肖義麗, 曹 煒, 胡雙年
(1.寧波大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,浙江 寧波315211; 2.閩南師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,福建 漳州363000;3.南陽(yáng)理工學(xué)院 數(shù)理學(xué)院,河南 南陽(yáng)473004)
(1)
wi=gcd(wi,lcm[wj:j≠i]), 1≤i≤n,
即w不可能再被壓縮.
1949年,華羅庚、Vandiver[5]和Weil[6]分別獨(dú)立地得到了Nq(f)用特征和表示的公式:
并且得到了下面的定理.
定理1[5-6]設(shè)f是形如(1)的多項(xiàng)式,則
|Nq(f)-qn-1|≤I(d1,…,dn)(q-1)q(n-2)/2,
其中I(d1,…,dn)表示下列丟番圖方程(u1,…,un)的個(gè)數(shù)
1986年,孫琦、萬(wàn)大慶和馬德剛[7]利用容斥原理給出I(d1,…,dn)的復(fù)雜表達(dá)式
1987年,孫琦和萬(wàn)大慶[8]得到了I(d1,…,dn)=0的充分必要條件.
1988年,萬(wàn)大慶[9]利用高斯和的Stickelberger定理,推廣了Ax[10]和Joly[11]的結(jié)論,得到了下面的定理.
定理2[9]設(shè)f是形如(1)的多項(xiàng)式,則
Nq(f)≡0(modqL(d1,…,dn)-1),
其中I(d1,…,dn)>0時(shí),
1996年,孫琦[13]證明了以下結(jié)論:
1996年,孫琦[14]證明了以下結(jié)論:
(i)I(d1,…,dn)=5,6,7或9時(shí),L(d1,…,dn)=[n/2],其中[x]表示不超過(guò)x的最大整數(shù);
L(d1,…,dn)=∑ni=11wi
2007年,曹煒和孫琦[16]利用GCD-連通集簡(jiǎn)化了I(d1,…,dn),L(d1,…,dn)與Nq(f)的計(jì)算.
將給出當(dāng)I(d1,…,dn)=11,…,18時(shí),L(d1,…,dn)的值,并推廣得到當(dāng)I(d1,…,dn)=p時(shí),其中p為素?cái)?shù),L(d1,…,dn)的值. 還將補(bǔ)充參考文獻(xiàn)[11]中當(dāng)I(d1,…,dn)=6,8,10時(shí),w1,…,wn的具體值.
首先,敘述關(guān)于I(d1,…,dn)和L(d1,…,dn)的縮減公式.
引理1[4]設(shè)wi=gcd(di,lcm[dj:j≠i]),i=1,…,n,則有
I(d1,…,dn)=I(w1,…,wn),wi=gcd(wi,lcm[wj:j≠i]).
引理2[13]設(shè)wi=gcd(di,lcm[dj:j≠i]),i=1,…,n,則有
L(d1,…,dn)=L(w1,…,wn).
令w表示集合{w1,…,wn},若w中出現(xiàn)偶數(shù)個(gè)2,將略去不寫出來(lái). 關(guān)于下面引理的證明,可以用參考文獻(xiàn)[17]的方法來(lái)證.
引理3(i)I(d1,…,dn)=6當(dāng)且僅當(dāng)w={7,7},{2,7,14},{2,8,8},{2,8,16},{3,4,12},{4,4,4},{4,4,16},{2,3,4,12},{2,3,4,24},{2,3,8,12},{3,3,3,3},{3,3,4,4},{3,3,3,4,4},{3,3,4,4,9};
(ii)I(d1,…,dn)=8當(dāng)且僅當(dāng)w={9,9},{2,9,18},{2,10,10},{2,10,20},{3,5,15},{3,6,6},{2,3,5,30},{2,3,6,6},{2,3,9,12},{3,3,5,5},{2,3,3,3,6},{2,3,3,5,10},{2,3,5,5,6},{2,4,4,5,5},{2,4,5,5,8},{3,3,3,5,5},{3,3,5,5,9},{2,3,3,3,5,10};
(iii)I(d1,…,dn)=10當(dāng)且僅當(dāng)w={11,11},{2,11,22},{2,12,12},{2,3,10,15},{3,4,4,6},{3,4,6,8},{2,3,3,4,12},{2,3,4,4,6},{2,3,4,6,8},{2,3,4,6,16},{2,3,3,4,24},{3,3,3,3,3};
(iv)I(d1,…,dn)=11當(dāng)且僅當(dāng)w={12,12};
(v)I(d1,…,dn)=12當(dāng)且僅當(dāng)w={13,13},{2,13,26},{2,14,14},{3,7,21},{4,5,20},{5,5,25},{2,4,5,20},{2,5,6,15},{3,4,9,12},{2,4,7,7,8},{3,3,7,7,9},{2,3,3,7,9,14},{2,3,3,8,9,16};
(vi)I(d1,…,dn)=13當(dāng)且僅當(dāng)w={14,14};
(vii)I(d1,…,dn)=14當(dāng)且僅當(dāng)w={15,15},{2,15,30},{2,16,16},{2,16,32},{3,8,24},{4,6,12},{4,6,24},{2,3,8,24},{3,3,4,4,18};
(viii)I(d1,…,dn)=15當(dāng)且僅當(dāng)w={16,16},{2,4,6,12},{2,4,6,24},{2,6,12,16};
(ix)I(d1,…,dn)=16當(dāng)且僅當(dāng)w={17,17},{2,18,18},{2,5,5,10},{2,5,10,25},{3,5,6,10},{3,5,9,15},{2,3,5,6,10},{2,3,5,6,20},{2,3,5,9,30},{2,3,5,10,12},{3,4,5,9,30},{2,3,3,5,5,18},{2,3,4,5,9,30};
(x)I(d1,…,dn)=17當(dāng)且僅當(dāng)w={18,18};
(xi)I(d1,…,dn)=18當(dāng)且僅當(dāng)w={19,19},{2,20,20},{3,10,30},{4,7,28},{4,8,32},{2,3,10,30},{2,3,20,30},{2,4,7,28},{3,4,4,24},{3,4,12,16},{3,5,6,10},{2,3,4,4,24}.
(iii)當(dāng)I(d1,…,dn)=12,14,16或18時(shí),
證設(shè)I(d1,…,dn)=11,由引理3(iv)可知w={12,12},寫成一般形式,即
有
設(shè)I(d1,…,dn)=15,由引理3(viii)知當(dāng)且僅當(dāng)w為{16,16},{2,4,6,12},{2,4,6,24},{2,6,12,16}之一,寫成一般形式,即
有
設(shè)I(d1,…,dn)=12,由引理3(v)知當(dāng)且僅當(dāng)w為{13,13},{2,13,26},{2,14,14},{3,7,21},{4,5,20},{5,5,25},{2,4,5,20},{2,5,6,15},{3,4,9,12},{2,4,7,7,8},{3,3,7,7,9},{2,3,3,7,9,14},{2,3,3,8,9,16}之一時(shí),有
有
再由引理2知,當(dāng)I(d1,…,dn)=12時(shí),
同理,可證當(dāng)I(d1,…,dn)=14,16或18時(shí),
這便證明了(iii).
由定理3容易得到下面的推論.
d1=2,d2=2,d3=12,d4=12,n=4,q=13,1≤di|q-1,1≤i≤4.
481≤N13(f)≤3913,
(2)
N13(f)≡0(mod13).
(3)
最后,由Maple計(jì)算得N13(f)=2041,剛好滿足(2)和(3).
通過(guò)對(duì)一類丟番圖方程與有限域上對(duì)角方程解的研究,給出了該類丟番圖方程的解數(shù)當(dāng)I(d1,…,dn)=11,…,18時(shí),其最小整數(shù)解L(d1,…,dn)的值,并推廣得到當(dāng)I(d1,…,dn)=p時(shí),p為素?cái)?shù),L(d1,…,dn)的值.還補(bǔ)充了參考文獻(xiàn)[11]中I(d1,…,dn)=6,8,10時(shí),w1,…,wn的具體值,其中wi=gcd(di,lcm[dj:j≠i]),1≤i≤n.
致謝作者非常感謝相關(guān)參考文獻(xiàn)對(duì)本文的啟發(fā)以及審稿專家提出的寶貴意見(jiàn).