蘇偉龍 許志紅,2
高壓直流繼電器磁吹系統(tǒng)的建模與設(shè)計
蘇偉龍1許志紅1,2
(1. 福州大學(xué)電氣工程與自動化學(xué)院 福州 350108 2. 福建省新能源發(fā)電與電能變換重點(diǎn)實(shí)驗(yàn)室 福州 350108)
高壓直流(HVDC)繼電器觸頭系統(tǒng)結(jié)構(gòu)緊湊,難以利用柵片或產(chǎn)氣材料來提高觸頭的開斷性能。通過磁吹系統(tǒng)的外加磁場能夠加快電弧的運(yùn)動速度,提高滅弧能力。永磁體作為磁吹系統(tǒng)的關(guān)鍵部分,其外部磁感應(yīng)強(qiáng)度分布不均勻,且尺寸對磁場的大小和分布影響較大,這對磁吹系統(tǒng)的設(shè)計造成了一定的困擾。針對此問題,該文建立磁吹系統(tǒng)三維有限元模型,重點(diǎn)分析永磁體尺寸對其外部磁場的影響,并建立相關(guān)數(shù)學(xué)模型;分析永磁體外部磁場分布的特點(diǎn),得出外部磁場分布均勻度與永磁體尺寸的關(guān)系。最后,結(jié)合高壓直流繼電器的開斷電弧特性,考慮電弧的受力情況及電弧的停滯時間,對永磁體的尺寸、充磁方向及安裝位置進(jìn)行設(shè)計,為提升高壓直流繼電器觸頭開斷性能奠定了理論基礎(chǔ)。
高壓直流繼電器 磁吹系統(tǒng) 永磁體 直流電弧 三維仿真
高壓直流(High Voltage Direct Current, HVDC)繼電器是新能源產(chǎn)業(yè)中的重要控制元件,對新能源汽車、充電樁等運(yùn)行過程中的穩(wěn)定性起著重要作用。在研究高壓直流繼電器的進(jìn)程中,目前在理論方面不夠深入,雖然某些制造開關(guān)電器的廠家以仿制的形式得到了部分產(chǎn)品,但未將理論及技術(shù)融于產(chǎn)品開發(fā)中,造成國內(nèi)產(chǎn)品的性能和可靠性指標(biāo)與國外相比均有一定差距[1]。其中,滅弧系統(tǒng)的合理設(shè)計是提升繼電器產(chǎn)品性能的關(guān)鍵。
繼電器滅弧系統(tǒng)結(jié)構(gòu)緊湊,難以通過添加產(chǎn)氣材料和滅弧柵片來提高觸頭的分?jǐn)嗄芰2]。對于直流繼電器來說,開斷電弧不能像交流系統(tǒng)通過電弧自然過零熄滅,電弧熄滅困難,對觸頭燒蝕嚴(yán)重,大大降低產(chǎn)品的電壽命和可靠性,采用外加磁場進(jìn)行吹弧是目前提高觸頭分?jǐn)嗄芰Φ挠行Х椒ㄖ弧?/p>
外加磁場可使電弧快速運(yùn)動到觸頭邊緣,拉長電弧,減少電弧的燃弧時間[3]。文獻(xiàn)[4-9]在實(shí)驗(yàn)和仿真方面驗(yàn)證了外加磁場可以提高電弧的伏安特性,加快電弧熄滅速度,且外加磁場能夠降低電弧的停滯時間,減小觸頭的燒蝕。以上研究成果均假設(shè)磁場大小固定、均勻分布,而實(shí)際永磁體的外部磁感應(yīng)強(qiáng)度分布是不均勻的[10],磁場方向隨永磁體安裝位置的不同而變化,這又恰恰對電弧的運(yùn)動特性產(chǎn)生極大的影響。吹弧磁場的大小以及方向決定著電弧的運(yùn)動速度和運(yùn)動方向。磁場過小會使電弧停滯時間過長、觸頭燒蝕嚴(yán)重,大大降低開關(guān)的電壽命。磁場的方向決定了電弧的運(yùn)動軌跡,方向不當(dāng)會使電弧的運(yùn)動軌跡過長或運(yùn)動方向錯誤造成電弧燒蝕觸頭系統(tǒng)其他零部件。若對永磁體的尺寸和安裝位置進(jìn)行合理設(shè)計便能有效改善這些問題。
因此,本文以450V/200A高壓直流繼電器的磁吹系統(tǒng)為研究對象,建立永磁體三維有限元模型,分析其外部磁場分布特性,并探究永磁體尺寸對其相關(guān)特性的影響;建立永磁體尺寸對其外部磁場影響的相關(guān)數(shù)學(xué)模型,為研究磁吹系統(tǒng)提供一定的參考價值。
圖1為三種高壓直流繼電器磁吹系統(tǒng)的三維仿真結(jié)果,其中樣品1與樣品3永磁體的安裝位置和大小不同,樣品1只含一塊永磁體,樣品3包含兩塊永磁體。圖2為二者的俯視圖。在各自的電弧燃弧區(qū)域(見圖1中橢圓區(qū)域)計算、、3個方向磁感應(yīng)強(qiáng)度的平均值,見表1。通過對比分析可以看到,不同結(jié)構(gòu)的磁吹系統(tǒng)作用在開斷電弧燃弧區(qū)域的磁感應(yīng)強(qiáng)度大小及分布明顯不同,且在電弧燃弧區(qū)域中吹弧磁場分布在三維空間的各個方向。為此有必要對永磁體外部磁場分布的特征及影響其特性的關(guān)鍵因素進(jìn)行深入分析,探究其合理參數(shù)的設(shè)計。
圖1 三種磁吹系統(tǒng)仿真
圖2 樣品1與樣品3的俯視圖
表1 磁吹系統(tǒng)磁感應(yīng)強(qiáng)度的分布及大小
Tab.1 Magnetic induction intensity distribution and size of the magnetic blowing system
文獻(xiàn)[11-12]從分子環(huán)流模型的角度,搭建永磁體外部磁場分布的數(shù)學(xué)模型,并分析永磁體的尺寸對橫向磁場(平行于充磁方向的磁場)分布的影響。文獻(xiàn)[13]基于磁力線劃分的方法,建立條形永磁體分布參數(shù)模型,與有限元相比大大降低了計算時間。以上研究未分析開路情況下永磁體產(chǎn)生的磁通量達(dá)到飽和時的情況及永磁體漏磁問題。
永磁體磁力線分布如圖3所示。定義平行于永磁體充磁方向的邊為永磁體的高;垂直于充磁方向的面為底面;永磁體底面的短邊為,長邊為(圖中未示出);永磁體的磁力線設(shè)兩個底面進(jìn)出的磁通為主磁通,側(cè)面進(jìn)出的磁通為漏磁通。本文采用Maxwell三維有限元仿真軟件,考慮了漏磁的影響,更全面地對永磁體外部磁場的分布進(jìn)行分析。
圖3 永磁體磁力線分布
剩磁r和內(nèi)稟矯頑力cj是永磁材料的關(guān)鍵參數(shù)[14],本文采用釹鐵硼稀土永磁材料,其剩磁r= 1.35T,內(nèi)稟矯頑力cj=1 019kA/m。圖4a為永磁體的退磁曲線,m、m為永磁體工作時對應(yīng)的剩磁與內(nèi)稟矯頑力,將其橫坐標(biāo)和縱坐標(biāo)分別乘以永磁體磁化方向的長度和垂直于磁化方向的截面積,便可得到磁通量r與磁動勢c的關(guān)系,mm為永磁體工作時對應(yīng)的磁通量與磁動勢,便可得到磁通與磁動勢的關(guān)系,如圖4b所示。
圖4 永磁材料特性曲線
圖5為永磁體三維仿真模型,底面為5.5mm× 14mm的長方形,高為5.5mm。對永磁體底面和中心部位進(jìn)行磁通量計算,底面磁通量為4.92× 10-6Wb,中心位置的磁通量為7.12×10-6Wb,二者顯示永磁體表面的磁通量明顯比中心部位的磁通量少,為此不可忽略漏磁產(chǎn)生的影響。為探究永磁體高度對漏磁的影響,對永磁體高度進(jìn)行單變量特征分析。圖6為不同永磁體高度情況下底面磁通量和中心部位磁通量的對比。由圖中可以看出,隨著永磁體高度的增加,漏磁現(xiàn)象越發(fā)明顯,而且磁通量呈現(xiàn)飽和趨勢。因此,需要對永磁體的高度進(jìn)行合理設(shè)計。
圖5 永磁體三維仿真模型
圖6 不同永磁體高度仿真對比
為驗(yàn)證仿真模型,本文采用高斯計對永磁體表面的磁感應(yīng)強(qiáng)度進(jìn)行測量,如圖7所示。探針的測量部位為一個長3mm、寬2mm的長方形,因此仿真模型磁感應(yīng)強(qiáng)度的計算區(qū)域也采用該形狀。對兩種型號的永磁體的磁感應(yīng)強(qiáng)度進(jìn)行測量,其測量點(diǎn)如圖8所示。仿真計算結(jié)果與測量結(jié)果的對比見 表2,其相對誤差基本在5%以內(nèi),驗(yàn)證了仿真模型的可行性。
圖7 高斯計
圖8 磁通密度測量點(diǎn)
表2 仿真結(jié)果與實(shí)測值對比
Tab.2 Comparison of simulation results with measured values
1.1節(jié)的仿真結(jié)果表明,永磁體在開路情況下產(chǎn)生的磁通量隨著永磁體的高度增加而趨向飽和。永磁體底面的尺寸同樣影響著其特性,為此本節(jié)主要分析永磁體高度和底面尺寸在開路下對其產(chǎn)生的磁通量的影響,并建立相關(guān)數(shù)學(xué)模型。
圖9為永磁體在開路情況下的等效磁路,將永磁體等效成個磁源串聯(lián)。永磁體在開路下自身磁阻遠(yuǎn)小于空氣磁阻,可忽略不計。假設(shè)永磁體的平均磁場強(qiáng)度為c,可建立磁路表達(dá)式為
式中,l(=1, 2,…,)為每個磁源的長度;為各支路的磁通量;為永磁體高度;airi為空氣磁阻;為通過永磁體中心的磁通量。
由等效磁路和式(1)可知,隨著永磁體高度的增大,磁通量所經(jīng)過的磁阻airn增大,c2n所提供的磁通量逐漸減小,即表面磁通量逐漸趨向飽和,且漏磁通量也逐漸趨向飽和。因此,隨著永磁體高度的增大,永磁體中心磁通量趨于飽和,此時若繼續(xù)增大永磁體高度將不僅不能加大吹弧磁場,還造成材料浪費(fèi)。
圖9 永磁體等效磁路
由式(1)推導(dǎo)出永磁體中心磁通量的表達(dá)式為
由式(2)的最后一項(xiàng)可知,通過永磁體底面的磁通量可以等效為
式中,為空氣等效磁阻,是關(guān)于的函數(shù),僅需找出()即可獲取永磁體底面磁通量與永磁體高度的關(guān)系。
為探究()的關(guān)系表達(dá)式,對不同型號的永磁體進(jìn)行高度變化的單變量特征分析,永磁體底面的尺寸見表3,并對底面磁通量進(jìn)行計算,作為驗(yàn)證模型的對比數(shù)據(jù)。
定義()為階函數(shù),其表達(dá)式為
取相同型號高度分別為1、2的兩個永磁體代入式(3),將二者相除得
表3 不同型號的永磁體底面尺寸
Tab.3 Bottom dimensions of different types of permanent magnets (單位: mm)
式中,1、2分別為高度1、2的永磁體的底面磁通量;1、2為對應(yīng)空氣等效磁阻。
將式(4)代入式(5)得
由于1/2趨于1,因此可令0=1,其他項(xiàng)隨著的增大可忽略不計,本文只保留0、1,即
對不同型號的永磁體的1進(jìn)行計算,結(jié)果見表4。
Tab.4 Comparison of a1 of simulation fit and calculated by formula
圖10為不同型號永磁體高度的單變量特性分析的仿真結(jié)果與通過式(8)計算出的結(jié)果對比(1由仿真數(shù)據(jù)所得)。由圖中可以看出,二者重合度較高,說明式(8)能夠較好地描述永磁體高度與其底面磁通量的關(guān)系。
圖10 不同型號永磁體高度的單變量特性分析
不同型號的永磁體對應(yīng)的1不同。為進(jìn)一步探究1與永磁體底面邊長的關(guān)系,通過對不同型號永磁體的1進(jìn)行分析,發(fā)現(xiàn)隨著永磁體底面邊長、的增大,1也跟著增大,但其所占比重不同。通過對比表4中各型號永磁體隨邊長增大,1的變化趨勢可發(fā)現(xiàn),短邊的增量對1的增量影響比長邊大,為此定義1與長和寬的關(guān)系式為
式中,、為常數(shù)。
將式(9)代入式(8)可得任意型號的永磁體在任意兩個高度下對應(yīng)的永磁底面磁通量關(guān)系為
通過式(10),可對任意型號永磁體的底面磁通量進(jìn)行分析計算,設(shè)計出合理的永磁體高度,提高永磁體的利用率,避免浪費(fèi)材料。
第2節(jié)分析了永磁體尺寸對其底面磁通量的影響,并建立相關(guān)數(shù)學(xué)模型,但無法確定永磁體在磁吹系統(tǒng)中的安裝位置。本節(jié)對永磁體外部磁感應(yīng)強(qiáng)度分布特征進(jìn)行探究,提出永磁體外部磁感應(yīng)強(qiáng)度分布的四個階段,為合理設(shè)計永磁體的安裝位置提供理論依據(jù)。
以永磁體底面的中心為原點(diǎn),建立磁感應(yīng)強(qiáng)度三維直角坐標(biāo)系如圖11所示,并對底面積范圍內(nèi)的磁感應(yīng)強(qiáng)度進(jìn)行計算。圖12為距永磁體底面不同高度的情況下,永磁體外部磁感應(yīng)強(qiáng)度B的分布。永磁體磁場經(jīng)過底面后向四周擴(kuò)散,在較小時,永磁體邊緣除了自身產(chǎn)生的磁場外,還有其相鄰區(qū)域擴(kuò)散來的磁場與其進(jìn)行疊加。隨著的增大,邊緣產(chǎn)生的磁場也要向外擴(kuò)散,中心部位產(chǎn)生的磁場到達(dá)邊緣的過程中磁場方向逐漸由方向變成或方向,最后轉(zhuǎn)變成的反方向。為此,永磁體外部磁感應(yīng)強(qiáng)度的分布特點(diǎn)可以分為四個階段:第一階段,當(dāng)較小時,永磁體周邊的磁感應(yīng)強(qiáng)度大于中心部位的磁感應(yīng)強(qiáng)度(見圖12a);第二階段,永磁體外部磁感應(yīng)強(qiáng)度分布較為均勻(見圖12b);第三階段,中間磁感應(yīng)強(qiáng)度大于周邊磁感應(yīng)強(qiáng)度(見圖12c);第四階段,中間磁感應(yīng)強(qiáng)度繼續(xù)減小,永磁體外部磁感應(yīng)強(qiáng)度再次趨向均勻分布(見圖12d)。該分布趨勢與文獻(xiàn)[11]一致。
圖11 永磁體外部磁感應(yīng)強(qiáng)度分布三維坐標(biāo)系
永磁體磁感應(yīng)強(qiáng)度分布呈對稱性,為便于對比分析,取軸上的磁感應(yīng)強(qiáng)度分布進(jìn)行探究。圖13為永磁體軸上的外部磁感應(yīng)強(qiáng)度B分布,由曲線可直觀地看到永磁體外部磁感應(yīng)強(qiáng)度隨變化的四個階段。永磁體邊緣小于2mm的區(qū)域磁感應(yīng)強(qiáng)度B迅速減小,為保證開斷電弧能夠更好地受到吹弧力,應(yīng)避免該區(qū)域作為吹弧磁場的工作區(qū)域。圖14為外部磁感應(yīng)強(qiáng)度B的分布。由圖中可以得出,距離永磁體中心越近,磁感應(yīng)強(qiáng)度B越小。但只在永磁體中心部位附近才能忽略B方向的磁場,若欲使用永磁體底面區(qū)域內(nèi)對電弧進(jìn)行磁吹,需要考慮電弧多方向的受力情況。而如果使用永磁體邊緣外的磁場作為吹弧磁場,由于該處B相對于B較小,可忽略,即可實(shí)現(xiàn)單方向吹弧。
圖12 永磁體外部磁感應(yīng)強(qiáng)度三維分布
圖13 y軸上永磁體的外部磁感應(yīng)強(qiáng)度分布
圖14 x軸上永磁體Bx磁感應(yīng)強(qiáng)度分布
為研究永磁體尺寸對其外部磁感應(yīng)強(qiáng)度分布的影響,對相同底面(=30mm,=16mm)不同高度的永磁體的外部磁感應(yīng)強(qiáng)度進(jìn)行對比。定義=S0/為永磁體磁感應(yīng)強(qiáng)度分布均勻度。其中,0為與原點(diǎn)磁感應(yīng)強(qiáng)度誤差在5%以內(nèi)的區(qū)域面積,為永磁體底面積。圖15為不同永磁體高度下隨著值變化的對比。隨著的增大,永磁體的磁感應(yīng)強(qiáng)度的均勻度先增大后下降。隨著永磁體高度的增加,均勻度的最大值出現(xiàn)位置越早,如高度大于10mm的永磁體,最大均勻度在<1mm的時候就已出現(xiàn),且隨著永磁體的高度增加,均勻度隨的改變其變化速率越快。就高度為6mm的永磁體而言,若永磁體外部磁場的作用區(qū)域在<4mm時,由于工藝誤差將造成產(chǎn)品一致性差的問題。通過對永磁體外部磁感應(yīng)強(qiáng)度分布均勻度的分析,可以確定永磁體的合理安裝位置,保證外部磁場分布的一致性。
圖15 永磁體外部磁場分布均勻度對比
根據(jù)3.1節(jié)的分析,在永磁體邊緣2mm處磁感應(yīng)強(qiáng)度變化趨勢較大,不適合作為磁吹系統(tǒng)的工作區(qū)域,因此設(shè)計的永磁體邊緣應(yīng)超出電弧燃弧區(qū)域的邊緣2mm。為留一定的裕量,設(shè)計的永磁體邊緣大于電弧燃弧區(qū)域的邊緣3mm,且永磁體中心與燃弧區(qū)域的中心在同一水平面上。
所設(shè)計的永磁體底面邊長=17mm,=7mm,通過式(9)確定了1=1.57mm。并通過式(10)可知,當(dāng)永磁體高度大于5mm后,其外部磁通隨高度的增加增量小于5%,外部磁通量基本達(dá)到飽和。因此,所設(shè)計的永磁體高度=5mm。對該型號的永磁體進(jìn)行三維仿真,分析其外部磁感應(yīng)強(qiáng)度分布的特點(diǎn),其外部磁感應(yīng)強(qiáng)度分布均勻度隨變化的對比如圖16所示。當(dāng)>5mm以后,磁感應(yīng)強(qiáng)度分布均勻度的變化趨勢較小,為同時保證永磁體能夠提供較大的磁場且有較高的分布均勻度,永磁體距離應(yīng)設(shè)計在5mm左右。
圖16 永磁體外部磁感應(yīng)強(qiáng)度分布均勻度
目前,主要通過實(shí)驗(yàn)和仿真兩種手段對開斷直流電弧進(jìn)行特性分析[15-19]。由于實(shí)驗(yàn)條件和測試手段受到限制,眾多電弧內(nèi)部復(fù)雜的物理現(xiàn)象無法通過實(shí)驗(yàn)得到,對電弧的深入研究也將受到阻礙,而通過仿真手段建立電弧多物理場耦合模型,能夠更直觀地對電弧燃燒過程的相關(guān)特性進(jìn)行分析,是深入認(rèn)識電弧機(jī)理的有效方法。本文基于磁流體動力學(xué)理論建立開斷電弧三維模型,探究外加磁場對電弧運(yùn)動行為的影響,為合理設(shè)計磁吹系統(tǒng)提供理論依據(jù)。
以流體動力學(xué)控制方程與電磁場方程耦合為基礎(chǔ)建立電弧三維模型。流體力學(xué)控制方程遵循質(zhì)量守恒定律、牛頓第二定律和能量守恒定律[20]。電弧仿真基于以下假定條件:
(1)電弧等離子體處于局部熱力學(xué)平衡狀態(tài),且為牛頓層流狀態(tài)[21]。
(2)鞘層對熱場和速度場影響較小,忽略電極鞘層區(qū)影響[22]。
(3)不考慮電極及器壁產(chǎn)氣、弧柱感應(yīng)電流、重力等問題。
本文研究的繼電器觸頭系統(tǒng)為雙斷口,為減小仿真計算量,提升仿真速度,只建立單個斷口的簡化對稱模型。圖17為樣機(jī)一半滅弧室簡化模型。為減少網(wǎng)格數(shù),實(shí)際建模縮小計算區(qū)域,重點(diǎn)分析觸頭間燃弧區(qū)域電弧的運(yùn)動行為特征。
圖17 滅弧室簡化模型
圖18為直流200A的穩(wěn)態(tài)電弧仿真結(jié)果,靠近電極處電流密度大,焦耳熱高,陰陽兩極有明顯的高溫區(qū)域。由于電磁感應(yīng)現(xiàn)象,電弧在燃燒過程中產(chǎn)生自感環(huán)形磁場,帶電粒子在磁場中受洛倫茲力作用向電弧中心運(yùn)動。在陰極處電流密度大,產(chǎn)生的磁場大,帶電粒子向電弧中心收縮更明顯,溫度更高,電弧整體呈“鐘狀”。
圖18 穩(wěn)態(tài)電弧溫度分布
吹弧磁場為53mT恒定磁場條件下的直流電弧動態(tài)仿真結(jié)果如圖19a所示。電流是在20A/200V、純阻性負(fù)載情況下繼電器觸頭開斷過程中的實(shí)測時間-電流數(shù)據(jù)。在外加磁場作用下電弧向觸頭邊緣移動。由于熱慣性的原因,電弧經(jīng)過的區(qū)域散熱慢,即使電弧運(yùn)動到觸頭邊緣,觸頭間依舊存在高溫區(qū)。圖19b為20A開斷電弧在磁吹作用下的實(shí)驗(yàn)結(jié)果。利用高速攝像機(jī)拍攝觸頭通20A電流時的開斷電弧現(xiàn)象。高速攝像機(jī)幀數(shù)為77 000幀,電弧從起弧到熄弧所用時間為0.74ms。仿真中電弧熄滅時間也為0.74ms左右,且仿真電弧模型在整個運(yùn)動過程中的形態(tài)變化與實(shí)驗(yàn)基本一致,驗(yàn)證了電弧模型的準(zhǔn)確性。
文獻(xiàn)[23]研究了永磁體放置位置對電弧電動力的影響。外加磁場的方向決定了電弧的運(yùn)動方向。本文對永磁體的安裝位置和充磁方向進(jìn)行設(shè)計,比較其對電弧運(yùn)動行為的影響,并分析各自的優(yōu)勢。
圖19 仿真結(jié)果與實(shí)驗(yàn)結(jié)果對比
如圖20a所示,將永磁體置于動觸片下方,永磁體的充磁方向?yàn)榉较颉S捎谠陔娀∪蓟^(qū)域方向的磁場較小,可忽略不計,因此電弧僅在方向運(yùn)動,如圖20b所示。此時,處于觸頭中心的電弧運(yùn)動到觸頭邊緣的距離為5.5mm,并且采用此吹弧方式可以實(shí)現(xiàn)觸頭無極性連接方式,電源正極接在任意一個觸頭,兩端的電弧僅在方向上運(yùn)動,避免了電弧向滅弧室中心運(yùn)動,燒蝕其他零部件。
圖20 吹弧方式1
而如果采用圖21的吹弧方式2,永磁體依舊放置在動觸片下方,充磁方向改為方向,此時電弧燃弧區(qū)域中方向的磁場可忽略不計,電弧只受到方向的吹弧力,此時觸頭中心產(chǎn)生的電弧運(yùn)動到動觸頭邊緣僅為3mm,電弧可以更快離開觸頭中心,運(yùn)動到觸頭邊緣被拉長。但該吹弧方式必須考慮觸頭的極性問題,防止開斷電弧向連桿運(yùn)動,燒蝕其他零部件。
圖21 吹弧方式2
以上兩種磁吹方式都可以實(shí)現(xiàn)單方向吹弧,而當(dāng)永磁體安裝位置如圖22a所示,就需要考慮電弧多方向受力情況。圖中點(diǎn)畫線框內(nèi)為永磁體,放置在觸頭后方,此時在電弧燃弧區(qū)域中同時存在,方向的磁場。雖然永磁體外部磁感應(yīng)強(qiáng)度分布呈對稱性,在電弧燃弧區(qū)域中存在大小相等方向相反的方向的磁場。但由于電弧起弧位置的隨機(jī)性,即使永磁體放置在電弧運(yùn)動區(qū)域中心處也無法抵消方向的吹弧力。圖22b左圖為電弧受到,-方向的磁吹力的仿真結(jié)果,該圖為靜觸頭的俯視圖,即紙面往外為靜觸頭,往里為動觸片。由圖中可以看到,電弧運(yùn)動方向?yàn)榉较蚝?方向的和運(yùn)動方向,如圖22b右圖所示。
圖22 吹弧方式3
開斷電弧生成后受到外加磁場的作用向觸頭邊緣運(yùn)動所需的時間稱為“電弧停滯時間”[9]。電弧停滯時間越長,對觸頭的燒蝕越嚴(yán)重。本文探究了外加磁感應(yīng)強(qiáng)度對電弧停滯時間的影響,并進(jìn)一步對磁吹系統(tǒng)進(jìn)行改進(jìn)。
當(dāng)電弧在動靜觸頭間運(yùn)動時,由于觸頭開距較小,電弧彎曲和拉長不明顯,電弧電壓變化不明顯。當(dāng)電弧運(yùn)動到觸頭邊緣后,電弧快速彎曲、拉長,電弧電壓上升速度變快,因此可通過電弧電壓上升率的轉(zhuǎn)折點(diǎn)判斷電弧的停滯時間。
如圖23所示為相同外加磁感應(yīng)強(qiáng)度,開斷電流等級分別為55A和85A條件下的開斷電弧運(yùn)動行為對比。隨著開斷電流等級的提高,電弧受到的安培力越大,電弧運(yùn)動速度越快,停滯時間縮短。當(dāng)電弧運(yùn)動到觸頭邊緣后,由于電流等級越大的電弧弧柱半徑越大,電弧越不容易變形,電弧電壓上升速度慢,電弧越難熄滅,根據(jù)實(shí)驗(yàn)現(xiàn)象,85A的開斷電弧比55A的早0.05ms運(yùn)動到觸頭邊緣,而將電弧吹出邊緣又比55A晚0.08ms,為此有必要增大吹弧磁感應(yīng)強(qiáng)度。
圖24為在不同外加磁感應(yīng)強(qiáng)度下,電弧電壓與電弧電流對比。圖中顯示,隨著外加磁感應(yīng)強(qiáng)度的增大,電弧停滯時間變短,電弧更快地運(yùn)動到觸頭邊緣。當(dāng)電弧運(yùn)動到觸頭邊緣后,外加磁感應(yīng)強(qiáng)度越大,電弧拉伸速度更快,彎曲幅度更大,電弧電壓上升速度越快,電流下降速度越快,電弧燃弧時間越短,電弧電壓趨勢與文獻(xiàn)[19]一致。因此,增大外加磁感應(yīng)強(qiáng)度有利于縮短電弧的燃弧時間。
圖23 不同電流等級的電弧運(yùn)動形態(tài)
圖24 不同外加磁感應(yīng)強(qiáng)度下電弧電壓電流對比
雖然通過增大外加磁感應(yīng)強(qiáng)度能夠減小電弧的燃弧時間,但是由于滅弧室空間狹小,加上永磁體磁通量飽和的原因限制了外加磁感應(yīng)強(qiáng)度的最大值。因此本文對磁吹系統(tǒng)進(jìn)行了進(jìn)一步設(shè)計。
吹弧方式4如圖25所示,在動觸片下方和后方同時安裝永磁體,將兩塊永磁體的磁場進(jìn)行疊加即可大大提高吹弧磁感應(yīng)強(qiáng)度。表5對比了吹弧方式1和吹弧方式4中B、B、B3個方向的磁感應(yīng)強(qiáng)度大小,發(fā)現(xiàn)吹弧方式4依舊能夠?qū)崿F(xiàn)單方向吹弧,并且B方向的磁感應(yīng)強(qiáng)度由原先的54.5mT提高到106.1mT。
圖25 吹弧方式4
表5 磁感應(yīng)強(qiáng)度對比
Tab.5 Comparison of magnetic field strength
1)建立永磁體尺寸對底面磁通量影響的數(shù)學(xué)模型,該模型可確定任意底面的永磁體其外部磁通量達(dá)到飽和時永磁體的高度,提高永磁體的利用率。
2)探究永磁體外部磁感應(yīng)強(qiáng)度分布的特征,得出永磁體外部磁感應(yīng)強(qiáng)度分布隨著與永磁體底面距離的增大可分為四個階段:第一階段,永磁體周邊的磁感應(yīng)強(qiáng)度大于中心部位的磁感應(yīng)強(qiáng)度;第二階段,永磁體磁感應(yīng)強(qiáng)度分布較為均勻;第三階段,中間磁感應(yīng)強(qiáng)度大于周邊磁感應(yīng)強(qiáng)度;第四階段,中心磁感應(yīng)強(qiáng)度繼續(xù)減小,永磁體外部磁感應(yīng)強(qiáng)度再次趨向均勻分布。
3)分析永磁體尺寸對外部磁感應(yīng)強(qiáng)度分布的影響,得出隨著永磁體高度的增加,均勻度的最大值出現(xiàn)位置越早,且隨著永磁體的高度增加,均勻度隨改變的變化速率越快。
4)建立開斷電弧三維模型,分析了外加磁場的磁吹方向?qū)﹄娀∵\(yùn)動的影響,得出通過改變永磁體的安裝位置和充磁方向可以實(shí)現(xiàn)單方向吹弧,從而實(shí)現(xiàn)觸頭無極性連接方式。分析了吹弧磁感應(yīng)強(qiáng)度的增大可以加快電弧熄滅,并提出一種能夠提高吹弧磁感應(yīng)強(qiáng)度的方法。
[1] 翟國富, 崔行磊, 楊文英. 電磁繼電器產(chǎn)品及研究技術(shù)發(fā)展綜述[J]. 電器與能效管理技術(shù), 2016(2): 1-8.
Zhai Guofu, Cui Xinglei, Yang Wenying. Overview for development of research and technologies of elec- tromagnetic relays[J]. Electrical & Energy Management Technology, 2016(2): 1-8.
[2] 翟國富, 薄凱, 周學(xué), 等. 直流大功率繼電器電弧研究綜述[J]. 電工技術(shù)學(xué)報, 2017, 32(22): 251- 263.
Zhai Guofu, Bo Kai, Zhou Xue, et al. Investigation on breaking arc in DC high-power relays: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 251-263.
[3] 翟國富, 周學(xué), 楊文英. 縱向與橫向磁場作用下分?jǐn)嘀绷鞲行载?fù)載時的電弧特性實(shí)驗(yàn)[J]. 電工技術(shù)學(xué)報, 2011, 26(1): 68-74.
Zhai Guofu, Zhou Xue, Yang Wenying. Experiment on DC inductive arcs driven by axial and transverse magnetic fields[J]. Transactions of China Electro- technical Society, 2011, 26(1): 68-74.
[4] 崔彥青. 橫向磁場下直流真空斷路器中電弧特性及其仿真研究[D]. 天津: 河北工業(yè)大學(xué), 2017.
[5] Lindmayer M. Simulation of switching arcs under transverse magnetic fields for DC interruption[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 187-194.
[6] Rau S, Lee W. DC arc model based on 3-D DC arc simulation[J]. IEEE Transactions on Industry Appli- cations, 2016, 52(6): 5255-5261.
[7] Miyagawa H, Sekikawa J. Effect of magnetic blow- out and air flow on break arcs occurring between silver electrical contacts with copper runners[J]. The Institute of Electronics, Information and Communi- cation Engineers, 2017, E100.C(9): 709-715.
[8] Bo Kai, Zhou Xue, Zhai Guofu, et al. Simulation on dwell stage of arcs in bridge type contacts for high- voltage DC relay[C]//2016 IEEE 62nd Holm Con- ference on Electrical Contacts (Holm), Clearwater Beach, FL, 2016: 163-166.
[9] Bo Kai, Zhou Xue, Zhai Guofu. Investigation on arc dwell and restriking characteristics in DC high-power relay[J]. IEEE Transactions on Plasma Science, 2017, 45(6): 1032-1042.
[10] 何永周. 永磁體外部磁場的不均勻性研究[J]. 物理學(xué)報, 2013, 62(8): 145-151.
He Yongzhou. Study on the non-uniformity of the external magnetic field of permanent magnets[J]. Acta Physica Sinica, 2013, 62(8): 145-151.
[11] 劉宏娟. 矩形永磁體三維磁場空間分布研究[D]. 北京: 北京工業(yè)大學(xué), 2006.
[12] 茍曉凡, 楊勇, 鄭曉靜. 矩形永磁體磁場分布的解析表達(dá)式[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2004, 25(3): 271- 278.
Gou Xiaofan, Yang Yong, Zheng Xiaojing. Analytical expression of magnetic field distribution of rectangular permanent magnet[J]. Applied Mathematics and Mechanics, 2004, 25(3): 271-278.
[13] 梁慧敏, 由佳欣, 羅福彪, 等. 基于磁力線劃分的開路條形非線性永磁體分布參數(shù)模型[J]. 中國電機(jī)工程學(xué)報, 2014, 34(9): 1429-1435.
Liang Huimin, You Jiaxin, Luo Fubiao, et al. A distributed parameter model of open circuit nonlinear permanent magnet bars based on magnetic field lines[J]. Proceedings of the CSEE, 2014, 34(9): 1429-1435.
[14] 胡伯平. 稀土永磁材料的現(xiàn)狀與發(fā)展趨勢[J]. 磁性材料及器件, 2014, 45(2): 66-77, 80.
Hu Boping. The status quo and development trend of rare earth permanent magnet materials[J]. Journal of Magnetic Materials and Devices, 2014, 45(2): 66-77, 80.
[15] 伍玉鑫, 王陽明, 楊澤鋒, 等. 電弧作用下浸銅碳材料燒蝕過程的數(shù)值模擬[J]. 電工技術(shù)學(xué)報, 2019, 34(6): 1119-1126.
Wu Yuxin, Wang Yangming, Yang Zefeng, et al. Numerical simulation of ablation process of copper- impregnated carbon material under arc action[J]. Transactions of the China Electrotechnical Society, 2019, 34(6): 1119-1126.
[16] 付思, 曹云東, 李靜, 等. 觸頭分離瞬間真空金屬蒸氣電弧形成過程的仿真[J]. 電工技術(shù)學(xué)報, 2020, 35(13): 2922-2931.
Fu Si, Cao Yundong, Li Jing, et al. Simulation researches on vacuum metal vapor arc formation at the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931.
[17] 蔣原, 李擎, 崔家瑞, 等. 縱向磁場下中頻真空電弧的重燃現(xiàn)象分析[J]. 電工技術(shù)學(xué)報, 2020, 35(18): 3860-3868.
Jiang Yuan, Li Qing, Cui Jiarui, et al. Reignition of intermediate frequency vacuum arc at axial magnetic field[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3860-3868.
[18] 熊德智, 陳向群, 楊杰, 等. 微型斷路器弧失效分析及性能優(yōu)化設(shè)計[J]. 電工技術(shù)學(xué)報, 2019, 34(11): 2333-2341.
Xiong Dezhi, Chen Xiangqun, Yang Jie, et al. Arc extinguishing failure analysis and performance optimization design of miniature circuit breaker[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2333-2341.
[19] 鐘昱銘, 熊蘭, 楊子康, 等. 計及銅蒸氣介質(zhì)的小電流直流電弧仿真與實(shí)驗(yàn)[J]. 電工技術(shù)學(xué)報, 2020, 35(13): 2913-2921.
Zhong Yuming, Xiong Lan, Yang Zikang, et al. Numerical simulation and experiment of small current DC arc considering copper vapor medium[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2913-2921.
[20] 王福軍. 計算流體動力學(xué)分析CFD軟件原理與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004.
[21] Swierczynski B, Gonzalea J J, Teulet P, et al. Advances in low voltage circuit breaker modeling[J]. Journal of Physics D: Applied Physics, 2004, 37(4): 595-609.
[22] 曹啟純, 劉向軍. 高壓直流繼電器電弧運(yùn)動仿真分析與實(shí)驗(yàn)研究[J]. 電工技術(shù)學(xué)報, 2019, 34(22): 4699-4707.
Cao Qichun, Liu Xiangjun. Simulation analysis and experimental study on arc motion of high-voltage DC relays[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4699-4707.
[23] 劉佳. 探究永磁體磁性與放置點(diǎn)對電弧電動力的影響[J]. 電器與能效管理技術(shù), 2018(16): 18-20, 31.
Liu Jia. Investigating the influence of magnetism and laying position of permanent magnet on arc’s elec- trodynamic force[J]. Electrical & Energy Manage- ment Technology, 2018(16): 18-20, 31.
福建省2018科技創(chuàng)新領(lǐng)軍人才資助項(xiàng)目。
Modeling and Design of Magnetic Blowing System for High Voltage Direct Current Relay
11,2
(1. School of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China 2. Fujian Key Laboratory of New Energy Generation and Power Conversion Fuzhou 350108 China)
Due to the compact structure of the HVDC relay contact system, it is difficult to use grids or gas producing materials to improve the breaking performance of the contacts. The arc movement speed can be accelerated by the external magnetic field of the magnetic blowing system, which improves the arc extinguishing ability. As a key part of the magnetic blowing system, the permanent magnet has an uneven distribution of external magnetic induction, and its size has a great influence on the size and distribution of the magnetic field, which causes certain difficulties for the design of the magnetic blowing system. In response to this problem, this paper established a 3D finite element model of the magnetic blowing system, focusing on the analysis of the impact of the permanent magnet size on its external magnetic field, and established a relevant mathematical model. It also analyzed the characteristics of the external magnetic field distribution of the permanent magnet, and obtained the relationship between the uniformity of the external magnetic field distribution and the size of the permanent magnet. Finally, combined with the characteristics of the HVDC relay's breaking arc, this paper designed the size, magnetization direction and installation position of the permanent magnet in the magnetic blowing system by considering the force and stagnation time of the arc. It lays a theoretical foundation for improving the contact breaking performance of HVDC relays.
High voltage direct current (HVCD) relay, magnetic blowing system, permanent magnet, DC arc, 3D simulation
10.19595/j.cnki.1000-6753.tces.201092
TM581
蘇偉龍 男,1994年生,碩士,研究方向?yàn)殡娖骷捌渲悄芑夹g(shù)。E-mail: 576737933@qq.com
許志紅 女,1963年生,教授,博士生導(dǎo)師,研究方向?yàn)殡娖骷捌渲悄芑夹g(shù)。E-mail: 641936593@qq.com(通信作者)
2020-08-30
2020-10-30
(編輯 崔文靜)