),DOX處理組鐵調(diào)素mRNA表達(dá)水平較對(duì)照組升高36.1%,差異有統(tǒng)計(jì)學(xué)意義(t=4.162,P<0.05)。
3討論
鐵是維持神經(jīng)結(jié)構(gòu)和功能所必需的微量元素之一。然而,在PD病人的黑質(zhì)致密部觀察到鐵特異性地沉積,部分多巴胺能神經(jīng)元觀察到鐵水平升高[17,19]。在生理?xiàng)l件下,鐵參與了多巴胺的合成;然而,過量的鐵誘導(dǎo)產(chǎn)生活性氧(ROS),會(huì)導(dǎo)致脂質(zhì)、蛋白質(zhì)和DNA的不可逆損傷[20]。在黑質(zhì)致密帶幸存的多巴胺能神經(jīng)元的路易小體中,鐵染色最為明顯,證明鐵與α-Syn的大量共同存在,提示鐵沉積和α-Syn聚集密切相關(guān)[21]。已有文獻(xiàn)報(bào)道了α-Syn對(duì)鐵代謝的影響,例如α-Syn可以結(jié)合三價(jià)鐵和二價(jià)鐵形成α-Syn-鐵絡(luò)合物[22]。此外,α-Syn具有鐵還原酶的作用,可催化三價(jià)鐵還原為二價(jià)鐵,過量的α-Syn導(dǎo)致細(xì)胞內(nèi)鐵水平增加和三價(jià)鐵、二價(jià)鐵的比例失調(diào)[23]。最近有研究表明,在高表達(dá)α-Syn的SH-SY5Y細(xì)胞和A53T α-Syn轉(zhuǎn)基因小鼠中,α-Syn可以上調(diào)鐵轉(zhuǎn)入蛋白二價(jià)金屬離子轉(zhuǎn)運(yùn)體(DMT1)的表達(dá)且不依賴鐵反應(yīng)元件(IRE)/IRP1系統(tǒng),可能與泛素-蛋白酶體的降解異常有關(guān),這可能導(dǎo)致了α-Syn高表達(dá)時(shí)細(xì)胞內(nèi)鐵沉積[24]。目前,α-Syn對(duì)鐵轉(zhuǎn)出蛋白FPN的表達(dá)影響尚不清楚。本實(shí)驗(yàn)觀察到,PC12細(xì)胞α-Syn高表達(dá)時(shí)其FPN表達(dá)沒有發(fā)生明顯變化,說明α-Syn高表達(dá)時(shí)出現(xiàn)的泛素-蛋白酶體降解異常并不足以調(diào)控FPN表達(dá)變化。
FPN的表達(dá)主要受到鐵調(diào)節(jié)蛋白和鐵調(diào)素的調(diào)控。FPN mRNA 5′端非編碼區(qū)含有一個(gè)IRE,在細(xì)胞內(nèi)高鐵的情況下,IRE與鐵調(diào)節(jié)蛋白的結(jié)合減少,因此對(duì)FPN mRNA翻譯的抑制減弱,導(dǎo)致FPN蛋白表達(dá)增多[25-26]。與鐵調(diào)節(jié)蛋白2(IRP2)相比,IRP1與IRE的親和力更高[27]。本文研究結(jié)果顯示,PC12細(xì)胞內(nèi)α-Syn高表達(dá)對(duì)FPN和IRP1蛋白的表達(dá)均沒有明顯影響。我們推測(cè),在α-Syn高表達(dá)的細(xì)胞中,雖然文獻(xiàn)報(bào)道DMT1表達(dá)上調(diào),但細(xì)胞外液中鐵水平較低,并沒有造成細(xì)胞內(nèi)鐵沉積,因此也不會(huì)導(dǎo)致IRP1和FPN的表達(dá)變化。
鐵調(diào)素是一種由肝臟合成和分泌的小多肽,被認(rèn)為是人體鐵穩(wěn)態(tài)的主要調(diào)節(jié)者。鐵調(diào)素通過與細(xì)胞膜上的鐵轉(zhuǎn)出蛋白FPN結(jié)合誘導(dǎo)其泛素化從而導(dǎo)致FPN內(nèi)化和降解,以此來控制FPN在膜上的表達(dá)和細(xì)胞的鐵釋放[28-29]。本研究結(jié)果顯示,高表達(dá)α-Syn的PC12細(xì)胞中鐵調(diào)素mRNA水平上調(diào)。有文獻(xiàn)報(bào)道,α-Syn可激活核因子κB(NF-κB)信號(hào)傳導(dǎo)通路釋放白細(xì)胞介素6,后者可以通過信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活促進(jìn)鐵調(diào)素的轉(zhuǎn)錄[30-31]。因此我們推測(cè),鐵調(diào)素表達(dá)上調(diào)與細(xì)胞內(nèi)α-Syn蓄積有關(guān),但具體機(jī)制需進(jìn)一步證實(shí)。雖然鐵調(diào)素表達(dá)上調(diào),但本實(shí)驗(yàn)并沒有觀察到FPN的表達(dá)變化,這與鐵調(diào)素的作用具有組織細(xì)胞特異性的報(bào)道相一致,例如在腸細(xì)胞中,鐵調(diào)素不會(huì)改變FPN水平但會(huì)降低DMT1的表達(dá)[24,32-33]。由于鐵調(diào)素分子量只有9 000,很難用常規(guī)免疫印跡方法檢測(cè)其蛋白水平,因此其蛋白水平是否發(fā)生變化尚無法確定。此外,DOX處理誘導(dǎo)α-Syn過表達(dá)雖然引起了鐵調(diào)素mRNA表達(dá)水平上調(diào),但其時(shí)間(只有24 h)和表達(dá)量(約1.5倍)可能并不足以造成α-Syn異常聚集和調(diào)控FPN表達(dá)變化。
綜上所述,在PC12細(xì)胞中,高表達(dá)α-Syn 24 h對(duì)鐵轉(zhuǎn)出蛋白FPN和鐵調(diào)節(jié)蛋白IRP1表達(dá)均無明顯影響,但可顯著上調(diào)鐵調(diào)素的表達(dá)水平。本文結(jié)果為α-Syn調(diào)控細(xì)胞內(nèi)鐵代謝提供了實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]ELKOUZI A, VEDAM-MAI V, EISINGER R S, et al. Emerging therapies in Parkinson disease-repurposed drugs and new approaches[J].? Nature Reviews Neurology, 2019,15(4):204-223.
[2]CONNOLLY B S, LANG A E. Pharmacological treatment of Parkinson disease: a review[J].? JAMA, 2014,311(16):1670-1683.
[3]DEUSCHL G, BEGHI E, FAZEKAS F, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017[J].? The Lancet Public Health, 2020,5(10):e551-e567.
[4]DORSEY E R, SHERER T, OKUN M S, et al. The emerging evidence of the parkinson pandemic[J].? Journal of Parkinsons Disease, 2018,8(s1):S3-S8.
[5]POEWE W, SEPPI K, TANNER C M, et al. Parkinson di-sease[J].? Nature Reviews Disease Primers, 2017,3:17013.
[6]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J].? Nature Reviews Neuroscience, 2017,18(4):251-259.
[7]ELIEZER D, KUTLUAY E, BUSSELL R Jr, et al. Conformational properties of alpha-synuclein in its free and lipid-associated states[J].? Journal of Molecular Biology, 2001,307(4):1061-1073.
[8]UDA K, FUKUSHIMA H, MASLIAH E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease[J].? PNAS, 1993,90(23):11282-11286.
[9]BENGOA-VERGNIORY N, ROBERTS R F, WADE-MARTINS R, et al. Alpha-synuclein oligomers: a new hope[J].? Acta Neuropathologica, 2017,134(6):819-838.
[10]ROCHA E M, DE MIRANDA B, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuro-inflammation in Parkinsons disease[J].? Neurobiology ofDisease, 2018,109:249-257.
[11]BARBOSA J H, SANTOS A C, TUMAS V, et al. Quanti-fying brain iron deposition in patients with Parkinsons disease using quantitative susceptibility mapping, R2 and R2[J].? Magnetic Resonance Imaging, 2015,33(5):559-565.
[12]DU G W, LIU T, LEWIS M M, et al. Quantitative susceptibility mapping of the midbrain in Parkinsons disease[J].? Movement Disorders, 2016,31(3):317-324.
[13]GRAHAM J M, PALEY M N, GRüNEWALD R A, et al. Brain iron deposition in Parkinsons disease imaged using the PRIME magnetic resonance sequence[J].? Brain: a Journal of Neurology, 2000,123(Pt 12):2423-2431.
[14]GUAN X J, BAI X Q, ZHOU C, et al. Serum ceruloplasmin depletion is associated with magnetic resonance evidence of widespread accumulation of brain iron in Parkinsons disease[J].? Journal of Magnetic Resonance Imaging: JMRI, 2021,54(4):1098-1106.
[15]APOSTOLAKIS S, KYPRAIOU A M. Iron in neurodegenerative disorders: being in the wrong place at the wrong time[J]? Reviews in the Neurosciences, 2017,28(8):893-911.
[16]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J].? The Lancet Neurology, 2014,13(10):1045-1060.
[17]JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J].? Molecular Neurobiology, 2017,54(4):3078-3101.
[18]CHEN B B, WEN X M, JIANG H, et al. Interactions between iron and α-synuclein pathology in Parkinsons disease[J].? Free Radical Biology & Medicine, 2019,141:253-260.
[19]OAKLEY A E, COLLINGWOOD J F, DOBSON J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J].? Neurology, 2007,68(21):1820-1825.
[20]DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J].? Nature Chemical Biology, 2014,10(1):9-17.
[21]CASTELLANI R J, SIEDLAK S L, PERRY G, et al. Sequestration of iron by Lewy bodies in Parkinsons disease[J].? Acta Neuropathologica, 2000,100(2):111-114.
[22]ORTEGA R, CARMONA A, ROUDEAU S, et al. α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons[J].? Molecular Neuro-biology, 2016,53(3):1925-1934.
[23]BROWN D R. α-Synuclein as a ferrireductase[J].? Biochemical Society Transactions, 2013,41(6):1513-1517.
[24]BI M X, DU X X, JIAO Q, et al. α-Synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 ubiquitylation in Parkinsons disease models[J].? ACS Chemical Neuroscience, 2020,11(11):1682-1691.
[25]LYMBOUSSAKI A, PIGNATTI E, MONTOSI G, et al. The role of the iron responsive element in the control of ferropor-tin1/IREG1/MTP1 gene expression[J].? Journal of Hepatology, 2003,39(5):710-715.
[26]MLECZKO-SANECKA K, SILVESTRI L. Cell-type-specific insights into iron regulatory processes[J].? American Journal of Hematology, 2021,96(1):110-127.
[27]ANDERSON C P, SHEN M, EISENSTEIN R S, et al. Mammalian iron metabolism and its control by iron regulatory proteins[J].? Biochimica et Biophysica Acta, 2012,1823(9):1468-1483.
[28]QIAO B, SUGIANTO P, FUNG E, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination[J].? Cell Metabolism, 2012,15(6):918-924.
[29]LINK C, KNOPF J D, MARQUES O, et al. The role of cellular iron deficiency in controlling iron export[J].? Biochimica et Biophysica Acta General Subjects, 2021,1865(3):129829.
[30]FILLEBEEN C, WILKINSON N, CHARLEBOIS E, et al. Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling[J].? Blood, 2018,132(17):1829-1841.
[31]HOOD M I, SKAAR E P. Nutritional immunity: transition metals at the pathogen-host interface[J].? Nature Reviews Microbiology, 2012,10(8):525-537.
[32]CUI J T, GUO X L, LI Q J, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J].? Frontiers in Cellular Neuroscience, 2020,14:47.
[33]DAVIES P, MOUALLA D, BROWN D R. Alpha-synuclein is a cellular ferrireductase[J].? PLoS One, 2011,6(1):e15814.
(本文編輯馬偉平)