張娜 劉葒 廖金灣 鄭曉聰 鄭樞 劉驍 謝艷輝 李家僑 李紅權(quán)
摘要:【目的】基于環(huán)境DNA(eDNA)分析進(jìn)口凡納濱對(duì)蝦攜帶水傳播和運(yùn)輸蝦肝腸胞蟲(EHP)的風(fēng)險(xiǎn)性,為環(huán)境水中疫病監(jiān)測和風(fēng)險(xiǎn)評(píng)估提供參考依據(jù)?!痉椒ā咳?0批進(jìn)口親蝦攜帶水用0.45 μm硝酸纖維素膜過濾并提取eDNA,挑取10個(gè)攜帶水樣濾膜eDNA用于凡納濱對(duì)蝦物種特異性鑒定,采用實(shí)時(shí)熒光定量PCR對(duì)所有攜帶水樣濾膜進(jìn)行EHP檢測;同時(shí)以EHP陽性進(jìn)口親蝦攜帶水開展人工感染試驗(yàn),感染10 d后分別取養(yǎng)殖水樣及蝦體進(jìn)行EHP檢測;對(duì)進(jìn)口親蝦攜帶水EHP陽性濾膜進(jìn)行宏基因組測序分析,采用Krona對(duì)物種注釋結(jié)果進(jìn)行可視化展示,并將宏基因組測序分析結(jié)果與NCBI已公布的EHP氨基酸序列進(jìn)行BLAST比對(duì)分析?!窘Y(jié)果】進(jìn)口親蝦攜帶水檢測結(jié)果顯示,成功從10個(gè)攜帶水濾膜eDNA擴(kuò)增出凡納濱對(duì)蝦347 bp的特異目的片段,與原始序列片段的相似性達(dá)100%;在60批進(jìn)口親蝦攜帶水樣品中有2批攜帶水呈EHP陽性。EHP陽性進(jìn)口親蝦攜帶水能成功感染蝦苗組,且在蝦苗肝胰腺組織分離獲得成熟的EHP孢子,但親蝦組的蝦體EHP檢測呈陰性。宏基因組測序得到EHP的物種相對(duì)豐度值占真核動(dòng)物物種的0.7%;與NCBI已公布的EHP氨基酸序列進(jìn)行BLAST比對(duì),結(jié)果獲得213個(gè)同源EHP氨基酸序列;從進(jìn)口親蝦攜帶水樣品中分離鑒定獲得的EHP與已報(bào)道物種黃道蟹腸孢蟲(Enterospora canceri)和畢氏腸胞蟲(Enterocytozoon bieneusi)的親緣關(guān)系較近,對(duì)應(yīng)的氨基酸序列相似性為別為83%和81%?!窘Y(jié)論】進(jìn)口凡納濱對(duì)蝦親蝦攜帶水具有傳播EHP的可能性,即僅針對(duì)親蝦蝦體進(jìn)行EHP檢測具有不完全性。eDNA檢測可用來補(bǔ)充傳統(tǒng)的蝦體疫病監(jiān)測方法,作為水環(huán)境疫病檢測和風(fēng)險(xiǎn)評(píng)估的重要手段。
關(guān)鍵詞: 凡納濱對(duì)蝦;親蝦;攜帶水;蝦肝腸胞蟲(EHP);環(huán)境DNA(eDNA);風(fēng)險(xiǎn)評(píng)估
中國分類號(hào): S945.49? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)01-0219-10
Risk analysis of imported live shrimp carrying water trans-mitted Enterocytozoon hepatopenaei by environmental
DNA method
ZHANG Na1, LIU Hong2, LIAO Jin-wan3, ZHENG Xiao-cong2, ZHENG Shu3,
LIU Xiao1, XIE Yan-hui1, LI Jia-qiao1, LI Hong-quan1*
(1Zhanjiang Customs Technology Center, Zhanjiang, Guangdong? 524000, China; 2Animal and Plant Inspection and Quarantine Technical Centre, Shenzhen, Guangdong? 518045, China; 3Zhanjiang Customs, Zhanjiang,
Guangdong? 524000, China)
Abstract:【Objective】The purpose of this study was to analyze the risks of water-borne Enterocytozoon hepatopenaei (EHP) in imported live shrimp using environmental DNA(eDNA) method, to provide a reference basis for environmental water disease monitoring and risk assessment. 【Method】In this study, 60 batches of imported parent shrimp carrying water were filtered by 0.45 μm nitrocellulose membrane, eDNA of 10 filter membranes were amplified byspecific primers of Litopenaeus vannamei. All 60 batches of filter membranes were tested for EHP via real-time fluorescence quantitative PCR. At the same time, EHP positive carrying water was used for artificial infection test. After 10 d of infection, environmental water and shrimp body were taken from each group for EHP detection. The metagenome of EHP positive filter membrane was sequenced and analyzed,Krona was used to visualize the annotation results, and the results of metagenome sequencing were compared with the EHP amino acid sequences registered in NCBI by EHP. 【Result】The results showed that a 347 bp specific target fragment of L.vannamei was successfully amplified from 10 filter membranes,the sequencing results showed that the homology with the original sequence was 100%. Two batches of EHP were positive in 60 batches of imported prawns. The results of artificial infection test showed that EHP positive carrying water successfully infected the post-larvae group, and mature EHP spores were isolated from the hepatopancreas of shrimps, but the shrimps in parent group body were negative in EHP detection. The species relative abundance of EHP accounted for 0.7% of eukaryotic, the results compared with the amino acid sequences registered in NCBI, 213 homologous EHP amino acid sequences were obtained, the amino acid sequences of EHP obtained were similar to those of other reported evolutionary trees:Enterospora canceri (amino acid similarity 83%), Enterocytozoon bieneusi (amino acid similarity 81%). 【Conclusion】It is possible for imported animals to carry water to spread EHP. EHP detection on parent shrimp only is incomplete. eDNA method can be used to supplement the traditional shrimp disease monitoring method as an important means of water disease detection and risk assessment.
Key words: Litopenaeus vannamei;parent shrimp; carrying water; Enterocytozoon hepatopenaei(EHP); environmental DNA(eDNA); risk analysis
Foundation items:Science and Technology Project of General Administration of Customs(2021HK007,2019HK038);Science and Technology Project of Guangdong Entry Exit Inspection and Quarantine Bureau(2018GDK35)
0 引言
【研究意義】隨著水產(chǎn)養(yǎng)殖業(yè)的不懂發(fā)展,水生動(dòng)物疫病發(fā)生率也呈逐年上升趨勢(shì)。據(jù)報(bào)道,我國的水產(chǎn)養(yǎng)殖病害種類超過200多種,尤其是一些危害嚴(yán)重的病毒病每年均會(huì)引起巨大的經(jīng)濟(jì)損失。在水生動(dòng)物疫病中,對(duì)蝦白斑綜合征病毒(WSSV)、桃拉綜合征病毒(TSV)、急性肝胰腺壞死病致病性副溶血弧菌(VPAHPND)、蝦肝腸胞蟲(EHP)等均由境外入侵,進(jìn)而對(duì)我國對(duì)蝦養(yǎng)殖業(yè)造成嚴(yán)重威脅(孫衛(wèi)芳等,2019;陳潔等,2021)。進(jìn)口鮮活水生動(dòng)物是外來病原體在全球范圍內(nèi)肆意傳播的主要途徑之一,各種病原體及其感染宿主被引入本地環(huán)境后,可對(duì)生物多樣性、生態(tài)系統(tǒng)及養(yǎng)殖業(yè)等造成嚴(yán)重危害。為了杜絕活體動(dòng)物貿(mào)易中病原體的傳播,各國政府根據(jù)科學(xué)的風(fēng)險(xiǎn)分析,兼顧水生動(dòng)物種群的起源和歷史、宿主易感性、傳播風(fēng)險(xiǎn)及檢測方法可靠性等,制定了相應(yīng)的檢疫管理措施(Hood et al.,2019)。因此,從鮮活水生動(dòng)物及其攜帶水等多維度加強(qiáng)疫病檢疫的方法研究和評(píng)估分析,對(duì)確保我國水生動(dòng)物養(yǎng)殖業(yè)的持續(xù)健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】目前,我國對(duì)于進(jìn)口鮮活水生動(dòng)物檢疫的主要目標(biāo)是動(dòng)物活體,按照抽樣標(biāo)準(zhǔn)抽取一定數(shù)量的樣品,由于其樣品的代表性具有挑戰(zhàn)性,導(dǎo)致檢測結(jié)果有可能存在偏差;對(duì)于高價(jià)值且數(shù)量極少的進(jìn)口活動(dòng)物而言,活體抽樣數(shù)量不足及檢疫成本過高的缺點(diǎn)越來越凸顯(Barnes and Turner,2016)。環(huán)境DNA(eDNA)是由生物體自然排出的DNA,如通過表皮脫落、代謝廢物排泄物及死后代謝至環(huán)境中(Doi et al.,2017;張娜等,2020)。寄生蟲的卵、孢子、包囊、幼蟲、幼體和成體在整個(gè)生命周期各階段均可從宿主活體脫離而存在于水體環(huán)境中(Bass et al.,2015),因此寄生蟲基因組DNA可基于eDNA通過分子生物學(xué)方法進(jìn)行捕捉、提取和篩選,進(jìn)而在水生寄生蟲學(xué)中實(shí)現(xiàn)物種水平的檢測及監(jiān)測(Lymbery et al.,2014;Trujillo-González et al.,2018,2019a;張娜等,2021b)。從水樣中捕獲并提取的eDNA已被證明可準(zhǔn)確檢測感染野生兩棲動(dòng)物的致病性吸蟲,或監(jiān)測感染養(yǎng)殖和野生魚類的寄生蟲(Tomsen and Wil-lerslev,2015)。eDNA已被提議作為一種非破壞性和敏感性的生物安全檢測工具(Goldberg et al.,2016;Gomes et al.,2017),無需任何靶向PCR,能克服傳統(tǒng)物種鑒定方法耗時(shí)費(fèi)力的缺點(diǎn),可高通量、快速地鑒定物種(Deiner et al.,2017)。孫晶瑩等(2018)采用宏條形碼技術(shù)對(duì)太湖流域常見的5種枝角類浮游動(dòng)物物種進(jìn)行鑒定和生物量監(jiān)測,并與實(shí)時(shí)熒光定量PCR相比,結(jié)果表明擴(kuò)增引物對(duì)eDNA宏條形碼技術(shù)影響顯著,檢出的每個(gè)物種序列數(shù)與實(shí)時(shí)熒光定量PCR定量拷貝數(shù)高度一致,可實(shí)現(xiàn)對(duì)浮游動(dòng)物物種的半定量檢測。Rusch等(2018)對(duì)挪威德位門河流的9個(gè)位置進(jìn)行取樣,通過eDNA監(jiān)測大西洋三代蟲(Gyrodactylus salaris)及其2個(gè)宿主[大西洋鮭魚(Salmo salar)和虹鱒魚(Oncorhynchus mykiss)存在情況,結(jié)果在受大西洋三代蟲污染的水域檢測到寄生蟲eDNA,并在河流上游檢測到虹鱒魚。Trujillo-González等(2019b)使用eDNA對(duì)進(jìn)口觀賞魚進(jìn)行5種寄生蟲檢測,以防止外來寄生蟲和疫病的傳入。此外,張娜等(2021a)基于eDNA優(yōu)化了檢測環(huán)境水中WSSV的切向流濃縮方法;Wang等(2022)依據(jù)eDNA原理實(shí)現(xiàn)對(duì)環(huán)境水中傳染性皮下和造血器官壞死病毒(IHHNV)進(jìn)行濃縮和檢測。可見,eDNA對(duì)于水中病毒檢測具有較高的應(yīng)用價(jià)值?!颈狙芯壳腥朦c(diǎn)】蝦肝腸胞蟲(Enterocytozoon hepatopenaei,EHP)是近幾年新發(fā)現(xiàn)寄生于對(duì)蝦肝胰腺組織的病原(Tourtip et al.,2009;Tangprasittipap et al.,2013;宋居易等,2020),在我國、印度尼西亞、馬來西亞、越南、印度和泰國的對(duì)蝦中均有檢出(Biju et al.,2016;Jaroenlak et al.,2018)。調(diào)查發(fā)現(xiàn),在孵育的1日齡凡納濱對(duì)蝦蝦苗中即檢出EHP陽性,故推測其SPF種蝦是高風(fēng)險(xiǎn)性傳染源,提示一些擁有SPF標(biāo)簽的進(jìn)口凡納濱對(duì)蝦也可能攜帶EHP,而進(jìn)口對(duì)蝦攜帶水也有可能是傳染源。目前,針對(duì)蝦肝腸胞蟲的流行病學(xué)監(jiān)測多以蝦體為主,利用eDNA方法開展入境水生生物攜帶水風(fēng)險(xiǎn)評(píng)估的研究鮮見報(bào)道。因此,急需建立進(jìn)口親蝦攜帶水中肝腸胞蟲檢疫方法,以確保我國對(duì)蝦養(yǎng)殖業(yè)的健康發(fā)展。【擬解決的關(guān)鍵問題】以進(jìn)口親蝦攜帶水eDNA為研究對(duì)象進(jìn)行EHP檢測,并對(duì)攜帶水過濾膜進(jìn)行宏基因組測序,采用多種檢測方法分析進(jìn)口親蝦攜帶水傳播和運(yùn)輸EHP的風(fēng)險(xiǎn)性,為環(huán)境水中疫病監(jiān)測和風(fēng)險(xiǎn)評(píng)估提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
感染EHP的凡納濱對(duì)蝦陽性樣品由湛江海關(guān)技術(shù)中心動(dòng)物檢疫實(shí)驗(yàn)室保存提供;DNeasy Blood and Tissue Kit購自德國Qiagen公司;Ex Taq DNA聚合酶購自寶生物工程(大連)有限公司;PCR管等購自美國Axygen公司。主要儀器設(shè)備:實(shí)時(shí)熒光定量PCR儀(美國ABI StepOne Plus)、高速冷凍離心機(jī)(Eppendorf Centrifuge 5417R)、真空泵(津騰,GM-0-33A)。
1. 2 試驗(yàn)方法
1. 2. 1 攜帶水樣品過濾處理及凡納濱對(duì)蝦物種特異性鑒定 以進(jìn)口親蝦攜帶水樣為研究對(duì)象,共60批樣品,每個(gè)水樣取1 L,使用孔徑0.45 μm的硝酸纖維素膜進(jìn)行無菌真空抽濾,每次過濾前均用無菌水、0.5 mol/L氫氧化鈉和3%次氯酸鈉沖洗過濾漏斗,防止交叉污染。過濾完成后將每張濾膜單獨(dú)放入1.5 mL離心管中,用剪刀將濾膜剪成細(xì)條狀,以DNeasy Blood and Tissue Kit試劑盒提取濾膜eDNA(具體提取方法見說明書)。在GenBank檢索凡納濱對(duì)蝦EF584003.1線粒體基因序列,使用Primer Premier 6.0設(shè)計(jì)引物(F2:5'-AACAGCCCTCACTATTTCAA GACC-3';R2:5'-ATCGTTGCGTTGGATAAAATGG C-3'),在NCBI 網(wǎng)站上進(jìn)行引物特異性測試后委托寶生物工程(大連)有限公司合成,預(yù)期擴(kuò)增片段長度為347 bp。PCR擴(kuò)增程序:94 ℃預(yù)變性3 min,94 ℃ 1 min,58 ℃ 1 min,72 ℃ 1 min,進(jìn)行35個(gè)循環(huán);72 ℃延伸10 mim。PCR擴(kuò)增產(chǎn)物委托生工生物工程(上海)股份有限公司進(jìn)行測序分析。
1. 2. 2 攜帶水樣品EHP檢測 參考張娜等(2017)的方法設(shè)計(jì)引物和探針序列,采用建立好的實(shí)時(shí)熒光定量PCR對(duì)濾膜eDNA進(jìn)行EHP檢測。EHP陽性樣品使用套式PCR進(jìn)行確定(Jaroenlak et al.,2016)。第一步擴(kuò)增引物F:5'-TTGCAGAGTGTTGTTAAG GGTTT-3',R:5'-CACGATGTGTCTTTGCAATTTT C-3'。擴(kuò)增程序:94 ℃預(yù)變性5 min;95 ℃ 30 s,58 ℃ 30 s,72 ℃ 30 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸5 min。第二步擴(kuò)增引物F:5'-TTGGCGGCACAATTCTCAA ACA-3',R:5'-GCTGTTTGTCTCCAACTGTATTTG A-3'。擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 40 s,進(jìn)行35個(gè)循環(huán);72 ℃延伸5 min。
1. 2. 3 人工感染動(dòng)物試驗(yàn) 選取凡納濱對(duì)蝦親蝦及10日齡蝦苗,經(jīng)EHP、WSSV、TSV、VPAHPND、IHHNV、偷死野田村病毒(CMNV)、黃頭病毒(YHV)及傳染性肌壞死病毒(IMNV)等主要病原檢測均呈陰性,暫養(yǎng)于長100 cm、寬30 cm、高50 cm的水槽中,以不含任何抗病藥物的飼料喂養(yǎng)7 d后備用。感染試驗(yàn)共分為4組,每組均設(shè)2個(gè)平行。T1組:陽性對(duì)照組,對(duì)蝦肝胰腺組織感染EHP的蝦苗組;T2組:陰性對(duì)照組,為非攻毒組;T3組:蝦苗感染試驗(yàn)組(每組300尾蝦苗),以檢測呈陽性的進(jìn)口對(duì)蝦攜帶水進(jìn)行飼養(yǎng);T4組:親蝦感染試驗(yàn)組(每組4尾親蝦),以檢測呈陽性的進(jìn)口對(duì)蝦攜帶水進(jìn)行飼養(yǎng)。攻毒感染前停食1 d。
1. 2. 4 人工感染試驗(yàn)后養(yǎng)殖水樣和蝦體檢測 每日投喂飼料1次,每天觀察凡納濱對(duì)蝦死亡情況,及時(shí)清理死亡對(duì)蝦。飼養(yǎng)期間不換水,飼養(yǎng)10 d后全部撲殺和取樣,同時(shí)對(duì)養(yǎng)殖水樣進(jìn)行抽濾取過濾,采用DNeasy Blood and Tissue Kit試劑盒提取eDNA,并進(jìn)行EHP檢測。
1. 2. 5 EHP孢子分離與染色鑒定 取所有蝦苗及親蝦的肝胰腺,混合置于玻璃研磨器中加入液氮研磨,反復(fù)凍融5次,組織勻漿液中加入3倍體積的PBS稀釋,先通過4層200目篩絹過濾除去較粗的組織碎片,過濾液再通過6層200目篩絹過濾除去較粗的組織碎及和黏液。濾出液13000 r/min離心30 min,棄上清液,加入PBS重懸沉淀,重復(fù)操作2次;2000 r/min離心10 min,取上清液;13000 r/min離心30 min,棄上清液;沉淀加入500 μL PBS重懸。取300 μL重懸液緩慢注入到預(yù)先鋪制蔗糖密度梯度(由上至下濃度依次為30%、35%、40%和50%)的30 mL試管表面,水平方向5000 r/min離心1 h。每層蔗糖面有黃色可見物,EHP主要分布在35%~40%的蔗糖面,小心吸出各層可見物,以PBS稀釋10倍后14000 r/min離心10 min,棄上清液,沉淀用少量PBS懸浮后4 ℃保存(喬毅等,2018;Aldama-Cano et al.;2018;常曉晴等,2019)。取1滴純化后的孢子懸液均勻涂布于載玻片上,滴加1滴2%熒光桃紅B,緩慢搖勻,室溫放置3 min,置于100倍油鏡下觀察。
1. 2. 6 進(jìn)口親蝦攜帶水濾膜宏基因組測序分析
對(duì)檢測呈陽性的進(jìn)口親蝦攜帶水濾膜eDNA使用Quibt進(jìn)行濃度測定,以1.0%瓊脂糖凝膠電泳檢測eDNA完整性及純度,取質(zhì)量合格的樣品構(gòu)建基因文庫。利用超聲波儀Covaris M220(Woburn,MA,USA)將各基因組eDNA樣本隨機(jī)打斷成300 bp左右的片段,隨后利用NEBNext? UltraTM DNA Library Prep Kit for Illumina?(NEB,USA)構(gòu)建基因文庫,采用Agencourt AMPure XP(Beckman,USA)進(jìn)行磁珠純化,經(jīng)GenNextTM NGS Library Quantification Kit(Toyobo,Japan)定量分析后以Illumina Novaseq 6000 PE150進(jìn)行測序分析。然后對(duì)原始序列進(jìn)行去接頭、質(zhì)量剪切及去除污染等優(yōu)化處理,使用優(yōu)質(zhì)序列進(jìn)行拼接組裝和基因預(yù)測,并對(duì)得到的基因進(jìn)行物種和功能注釋及分類。
1. 2. 7 進(jìn)口親蝦攜帶水樣品EHP氨基酸序列比對(duì)分析 使用BEDTools的GenomeCoverageBed計(jì)算基因豐度,從不同分類層級(jí)(門、綱、母、科、屬、種)的相對(duì)豐度出發(fā),在非冗余蛋白的氨基酸序列(nr)數(shù)據(jù)庫使用DIAMOND進(jìn)行分析,分析獲得的EHP氨基酸序列與NCBI已公布的EHP氨基酸序列進(jìn)行BLAST比對(duì)分析。
2 結(jié)果與分析
2. 1 攜帶水樣品中凡納濱對(duì)蝦物種鑒定結(jié)果
為有效鑒定eDNA的提取有效性,對(duì)宿主凡納濱對(duì)蝦的物種特異性進(jìn)行鑒定。由圖1可看出,成功從10個(gè)進(jìn)口親蝦攜帶水樣濾膜eDNA中擴(kuò)增出347 bp的特異目的片段,且目的條帶單一明亮,與預(yù)期結(jié)果相符。在NCBI網(wǎng)站上經(jīng)BLAST比對(duì)分析,結(jié)果顯示擴(kuò)增獲的目的片段與原始序列片段的相似性達(dá)100%。
2. 2 攜帶水樣品中EHP檢測結(jié)果
利用實(shí)時(shí)熒光定量PCR對(duì)60份進(jìn)口親蝦攜帶水樣品進(jìn)行檢測,結(jié)果(圖2)顯示有2批攜帶水呈EHP陽性;然后對(duì)這2批攜帶水進(jìn)行套式PCR擴(kuò)增,擴(kuò)增獲得的條帶(圖3)與預(yù)期結(jié)果相符。經(jīng)測序及比對(duì)分析,發(fā)現(xiàn)與EHP序列的相似性達(dá)99%,確定為EHP陽性。
2. 3 人工感染試驗(yàn)結(jié)果
由表1可看出,T1組(陰性對(duì)照組)無死亡對(duì)蝦;T2組(陽性對(duì)照組)從換水感染后第7 d開始有蝦苗死亡,平均死亡率為16.5%;T3組(蝦苗感染試驗(yàn)組)在換水感染后第8 d開始有蝦苗死亡,平均死亡率為9.0%;T4組(親蝦感染試驗(yàn)組)在進(jìn)行換水感染后無死亡蝦。經(jīng)統(tǒng)計(jì)學(xué)方差分析,發(fā)現(xiàn)各組間的差異均達(dá)顯著水平(P<0.05)。可見,EHP檢測呈陽性的進(jìn)口親蝦攜帶水對(duì)蝦苗具有感染性,但對(duì)親蝦的感染力較弱,究其原因可能是EHP的孢子數(shù)量較少,尚未達(dá)到足夠感染量,或親蝦的抵抗力較強(qiáng)。
2. 4 人工感染試驗(yàn)后養(yǎng)殖水樣及蝦體的EHP檢測結(jié)果
人工感染10 d后對(duì)所有凡納濱對(duì)蝦進(jìn)行撲殺和取樣,同時(shí)抽濾養(yǎng)殖水樣取過濾膜,采用實(shí)時(shí)熒光定量PCR進(jìn)行EHP檢測。各組蝦體檢測結(jié)果(圖4)顯示,T1組(陽性對(duì)照組)和T3組(蝦苗感染試驗(yàn)組)蝦體EHP檢測均呈陽性,T2組(陰性對(duì)照組)和T4組(親蝦感染試驗(yàn)組)蝦體EHP檢測均呈陰性。各組的養(yǎng)殖水樣過濾膜檢測結(jié)果顯示,T1組(陽性對(duì)照組)、T3組(蝦苗感染試驗(yàn)組)和T4組(親蝦感染試驗(yàn)組)養(yǎng)殖水樣過濾膜EHP檢測均呈陽性,以T4組(親蝦感染試驗(yàn)組)養(yǎng)殖水樣過濾膜的核酸檢測濃度最低;T2組(陰性對(duì)照組)養(yǎng)殖水樣過濾膜EHP檢測呈陰性。對(duì)實(shí)時(shí)熒光定量PCR檢測呈陽性的樣品再進(jìn)行套式PCR擴(kuò)增,結(jié)果(圖5)顯示擴(kuò)增獲得的條帶(圖3)與預(yù)期結(jié)果相符,經(jīng)測序及比對(duì)分析,確定為EHP陽性。
2. 5 人工感染試驗(yàn)后凡納濱對(duì)蝦肝胰腺EHP分離及鏡檢結(jié)果
取T3組(蝦苗感染試驗(yàn)組)蝦苗肝胰腺進(jìn)行勻漿,經(jīng)過濾、洗滌、離心后采用蔗糖密度梯度離心得到EHP孢子懸液,取1滴純化后的孢子懸液均勻涂布于載玻片上,滴加1小滴2%熒光桃紅B,緩慢搖勻,室溫放置3 min后置于100倍油鏡下進(jìn)行鏡檢,結(jié)果(圖6)顯示EHP孢子大小約1.2±0.2 μm×1.6±0.2 μm,呈卵圓形、球形或橢圓形。T4組(親蝦感染試驗(yàn)組)親蝦肝胰腺未分離獲得EHP孢子。
2. 6 進(jìn)口親蝦攜帶水樣eDNA宏基因組測序分析結(jié)果
對(duì)進(jìn)口親蝦攜帶水過濾膜進(jìn)行宏基因組測序,使用DIAMOND將UniqGeneSet與NCBI已公布的氨基酸序列進(jìn)行BLAST比對(duì)分析(期望值E-value設(shè)為1E-5);取相似性最高的比對(duì)序列作為該序列的物種注釋信息,計(jì)算該物種的基因豐度總和,并從門(Phylum)、綱(Class)、目(Order)、科(Family)、屬(Genus)、種(Species)各分類學(xué)水平統(tǒng)計(jì)物種在各樣品中的相對(duì)豐度,構(gòu)建相應(yīng)分類學(xué)水平上的豐度譜(Abundance profile)。為直觀展示各樣品中不同分類層級(jí)的物種相對(duì)豐度,采用Krona對(duì)物種注釋結(jié)果進(jìn)行可視化展示,結(jié)果(圖7)顯示,EHP的物種相對(duì)豐度值占真核動(dòng)物物種的0.7%。
2. 7 進(jìn)口親蝦攜帶水樣品EHP氨基酸序列比對(duì)分析結(jié)果
宏基因組測序分析獲得的EHP氨基酸序列與NCBI已公布的EHP氨基酸序列進(jìn)行BLAST比對(duì),結(jié)果獲得213個(gè)同源EHP氨基酸序列。以NCBI已公布的EHP氨基酸序列(OQS53361.1)為參考,基于EHP氨基酸序列相似性構(gòu)建生物進(jìn)化圖,結(jié)果(圖8)顯示,從進(jìn)口親蝦攜帶水樣品中分離鑒定獲得的EHP與已報(bào)道物種黃道蟹腸孢蟲(Enterospora canceri)和畢氏腸胞蟲(Enterocytozoon bieneusi)的親緣關(guān)系較近,對(duì)應(yīng)的氨基酸序列相似性為別為83%和81%。
3 討論
EHP隸屬于微孢子蟲科(Microsporidia)腸胞蟲屬(Enterocytozoon),是一種專性細(xì)胞內(nèi)寄生蟲,主要寄生在蝦類肝胰腺肝小管上皮細(xì)胞內(nèi),凡納濱對(duì)蝦、脊尾白蝦和斑節(jié)對(duì)蝦等主要經(jīng)濟(jì)養(yǎng)殖蝦類均為易感宿主(Jaroenlak et al.,2018)。盡管蝦肝腸胞蟲不會(huì)引起對(duì)蝦很高的死亡率,甚至有時(shí)不表現(xiàn)出癥狀,但會(huì)導(dǎo)致對(duì)蝦生長緩慢,尤其與其他疫病混合感染時(shí)能加重對(duì)蝦疫情及增加致死率。EHP感染在苗種培育和成蝦養(yǎng)殖階段均有出現(xiàn),嚴(yán)重影響對(duì)蝦的生長速度及成蝦品質(zhì),給對(duì)蝦產(chǎn)業(yè)帶來較大經(jīng)濟(jì)損失(張娜等,2020)。目前,實(shí)驗(yàn)室檢測EHP的常用方法有套式PCR、實(shí)時(shí)熒光定量PCR、環(huán)介導(dǎo)等溫?cái)U(kuò)增(LAMP)及原位雜交技術(shù)(胡吉卉等,2020),鮮見基于eDNA對(duì)環(huán)境水進(jìn)行EHP檢測的研究報(bào)道。Jaroenlak等(2016)研究發(fā)現(xiàn)輪蟲和鹵蟲均可攜帶EHP,將增加對(duì)蝦感染EHP的可能性,因此建議在養(yǎng)殖生產(chǎn)中應(yīng)對(duì)投喂的鮮活餌料進(jìn)行巴氏消毒處理,以預(yù)防對(duì)蝦感染EHP。丁慧昕等(2018)采集養(yǎng)殖蝦塘排水渠的環(huán)境樣品,包括蝦、蟹及魚類等水生動(dòng)物進(jìn)行EHP檢測,結(jié)果從這些環(huán)境樣品中均檢測到EHP。本研究基于eDNA直接對(duì)進(jìn)口親蝦攜帶水進(jìn)行EHP檢測,并對(duì)攜帶水樣過濾膜進(jìn)行宏基因組測序分析,通過多維度分析進(jìn)口親蝦攜帶水傳播和運(yùn)輸EHP的風(fēng)險(xiǎn),結(jié)果表明進(jìn)口親蝦環(huán)境水?dāng)y帶感染性EHP的可能性非常大,也進(jìn)一步佐證僅針對(duì)親蝦蝦體進(jìn)行EHP檢測具有不完全性。
宏基因組(Metagenomics)是指特定環(huán)境下所有生物遺傳物質(zhì)的總和,其決定生物群體的生命現(xiàn)象。宏基因組是以生態(tài)環(huán)境中全部DNA作為研究對(duì)象,通過克隆和異源表達(dá)來篩選有用基因及其產(chǎn)物,分析其功能及彼此間的關(guān)系和相互作用(Tisthammer et al.,2016)。目前,宏基因組測序是eDNA研究的重要方法。在序列運(yùn)行中,序列質(zhì)量并不均勻,會(huì)出現(xiàn)一些序列讀取的平均質(zhì)量較其他序列差的序列,而QIME(Caporaso et al.,2012)和OBITOLS程序(Boyer et al.,2016)等方法可實(shí)現(xiàn)DNA宏條形碼分析。本研究通過對(duì)進(jìn)口親蝦攜帶水進(jìn)行宏基因組測序,并與NCBI已公布的EHP氨基酸序列進(jìn)行BLAST比對(duì),結(jié)果表明,從進(jìn)口親蝦攜帶水樣品中分離鑒定獲得的EHP與黃道蟹腸孢蟲和畢氏腸胞蟲的物種進(jìn)化樹非常接近,且聚為一支。畢氏腸胞蟲是重要的人源微孢子蟲,其宿主包括人類及家畜、野生動(dòng)物和鳥類;而黃道蟹腸孢蟲的感染宿主是黃道蟹(Palenzuela et al.,2014;顏遠(yuǎn)義等,2018)。故推測攜帶水濾膜eDNA宏基因組測序的氨基酸序列比對(duì)結(jié)果存在偏差,因此后續(xù)需要對(duì)序列比對(duì)數(shù)據(jù)庫進(jìn)一步更新,同時(shí)對(duì)宏基因組編碼及序列比對(duì)標(biāo)準(zhǔn)化進(jìn)行規(guī)范。
eDNA檢測是一種最具應(yīng)用前途的工具,可用來補(bǔ)充甚至取代傳統(tǒng)的動(dòng)物個(gè)體取樣檢測和生物監(jiān)測(Ardura et al.,2015;Coble et al.,2019),無需殺死大量動(dòng)物或進(jìn)行非常耗時(shí)的人工檢查,而實(shí)現(xiàn)快速檢測。目前,已有關(guān)于寄生蟲eDNA檢測的研究報(bào)道,涉及六齒輪蟲、新本尼登蟲、阿片蟲、間日瘧原蟲及粘液蟲等(Robson et al.,2016;Pochon et al.,2017)。eDNA監(jiān)測方法不僅縮短了采樣時(shí)間和降低了檢測成本,還提高了動(dòng)物福利,且能同時(shí)檢測寄生蟲和宿主,因而具有極大的應(yīng)用潛力。利用本研究制定的檢測方案不僅可在單個(gè)樣本上檢測到EHP,還能檢測到其感染宿主基因。通過綜合使用其他檢測方法,即可檢測或監(jiān)測幾乎所有水生寄主病原體復(fù)合體的存在,但其前提是濾膜規(guī)格適合從目標(biāo)生物體中捕獲eDNA。
4 結(jié)論
進(jìn)口凡納濱對(duì)蝦親蝦攜帶水具有傳播EHP的可能性,即僅針對(duì)親蝦蝦體進(jìn)行EHP檢測具有不完全性。eDNA檢測可用來補(bǔ)充傳統(tǒng)的蝦體疫病監(jiān)測方法,作為水環(huán)境疫病檢測和風(fēng)險(xiǎn)評(píng)估的重要手段。
參考文獻(xiàn):
常曉晴,王元,英娜,李楠英,黃倞,李新蒼,周俊芳,房文紅. 2019. 8種染色方法對(duì)組織切片中蝦肝腸胞蟲染色效果的比較[J]. 海洋漁業(yè),41(1):91-99. [Chang X Q,Wang Y,Ying N,Li N Y,Huang L,Li X C,Zhou J F,F(xiàn)ang W H. 2019. Comparison of 8 different special staining techniques of Enterocytozoon hepatopenaei in histologic section[J]. Marine Fishries,41(1):91-99.] doi:10.3969/j.issn.1004-2490.2019.01.011.
陳潔,廖國禮,吳玉嬌,張慶,楊小娟,范曉東,龍夢(mèng)嫻,潘國慶,周澤揚(yáng). 2021. 蝦肝腸胞蟲的3種快速顯微鏡檢查法[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版),43(3):17-23. [Chen J,Liao G L,Wu Y J,Zhang Q,Yang X J,F(xiàn)an X D,Long M X,Pan G Q,Zhou Z Y. 2021. Three methods for light microscopic detection of Enterocytozoon hepatopenaei[J]. Journal of Southwest University (Natural Science),43(3):17-23.] doi:10.13718/j.cnki.xdzk.2021.03.003.
丁慧昕,施慧,謝建軍,王庚申,汪瑋,何杰,許文軍. 2018. 蝦肝腸胞蟲(EHP)在凡納濱對(duì)蝦養(yǎng)殖水環(huán)境中的分布情況及傳播途徑初步研究[J]. 浙江海洋大學(xué)學(xué)報(bào)(自然科學(xué)版),37(1):14-19. [Ding H X,Shi H,Xie J J,Wang G S,Wang W,He J,Xu W J. 2018. Preliminary study on distribution and transmission ways of Enterocytozoo hepa-topenaei in Litopenaeus vannamei’s culture environment[J]. Journal of Zhejiang Ocean University (Natural Scien-ce),37(1):14-19.] doi:10.3969/j.issn.1008-830X.2018. 01.003.
胡吉卉,李正民,段健誠,高煥. 2020. 蝦類肝腸胞蟲流行病學(xué)研究進(jìn)展[J]. 水產(chǎn)養(yǎng)殖,41(1):1-4. [Hu J H,Li Z M,Duan J C,Gao H. 2020. Advances in epidemiological studies of Enterocytozoon hepatopenaei cysts in shrimp[J]. Journal of Aquaculture,41(1):1-4.] doi:10.3969./j.issn.1004-2091.2020.11.001.
喬毅,沈輝,萬夕和,范賢平,蔣葛,黎慧,王李寶,史文軍,成婕. 2018. 南美白對(duì)蝦肝腸胞蟲的分離及形態(tài)學(xué)觀察[J]. 中國水產(chǎn)科學(xué),25(5):1051-1058. [Qiao Y,Shen H,Wan X H,F(xiàn)an X P,Jiang G,Li H,Wang L B,Shi W J,Cheng J. 2018. Preliminary isolation and morphological ovservation of Enterocytozoon hepatopenaei infecting the shrimp Penaeus vannamei[J]. Journal of Fishery Scien-ces of China,25(5):1051-1058.] doi:10.3724/SP.J.1118. 2018.17430.
宋居易,劉昱辰,張?zhí)K楠,江高偉,楊華衛(wèi). 2020. 南美白對(duì)蝦4種病原體可視化快速檢測試劑盒(生物芯片法)的研發(fā)[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),36(3):656-665. [Song J Y,Liu Y C,Zhang S N,Jiang G W,Yang H W. 2020. Development of a rapid visualization detection kit (biochip method) for four pathogens in Penaeus vannamei[J]. Jiangsu Journal of Agricultural Sciences,36(3):656-665.] doi:10.3969/j.issn.1000-4440.2020.03.018.
孫晶瑩,楊江華,張效偉. 2018. 環(huán)境DNA(eDNA)宏條形碼技術(shù)對(duì)枝角類浮游動(dòng)物物種鑒定及其生物量監(jiān)測研究[J]. 生態(tài)毒理學(xué)報(bào), 13(5):76-86. [Sun J Y,Yang J H,Zhang X W. 2018. Identification and biomass monitoring of zooplankton cladocera species with eDNA metabarco-ding technology[J]. Asian Journal of Ecotoxicology,13(5):76-86.] doi:10.7524/AJE.1673-5897.20180108001.
孫衛(wèi)芳,黃小帥,胡曉娟,文國樑,曹煜成,張建設(shè). 2019. 廣東沿海地區(qū)凡納濱對(duì)蝦EHP、VPAHPND和SHIV感染情況調(diào)查與分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),50(10):2343-2349. [Sun W F,Huang X S,Hu X J,Wen G L,Cao Y C,Zhang J S. 2019. Detection and analysis of Enterocytozoon hepatopenaei (EHP),vibrio parahaemolyticus acute hepatopancrea-tic necrosis disease(VPAHPND) and shrimp hemocyte iridescent virus(SHIV) from Litopenaeus vannamei in coastal areas of Guangdong Province[J]. Journal of Southern Agri-culture,50(10):2343-2349.] doi:10.3969/j.issn. 2095-1191.2019.10.27.
顏遠(yuǎn)義,劉新華,徐力文,章晉勇. 2018. 南海石斑魚苗種腸道微孢子蟲病病原的鑒定[J]. 水生生物學(xué)報(bào),42(5):942-949. [Yan Y Y,Liu X H,Xu L W,Zhang J Y. 2018. The taxonomic positon of causative agent of enteric microsporidiosis of hatchery-bred juvenile grouper,Epinephelus spp.,cultured in the area off coast of South China Sea[J]. Acta Hydrobiologica Sinica,42(5):942-949.] doi:10.7541/2018.116.
張娜,劉葒,謝艷輝,黃磊,孫思陽,斯?jié)啥?,李家僑. 2021a. 用優(yōu)化的切向流超濾法提高環(huán)境水中對(duì)蝦白斑綜合癥病毒的濃度及檢測效率[J]. 中國獸醫(yī)雜志,57(10):104-110. [Zhang N,Liu H,Xie Y H,Huang L,Sun S Y,Si Z E,Li J Q. 2021a. Usr of optimized tangential flow ultrafiltration for improved concentration and detection of white spot syndrome virus in environmental water[J]. Chinese Journal of Veterinary Medicine,57(10):104-110.]
張娜,仇保豐,謝艷輝,李家僑,斯?jié)啥? 2021b. 水環(huán)境生態(tài)系統(tǒng)中環(huán)境DNA脫落、衰變和運(yùn)輸過程的研究進(jìn)展[J]. 海洋湖沼通報(bào),43(3):129-135. [Zhang N,Qiu B F,Xie Y H,Li J Q,Si Z E. 2021b. Research progress of environmental DNA shedding,decay and transport in aquatic ecosystem[J]. Transactions of Oceanology and Limno-logy,43(3):129-135.] doi:10.13984/j.cnki.cn37-1141. 2021.03.017.
張娜,謝艷輝,陳進(jìn)會(huì),李家僑,斯?jié)啥?,黃磊. 2017. 蝦肝腸胞蟲TaqMan熒光PCR方法的建立與應(yīng)用[J]. 中國動(dòng)物檢疫,34(10):98-103. [Zhang N,Xie Y H,Chen J H,Li J Q,Si Z E,Huang L. 2017. Establishment and application of TaqMan fluorescent PCR method for detection of Enterocytozoon hepatopenaei[J]. China Animal Health Inspection,34(10):98-103.] doi:10.3969/j.issn.1005-944X. 2017.10.026.
張娜,謝艷輝,李家僑,斯?jié)啥? 2020. 環(huán)境DNA 應(yīng)用研究進(jìn)展[J]. 中國動(dòng)物檢疫,37(11):68-75. [Zhang N,Xie Y H,Li J Q,Si Z E. 2020. Research progress on the application of environmental DNA[J]. China Animal Health Inspection,37(11):68-75.] doi:10.3969/j.issn.1005-944X. 2020.11.014.
Aldama-Cano D J,Sanguanrut P,Munkongwongsiri N,Ibarra-Gámez J C,Itsathitphaisarn O,Vanichviriyakit R,F(xiàn)legel T W,Sritunyalucksana K,Thitamadee S. 2018. Bioassay for spore polar tube extrusion of shrimp Enterocytozoon hepatopenaei (EHP)[J]. Aquaculture,490:156-161. doi:10.1016/j.aquaculture.2018.02.039.
Ardura A,Zaiko A,Martinez J L,Samulioviene A,Semenova A,Garcia-Vazquez E. 2015. eDNA and specificprimers for early detection of invasive species—A case study on the bivalve Rangia cuneata, currently spreading in Europe[J]. Marine Environmental Research,112(Part B):48-55. doi:10.1016/j.marenvres.2015.09.013.
Barnes M A,Turner C R. 2016. The ecology of environmental DNA and implications for conservation genetics[J]. Conservation Genetics,17:1-17. doi:10.1007/s10592-015- 0775-4.
Bass D,Stentiford G D,Littlewood D T J,Hartikainen H. 2015. Diverse applications of environmental DNA me-thods in parasitology[J]. Trends in Parasitology,31(10):499-513. doi:10.1016/j.pt.2015.06.013.
Biju N,Sathiyarj G,Raj M,Shanmugan V,Baskaran B,Go-vindan U,Kumaresan G,Kasthuriraju K K,Chellamma T S R Y. 2016. High prevalence of Enterocytozoon hepatopenaei in shrimps Penaeus monodon and Litopenaeus vannamei sampled from slow growth ponds in India[J]. Diseases of Aquatic Organisms,120(3):225-230. doi:10. 3354/dao03036.
Boyer F,Mercier C,Bonin A,Le Bras Y,Taberlet P,Coissac E. 2016. OBITOOLS:A unix-inspired software package for DNA metabarcoding[J]. Molecular Ecology Resour-ces,16(1):176-182. doi:10.1111/1755-0998.12428.
Caporaso J G,Lauber C L,Walters W A,Berg-Lyons D,Huntley J,F(xiàn)ierer N,Owens S M,Betley J,F(xiàn)raser L,Bauer M,Gormley N,Gilbert J A,Smith G,Knight R. 2012. Ultrahigh-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal,6:1621-1624. doi:10.1038/ismej.2012.8.
Coble A A,F(xiàn)linders C A,Homyack J A,Penaluna B E,Cronn R C,Weitemier K. 2019. eDNA as a tool for identifying freshwater speciesin sustainableforestry:A criticalreviewand potential futureapplications[J]. Science of the total Environment,649:1157-1170. doi:10.1016/j.scitotenv. 2018.08.370.
Deiner K,Bik H M,Machler E,Seymour M,Lacoursière-Roussel A,Altermatt F,Creer S,Bista I,Lodge D M,de Vere N,Pfrender M E,Bernatchez L. 2017. Environmental DNA metabarcoding:Transforming how we survey animal and plant communities[J]. Molecular Ecology,26(21):5872-5895. doi:10.1111/mec.14350.
Doi H,Inui R,Akamatsu Y,Kanno K,Yamanaka H,Takahara T,Minamoto T. 2017. Environmental DNA analysis for estimating the abundance and biomass of stream fish[J]. Freshwater Biology,62(1):30-39. doi:10.1111/fwb.12846.
Goldberg C S,Turner C R,Deiner K,Klymus K E,Thomsen P F,Murphy M A,Spear S F,McKee A,Oyler-McCance S J,Cornman R S,Laramin M B,Mahon A R,Lance R F,Pilliod D S,Strickler K M,Waits L P,F(xiàn)remier A K,Takahara T,Herder J E,Taberlet P. 2016. Critical considerations for the application of environmental DNA me-thods to detect aquatic species[J]. Methods in Ecology and Evolution,7(11):1299-1307. doi:10.1111/2041-210X. 12595.
Gomes G B,Hutson K S,Domingos J A,Chung C,Hayward S,Miller T L,Jerry D R. 2017. Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fsh farms[J]. Aquaculture,479:467-473. doi:10.1016/j.aquaculture.2017.06.021.
Hood Y,Sadler J,Poldy J,Starkey C S,Robinson A P. 2019. Biosecurity system reforms and the development of a risk-based surveillance and pathway analysis system for ornamental fish imported into Australia[J]. Preventive Veterinaty Medicine,167:159-168. doi:10.1016/j.prevetmed.2018.11.006.
Jaroenlak P,Boakye D W,Vanichviriyakit R,Williams B A P,Sritunyalucksana K,Itsathitphaisarn O. 2018. Identification,characterization and heparin binding capacity of a sporewall,virulence protein from the shrimp microspori-dian,Enterocytozoon hepatopenaei(EHP)[J]. Parasites and Vectors,11(1):177. doi:10.1186/s13071-018-2758-z.
Jaroenlak P,Sanguanrut P,Williams B A P,Stentifor G D,F(xiàn)legel T W,Sritunyalucksana K,Itsathitphaisrn O. 2016. A nested PCR assay to avoid false positive detection of the microsporidian Enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms[J]. PLoS One,11(11):e0166320. doi:10.1371/journal.pone.0166320.
Lymbery A J,Morine M,Kanani H G,Beatty S J,Morgan D L. 2014. Coinvaders:The effects of alien parasites on native hosts[J]. International Journal for Parasitology:Parasites and Wildlife,3(2):171-177. doi:10.1016/j.ijppaw. 2014.04.002.
Palenzuela O,Redondo M J,Cali A,Takvorian P M,Alonso-Naveiro M,Alvarez-Pellitero P,Sitjà-Bobadilla A. 2014. A new intra nuclear microsporidium,Enterospora nucleophila n. sp.,causing an emaciative syndrome in a piscine host(Sparus aurata),prompts the redescription of family Enterocytozoonidae[J]. International Journal of Pa-rasitology,44(3-4):189-203. doi:10.1016/j.ijpara.2013. 10.005.
Pochon X,Zaiko A,F(xiàn)letcher L M,Laroche O,Wood S A. 2017. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications[J]. PLoS One,12:e0187636. doi:10.1371/journal.pone.0187636.
Robson H L A,Noble T H,Sanders R J,Robson S K A,Burrows D W,Jerry D R. 2016. Fine-tuning for the tropics:Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems[J]. Molecular Eco-logy Resources,16(4):922-932. doi:10.1111/1755-0998. 12505.
Rusch J C,Hansen H,Strand D A,Markussen T,Hytter?d S,Vr?lstad T. 2018. Catching the fish with the worm:A case study on eDNA detection of the monogenean parasite Gyrodactylus salaris and two of its hosts,Atlantic salmon(Salmo salar) and rainbow trout(Oncorhynchus mykiss)[J]. Parasites and Vectors,11(1):333. doi:10.1186/ s13071-018-2916-3.
Tangprasittipap A,Srisala J,Chouwdee S,Somboon M,Chuchird N,Limsuwan C,Srisuvan T,F(xiàn)legel T W,Sritunyalucksana K. 2013. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus(Litopenaeus) vannamei[J]. BMC Veterinary Research,9(1):139. doi:10.1186/1746-6148-9-139.
Tisthammer K H,Cobian G M,Amend A S. 2016. Global biogeography of marine fungi is shaped by the environment[J]. Fungal Ecology,19:39-46. doi:10.1016/j.funeco. 2015.09.003.
Tomsen P,Willerslev E. 2015. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation,183:4-18. doi:10.1016/j.biocon.2014.11.019.
Tourtip S,Wongtripop S,Stentiford G D,Bateman K S,Sriurairatana S,Chavadej J,Sritunyalucksana K,Withyachumnarnkul B. 2009. Enterocytozoon hepatopenaei sp. nov. (Microsporida:Enterocytozoonidae),a parasite of the black tiger shrimp Penaeus monodon(Decapoda:Penaeidae):Fine structure and phylogenetic relationships[J]. Journal of Invertebrate Pathology,102(1):21-29. doi:10. 1016/j.jip.2009.06.004.
Trujillo-González A,Becker J A,Hutson K S. 2018. Chapter seven—Parasite dispersal in the goldfsh trade[J]. Advances in Parasitology,100:239-281. doi:10.1016/bs.apar.2018. 03.001.
Trujillo-González A,Becker J A,Vaughan D B,Hutson K S. 2019a. Correction to:Monogenean parasites infect ornamental fish imported to Australia[J]. Parasitology Research,118(1):383-384. doi:10.1007/s00436-018-6156-4.
Trujillo-González A,Edmunds R C,Becker J A,Hutson K S. 2019b. Parasite detection in the ornamental fsh trade using environmental DNA[J]. Scientific Reports,9:5173. doi:10.1038/s41598-41517-2.
Wang N,Yin W L,Zhang N,Yang J X,Jia P,F(xiàn)ang B H,Yue Z Q,Xie Y H,Li J Q,Zhao J L,Liu H. 2022. Establishment and clinical application of a detection method for the infectious hypodermal and hematopoietic necrosis virus in water[J]. Aquaculture,546:737228. doi:10.1016/j.aquaculture.2021.737228.
(責(zé)任編輯 蘭宗寶)