郭航言,康敏,2,周瑋
慢刀伺服車削刀具補(bǔ)償算法優(yōu)化
郭航言1,康敏1,2,周瑋1
(1.南京農(nóng)業(yè)大學(xué) 工學(xué)院,南京 210031;2.江蘇省智能化農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,南京 210031)
慢刀伺服;刀具路徑;坐標(biāo)變換;幾何補(bǔ)償;表面粗糙度;面型精度
與普通光學(xué)曲面相比,復(fù)雜光學(xué)曲面具有獨(dú)特的光學(xué)性能,如簡化光學(xué)系統(tǒng)、優(yōu)化成像質(zhì)量等,故其應(yīng)用領(lǐng)域廣泛[1-5]。例如,環(huán)曲面是一種典型的非球狀類復(fù)雜光學(xué)曲面,具有較好的光學(xué)特性,可以在2個(gè)相互垂直的方向上形成不同的屈光度[6]。基于這一特性,環(huán)曲面鏡片廣泛應(yīng)用于矯正散光[6-7]。但是,傳統(tǒng)的車削加工工藝難以滿足復(fù)雜光學(xué)曲面(如環(huán)曲面)的質(zhì)量要求。慢刀伺服車削技術(shù)作為新興的超精密加工方法,具有較高的加工效率和較好的加工質(zhì)量,近年來已經(jīng)應(yīng)用于復(fù)雜光學(xué)曲面的車削加工[8-12]。
以環(huán)曲面為例,對(duì)慢刀伺服車削刀具路徑規(guī)劃流程進(jìn)行說明,如圖1所示。首先,根據(jù)環(huán)曲面的數(shù)學(xué)表達(dá)式建立相應(yīng)的三維模型和數(shù)學(xué)模型,用于面型分析和刀具路徑仿真分析;然后,利用刀觸點(diǎn)生成算法將環(huán)曲面離散為一系列刀觸點(diǎn),得到相應(yīng)的刀觸點(diǎn)軌跡;最后,利用刀具補(bǔ)償算法求解計(jì)算一系列刀位點(diǎn)坐標(biāo),得到相應(yīng)的刀位點(diǎn)軌跡,從而獲得可以用于數(shù)控加工的代碼[17,22]。
目前,常用的刀觸點(diǎn)生成方法是等參數(shù)生成方法,包括等角度法和等弧長法2種[16-17,21]。等角度法的優(yōu)點(diǎn)是算法簡單、編程容易實(shí)現(xiàn);但缺點(diǎn)是對(duì)于直徑較大的工件,工件外圈的刀觸點(diǎn)存在較大的離散誤差,而內(nèi)圈離散誤差較小,導(dǎo)致工件外圈的加工質(zhì)量相對(duì)較差。等弧長法的優(yōu)點(diǎn)是離散誤差受工件直徑的影響較小,基本保持穩(wěn)定;但缺點(diǎn)是算法比較復(fù)雜,且無論工件直徑較大或較小,工件內(nèi)圈都會(huì)存在較大的離散誤差[16-17,21]?;谶@2種方法的優(yōu)缺點(diǎn),對(duì)于直徑不是很大的工件,多采用等角度法。因此本文提出的算法和開展的試驗(yàn),均在等角度法的基礎(chǔ)上進(jìn)行。采用等角度法生成的刀觸點(diǎn)軌跡方程可用式(1)表示。
圖1 慢刀伺服車削刀具路徑規(guī)劃流程
由于車削所用刀具的刀尖帶有圓弧半徑,在車削加工中,刀尖與工件的接觸點(diǎn)(稱為刀觸點(diǎn))并非固定點(diǎn),而是刀尖圓弧上一系列變化的點(diǎn),因此需要尋找一固定點(diǎn)來確定刀具的位置(該固定點(diǎn)稱為刀位點(diǎn)),所以需要進(jìn)行刀具形狀補(bǔ)償[23-24]。
1.2.1 坐標(biāo)變換
圖2 直角坐標(biāo)系下求解存在的問題
圖3 坐標(biāo)系變換圖
1.2.2 幾何補(bǔ)償
圖4 基于坐標(biāo)變換的幾何補(bǔ)償算法原理圖
為了檢驗(yàn)本文提出的補(bǔ)償算法的合理性,選擇環(huán)曲面利用Matlab軟件編寫相應(yīng)程序進(jìn)行仿真分析,環(huán)曲面方程可用式(7)表達(dá)[26]。仿真時(shí),取h=140 mm,=100 mm,離散角Δ=8°,進(jìn)給速度f=1 mm/r,工件半徑w=20 mm,刀尖圓弧半徑t=140 mm,刀具前角=0°,后角=10°。
圖5 不同算法下的結(jié)果對(duì)比
圖6 刀具路徑仿真結(jié)果
根據(jù)上述刀具補(bǔ)償算法的理論研究和仿真分析,對(duì)仿真結(jié)果進(jìn)行試驗(yàn)驗(yàn)證。首先,針對(duì)上述不同算法,利用Matlab軟件編寫了適用于慢刀伺服車削并能自動(dòng)生成加工代碼的程序。然后,在本實(shí)驗(yàn)室自行研制的實(shí)驗(yàn)裝置上完成了環(huán)曲面的加工,用于驗(yàn)證本文提出的刀具補(bǔ)償算法的可行性。圖7為本實(shí)驗(yàn)室自行研制的高精度慢刀伺服車削平臺(tái)。加工的工件材料為聚甲基丙烯酸甲酯(PMMA),進(jìn)給速度f=0.01 mm/r,切削深度p=0.04 mm,其余參數(shù)參照上述仿真程序。
圖7 高精度慢刀伺服車削平臺(tái)
圖8 在不同刀具補(bǔ)償算法下加工得到的環(huán)曲面工件
圖9 表面粗糙度的測(cè)量方法
為評(píng)價(jià)加工的環(huán)曲面工件的面型精度,使用MQ686三坐標(biāo)測(cè)量機(jī)對(duì)工件表面的面型進(jìn)行測(cè)量。經(jīng)過數(shù)據(jù)處理后,得到面型誤差分布情況,如圖11所示。得到環(huán)曲面的面型誤差后,計(jì)算面型誤差最大值和最小值的差值,就可以得到環(huán)曲面的面型精度,面型精度用(Peak-to-Valley)表示[17]。
圖10 不同刀具補(bǔ)償算法下得到的表面粗糙度測(cè)量結(jié)果
圖11 不同刀具補(bǔ)償算法下得到的面型誤差分布情況
[1] YAMAMOTO T, MATSUDA R, SHINDOU M, et al. Monitoring of Vibrations in Free-Form Surface Processing Using Ball Nose End Mill Tools with Wireless Tool Holder Systems[J]. International Journal of Automation Technology, 2021, 15(3): 335-342.
[2] NAGAYAMA K, YAN Ji-wang. Deterministic Error Com-pensation for Slow Tool Servo-Driven Diamond Turning of Freeform Surface with Nanometric Form Accuracy[J]. Journal of Manufacturing Processes, 2021, 64: 45-57.
[3] ZHOU Xiang-dong, HUANG Xiao, BAI Jian, et al. Rep-re-sentation of Complex Optical Surfaces with Adaptive Radial Basis Functions[J]. Applied Optics, 2019, 58(14): 3938-3944.
[4] 吳志清, 唐清春. 刀具擺角對(duì)復(fù)雜曲面輪廓精度的影響研究[J]. 表面技術(shù), 2018, 47(7): 139-145.
WU Zhi-qing, TANG Qing-chun. Influence of Tool Angle on Contour Precision of Complicated Surface[J]. Surface Technology, 2018, 47(7): 139-145.
[5] 耿軍曉, 李立偉, 李友剛, 等. 五軸聯(lián)動(dòng)加工中進(jìn)給速度的控制算法[J]. 表面技術(shù), 2018, 47(7): 8-14.
GENG Jun-xiao, LI Li-wei, LI You-gang, et al. Control Algorithm of Feed Rate in Five-Axis Linkage Machining[J]. Surface Technology, 2018, 47(7): 8-14.
[6] 邱昕洋, 張彥欽, 王宏斌. 慢刀伺服加工環(huán)曲面的刀具路徑規(guī)劃方法[J]. 國防科技大學(xué)學(xué)報(bào), 2020, 42(3): 121-127.
QIU Xin-yang, ZHANG Yan-qin, WANG Hong-bin. Tool Path Planning Method for Machining Toric Surface Based on Slow Tool Servo Technology[J]. Journal of National University of Defense Technology, 2020, 42(3): 121-127.
[7] 張?jiān)? 環(huán)曲面設(shè)計(jì)角膜塑形鏡對(duì)角膜表面大高度差異近視患者的臨床療效探討[J]. 中外醫(yī)療, 2019, 38(21): 62-64.
ZHANG Yu. Clinical Effect of Orthokeratology on the Corneal Surface with Large Height Difference in Myopia Patients[J]. China & Foreign Medical Treatment, 2019, 38(21): 62-64.
[8] NING Pei-xing, ZHAO Ji, JI Shi-jun, et al. Ultra-Preci-sion Machining of a Large Amplitude Umbrella Surface Based on Slow Tool Servo[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(11): 1999-2010.
[9] 林澤欽, 陳新度, 顏志濤, 等. 微透鏡陣列的慢刀伺服加工表面粗糙度預(yù)測(cè)模型[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2020, 25(3): 83-87.
LIN Ze-qin, CHEN Xin-du, YAN Zhi-tao, et al. The Surface Roughness Prediction Model of Microlens Array in Slow Tool Servo Cutting[J]. Journal of Harbin University of Science and Technology, 2020, 25(3): 83-87.
[10] 董青青. 慢刀伺服車削關(guān)鍵技術(shù)研究[D]. 長春: 長春工業(yè)大學(xué), 2020.
DONG Qing-qing. Research on Key Technology of Slow Tool Servo[D]. Changchun: Changchun University of Technology, 2020.
[11] 趙亮, 程凱, 丁輝, 等. 超精密慢刀伺服金剛石車削加工的關(guān)鍵工藝問題研究[J]. 制造技術(shù)與機(jī)床, 2020(5): 85-88.
ZHAO Liang, CHENG Kai, DING Hui, et al. Investiga-tion on Key Enabling Process Variables Ultraprecision Diamond Turning Using Slow Tool Servo[J]. Manufacturing Technology & Machine Tool, 2020(5): 85-88.
[12] 王東方. 大口徑自由曲面超精密車削關(guān)鍵技術(shù)研究[D]. 北京: 中國科學(xué)院大學(xué)(中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所), 2020.
WANG Dong-fang. Research on Key Technologies of Ultra-Precision Turning for Large Aperture Optics[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020.
[13] 張琦, 薛常喜. 自由曲面的慢刀伺服車削軌跡優(yōu)化[J]. 激光與光電子學(xué)進(jìn)展, 2020, 57(5): 052203.
ZHANG Qi, XUE Chang-xi. Optimization of Tool Path Generation for Freeform Surface by Slow Tool Servo Diamond Turning[J]. Laser & Optoelectronics Progress, 2020, 57(5): 052203.
[14] 蔡洪彬, 史國權(quán). 主動(dòng)控制加工誤差慢刀伺服車削軌跡生成方法[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2019, 49(4): 1221-1227.
CAI Hong-bin, SHI Guo-quan. Tool Path Generation of Slow Tool Servo for Active Control Machining Error[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1221-1227.
[15] 牛恒泰, 康敏, 何成奎, 等. 離散曲面慢刀伺服車削刀具路徑規(guī)劃[J]. 機(jī)械科學(xué)與技術(shù), 2018, 37(5): 721-728.
NIU Heng-tai, KANG Min, HE Cheng-kui, et al. Cutting Path Plan of Discrete Surface for Slow Tool Servo Tur-ning[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 721-728.
[16] 關(guān)朝亮. 復(fù)雜光學(xué)曲面慢刀伺服超精密車削技術(shù)研究[D]. 長沙: 國防科學(xué)技術(shù)大學(xué), 2010.
GUAN Chao-liang. Study on the Technology of Slow Tool Servo Ultra-Precision Diamond Turning for Complex Optical Surface[D]. Changsha: National University of Defense Technology, 2010.
[17] 王興盛. 復(fù)雜光學(xué)曲面慢刀伺服車削關(guān)鍵技術(shù)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2014.
WANG Xing-sheng. Research on the Key Technologies of Slow Tool Servo Turning for Complex Optical Surface[D]. Nanjing: Nanjing Agricultural University, 2014.
[18] 陳旭. 慢刀伺服車削機(jī)床PID參數(shù)優(yōu)化及其刀具路徑規(guī)劃研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2016.
CHEN Xu. Research on PID Parameter Optimization and Tool Path Generation of Slow Tool Servo Turning Machine [D]. Nanjing: Nanjing Agricultural University, 2016.
[19] 鐵貴鵬. 自由曲面光學(xué)元件慢刀伺服加工關(guān)鍵技術(shù)研究[D]. 長沙: 國防科學(xué)技術(shù)大學(xué), 2009.
TIE Gui-peng. Research on Key Technology in Turning of Freeform Optics Based on Slow Tool Servo[D]. Changsha: National University of Defense Technology, 2009.
[20] KHAGHANI A, CHENG Kai. Investigation on Multi- Body Dynamics Based Approach to the Toolpath Gene-ration for Ultraprecision Machining of Freeform Surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(3): 571-583.
[21] 牛恒泰. 復(fù)雜曲面慢刀伺服車削刀具路徑規(guī)劃及測(cè)量技術(shù)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2018.
NIU Heng-tai. Research on Slow Tool Servo Turning and Form Accuracy Measuring for Complex Surface[D]. Nanjing: Nanjing Agricultural University, 2018.
[22] 黃岳田. 單點(diǎn)金剛石車削復(fù)雜曲面技術(shù)研究[D]. 成都: 中國科學(xué)院大學(xué)(中國科學(xué)院光電技術(shù)研究所), 2019.
HUANG Yue-tian. Research on Single Point Diamond Turning Technology for Complex Surface[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2019.
[23] 李佳偉, 杜文浩, 韓長慶. 慢刀伺服車削刀具半徑定向補(bǔ)償?shù)姆侄伪平蠼鈁J]. 中國機(jī)械工程, 2020, 31(17): 2017-2023.
LI Jia-wei, DU Wen-hao, HAN Chang-qing. Directional Tool Radius Compensation Solution of STS Turning Based on Segment Approximation[J]. China Mechanical Engine-e-ring, 2020, 31(17): 2017-2023.
[24] 馬富榮, 靳伍銀, 王安. 復(fù)雜曲面慢刀伺服加工刀具半徑補(bǔ)償方法[J]. 機(jī)械設(shè)計(jì)與制造, 2019(7): 189-192.
MA Fu-rong, JIN Wu-yin, WANG An. The Method of Tool Radius Compensation for Complex Surface by Using Slow Tool Servo Processing[J]. Machinery Design & Man-ufacture, 2019(7): 189-192.
[25] 何康, 黃春, 姜浩, 等. 基于MPI的高精度歸約函數(shù)設(shè)計(jì)與實(shí)現(xiàn)[J]. 計(jì)算機(jī)工程與科學(xué), 2021, 43(4): 594-602.
HE Kang, HUANG Chun, JIANG Hao, et al. Design and Implementation of a High-Precision Reduction Function Based on MPI[J]. Computer Engineering & Science, 2021, 43(4): 594-602.
[26] 楊軍, 康敏. 基于三彎矩法的環(huán)曲面金剛石切削刀具路徑規(guī)劃及其仿真分析[J]. 中國機(jī)械工程, 2018, 29(13): 1580-1587.
YANG Jun, KANG Min. Tool Path Generation and Simulation for Diamond Turning of Toric Surfaces Using Three Bending Moment Method[J]. China Mechanical Engineering, 2018, 29(13): 1580-1587.
[27] 馬富榮. 自由光學(xué)曲面的慢刀伺服車削及仿真[D]. 蘭州: 蘭州理工大學(xué), 2018.
MA Fu-rong. Free-Form Optical Surface Processing in Slowing Tool Turning and Simulation[D]. Lanzhou: Lan-zhou University of Technology, 2018.
Optimization of Tool Compensation Algorithm for Slow Tool Servo Turning
1,1,2,1
(1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;2. Key Laboratory of Intelligence Agricultural Equipment of Jiangsu Province, Nanjing 210031, China)
In order to improve the surface quality of complex surface in slow tool servo turning, the tool compensation algorithm was optimized.In view of the problems that normal compensation algorithm can easily lead to the decrease of the dynamic performance of-axis and large interpolation error in-direction compensation algorithm, a geometric compensation algorithm based on coordinate transformation was proposed in this paper.Coordinate transformation can improve the accuracy of the solution and simplify the algorithm.By using the geometric transformation relationship, the compensation component of-axis could be concentrated on the-axis, which not only ensured the dynamic performance of-axis, but also reduced the interpolation error.Taking the toric surface as an example, the tool compensation algorithm proposed in this paper was simulated and verified by experiments.The simulation results showed that the velocity of-axis fluctuates greatly under the normal compensation algorithm, while the-axis can keep uniform motion under the algorithm proposed in this paper.In the tool compensation link, compared with the algorithm proposed in this paper, the interpolation error under-direction compensation algorithm was larger, and the maximum interpolation error was more than 0.015 mm.The experimental results showed that the value of surface roughness of the toric surface was the largest under the normal compensation algorithm (=0.112 μm), which was much larger than that under the-direction compensation algorithm and the algorithm proposed in this paper.However,under the-direction compensation algorithm and the algorithm proposed in this paper,the value of surface roughness of the toric surface was similar (=0.066 μm and=0.062 μm respectively), which indicates that the tool compensation algorithm has little effect on the surface roughness on the premise of ensuring the dynamic performance of-axis.The values ofobtained under the normal compensation algorithm, the-direction compensation algorithm and the algorithm proposed in this paper was 16.9 μm, 13.8 μm and 8.8 μm respectively. Compared with normal compensation algorithm and-direction compensation algorithm, the accuracy of toric surface was improved by 92.0% and 56.8% respectively under the algorithm proposed in this paper, which shows that the tool compensation algorithm proposed in this paper can improve the surface machining quality.
slow tool servo; tool path; coordinate transformation; geometric compensation; surface roughness; form error
TG506
A
1001-3660(2022)04-0308-09
10.16490/j.cnki.issn.1001-3660.2022.04.032
2021-05-21;
2021-09-25
2021-05-21;
2021-09-25
2019江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(6026A9)
Supported by the Demonstration and Extension Project of Modern Agricultural Machinery Equipment and Technology in Jiangsu Province in 2019 (6026A9)
郭航言(1998—),男,碩士研究生,主要研究方向?yàn)閿?shù)控加工技術(shù)。
GUO Hang-yan (1998—), Male, Postgraduate, Research focus: numerical control processing technology.
康敏(1965—),男,博士,教授,主要研究方向?yàn)樘胤N加工技術(shù)。
KANG Min (1965—), Male, Doctor, Professor, Research focus: special processing technology.
郭航言, 康敏, 周瑋. 慢刀伺服車削刀具補(bǔ)償算法優(yōu)化[J]. 表面技術(shù), 2022, 51(4): 308-316.
GUO Hang-yan, KANG Min, ZHOU Wei. Optimization of Tool Compensation Algorithm for Slow Tool Servo Turning[J]. Surface Technology, 2022, 51(4): 308-316.
責(zé)任編輯:萬長清