亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        具Michaelis-Menten型收獲項的雙時滯捕食-食餌系統(tǒng)Hopf分支 *

        2022-03-12 09:14:48呂堂紅周林華
        中北大學學報(自然科學版) 2022年1期
        關(guān)鍵詞:特征方程食餌平衡點

        王 菲,呂堂紅,周林華

        (長春理工大學 數(shù)學與統(tǒng)計學院,吉林 長春130022)

        0 引 言

        在生物學中, 捕食-食餌系統(tǒng)是一類十分重要的描述種群間競爭關(guān)系的系統(tǒng). 多數(shù)學者針對捕食-食餌系統(tǒng)的動力學性質(zhì)包括穩(wěn)定性、吸引性等進行了豐富的研究, 并且成果斐然[1-4]. 食餌種群除了被捕食者捕食之外, 捕食-食餌種群的雙方還會被人類所收獲. 文獻[5]分析了一類收獲率為常數(shù)的系統(tǒng), 對平衡點的穩(wěn)定性準則進行研究. 文獻[6]主要分析了具有收獲項的修正 Leslie-Gower 的捕食-食餌模型的鞍結(jié)點分支、跨臨界分支、Hopf分支等的穩(wěn)定性, 以及捕食者捕獲和生長速率對所提出的模型的影響, 確定了保證物種共存的可行的收獲率上限. 文獻[7-8]研究了具有非線性的Michaelis-Menten型收獲項的模型, 考慮到人為的捕獲具有一定的限度, 此類收獲項更貼合實際.

        文獻[9]分析了以下形式的捕食-食餌模型:

        (1)

        式中:x,y分別代表時間為t時, 種群x和種群y的種群密度;a,b代表存在于種群雙方內(nèi)部的密度制約;c,e的符號代表種群間的關(guān)系;q代表人類對兩種群的收獲;E代表應(yīng)用到食餌的收獲效用, 當E增大到較大的數(shù)值時,h1與人類得到的收獲呈負相關(guān), 當食餌量減小到較小的數(shù)值時,h2與人類的收獲能力呈正相關(guān).

        文獻[9]闡述了系統(tǒng)正平衡點幾個性質(zhì), 進而探討了正平衡點附近產(chǎn)生的一個Hopf分支的存在性. 眾多學者在對捕食-食餌系統(tǒng)進行研究探討時發(fā)現(xiàn), 實際上, 不同群體之間的互動是延遲的, 且這種滯后效應(yīng)會促使系統(tǒng)的動力學行為愈加復雜. 為了修正以往沒有考慮到延遲效應(yīng)的原有模型, 文獻[10]分析了具有兩個時滯的擴散Lotka-Volterra捕食-食餌系統(tǒng), 研究了共存平衡點的穩(wěn)定狀態(tài), 得到了在一種特殊情況下, 系統(tǒng)中存在空間非齊次周期解的Hopf分支的結(jié)論. 文獻[11]通過考慮Holling-III型功能反應(yīng)函數(shù), 提出了一種具有妊娠期時滯捕食-食餌模型, 得到時滯可以通過Hopf分支引起種群密度的不穩(wěn)定性和小振幅振蕩的結(jié)論.

        隨著研究的深入, 時滯項和收獲項逐漸成為捕食-食餌系統(tǒng)的研究重點. 因此, 本文在模型(1)的基礎(chǔ)之上, 為了修正以往沒有考慮延遲效應(yīng)的原有模型, 將種群x具有妊娠期、種群y具有妊娠期作為主要考慮因素, 分別引入時滯τ1和τ2, 得出如下具有Michaelis-Menten型收獲項的雙時滯捕食-食餌系統(tǒng)

        (2)

        式中:τ1代表食餌種群的妊娠期;τ2代表捕食者種群的妊娠期;f代表食餌種群的出生率;d代表捕食者種群的死亡率; 除此之外的參數(shù)與模型(1)意義相同.

        (3)

        目前對于模型(3)的研究中, 對分支的周期解的研究甚少. 本文將深入考慮這一問題, 把時滯τ1,τ2作為分支參數(shù), 把零點定理[12]、規(guī)范型理論和中心流形定理作為主要研究方法, 研究了模型(3)的動力學性質(zhì).

        1 局部穩(wěn)定性及Hopf分支

        定理1若是a(f-bc)>(ec+d)且c(af+d)>ha, 那么系統(tǒng)(3)存在僅此一個正平衡點

        證明如果系統(tǒng)(3)存在平衡點, 則應(yīng)滿足方程組

        (4)

        由式(4)中的第二個方程可得

        (5)

        將式(5)代入式(4)中的第1個方程, 有

        (6)

        其中

        Q1=-(ab+e),

        Q2=a(f-bc)-(ec+d),

        Q3=c(af+d)-ha.

        當a(f-bc)>(ec+d)且c(af+d)>ha時, 定理1成立.

        系統(tǒng)(3)在正平衡點E*處的Jacobi矩陣為

        (7)

        其中

        P12=-x*,P21=ey*,

        則有系統(tǒng)(3)的特征方程

        λ2+Aλ+B+(Cλ+D)e-λτ1+(Eλ+F)e-λτ2+

        Ge-λ(τ1+τ2)=0,

        (8)

        其中

        A=-(P11+P22),B=P11P22-P12P21,

        對于兩個時滯可能存在的五種不同組合, 進行以下討論:

        情形一:τ1=τ2=0.

        系統(tǒng)(3)的特征方程(8)變?yōu)?/p>

        λ2+(A+C+E)λ+B+D+F+G=0.

        (9)

        因為A+C+E>0, 若:

        H1):B+D+F+G>0.

        此時, 特征方程(9)的兩個根均具有負實部[13], 那么系統(tǒng)(3)的正平衡點是局部漸近穩(wěn)定的.

        情形二:τ1>0,τ2=0.

        系統(tǒng)(3)的特征方程(8)變?yōu)?/p>

        λ2+(A+E)λ+(Cλ+D+G)e-λτ1+

        B+F=0.

        (10)

        令λ=iω1(ω1>0)是此方程的根, 代入到式(10) 有

        (11)

        兩邊分別平方相加可得

        (B+F)2-(D+G)2=0.

        (12)

        其中

        p1=(A+E)2-C2-2(B+F),

        q1=(B+F)2-(D+G)2.

        H2):p1>0,q1>0,

        那么式(12)的根都是非負根, 進而可得式(10) 的任一根的實部皆為負.

        H3):q1<0.

        τ1k=

        (13)

        (14)

        對式(10)關(guān)于τ1求導, 有

        (15)

        計算后有

        (16)

        如果H5)成立, 那么橫截性條件便成立:

        則有如下結(jié)論:

        定理2對于系統(tǒng)(3), 假設(shè)τ1>0,τ2=0且H1)成立:

        1) 如果H2)成立, 則τ1>0時, 系統(tǒng)(3)的平衡點E*是局部漸近穩(wěn)定的.

        情形三:τ1=0,τ2>0.

        此時系統(tǒng)(3)的特征方程(8)變?yōu)?/p>

        λ2+(A+C)λ+(Eλ+F+G)e-λτ2+B+D=0.

        (17)

        令λ=iω2(ω2>0)是該方程的根, 代入到式(17)有

        (18)

        兩邊分別平方后相加可得

        D)2-(F+G)2=0.

        (19)

        其中

        p2=(A+C)2-2(B+D)-E2,

        q2=(B+D)2-(F+G)2.

        經(jīng)計算,p2>0,q2>0, 則有

        定理3對于系統(tǒng)(3), 當τ1=0,τ2>0時, 在H1)條件下結(jié)論同定理2.

        情形四:τ1=τ2=τ>0.

        定理4針對系統(tǒng)(3), 有τ1=τ2=τ.存在τ0, 使穩(wěn)定性結(jié)論同定理2(2). 其中

        (20)

        與情形二同理可證.

        情形五:τ1>0,τ2>0.

        考慮式(3)中τ1在穩(wěn)定的區(qū)間,τ2作為參數(shù).設(shè)λ=iω4為式(8)的根, 代入到式(8)有

        消去τ2, 有

        h1(ω4)-2h2(ω4)sinω4τ1+2h3(ω4)cosω4τ1=0,

        (21)

        其中

        (B2+D2-F2-G2),

        H6): 式(21)至少具有有限正根.

        i=1,2,…,j;k=0,1,2,….

        (22)

        ω*=ω4i.

        對式(8)關(guān)于τ2求導, 有

        (23)

        經(jīng)計算有

        (24)

        其中

        A1=A+Ccosω*τ1+Ecosω*τ2-

        τ1[(Cω*sinω*τ1+Dcosω*τ1)+Gcosω*(τ1+τ2)],

        A2=(A+Ccosω*τ1)ω*2-(Dsinω*τ1)ω*,

        A3=2ω*-Csinω*τ1-Esinω*τ2-

        τ1[(Cω*cosω*τ1-Dcosω*τ1)-Gsinω*(τ1+τ2)],

        A4=ω*3-(Csinω*τ1)ω*2+(B+Dcosω*τ1)ω*.

        又因為P>0, 假設(shè)

        H7):Q>0,

        由上述討論, 有

        2 局部Hopf分支方向及其穩(wěn)定性

        研究在τ1=τ2=τ=τ0條件下, 應(yīng)用文獻[14]提出的兩種定理確定系統(tǒng)(3)的Hopf分支的表達式.

        先令U(t)=(u(t),v(t))T∈R2, 其中u(t)=x(τt),v(t)=y(τt),τ=τ0+μ,μ∈R, 那么系統(tǒng)(3)在C=C([-1,0],R2)上改寫成一類常見的泛函微分方程

        (25)

        式中:Lμ∶C→R2,F(xiàn)∶R×C→R2分別由以下形式給出

        (26)

        F(μ,φ)=(τ0+μ)(F1(μ,φ),F2(μ,φ))T,

        (27)

        其中

        φ=(φ1,φ2)∈C([-1,0],R2),

        a13φ1(0)φ2(0),

        F2(μ,φ)=b11φ1(0)φ2(0)+b12φ2(-1)φ2(0).

        b11=e,b12=-a.

        顯而易見, 利用Riesz表示定理, 存在一個有界變差的二階矩陣

        η(θ,μ):[-1,0]→R2,

        使得

        (28)

        并且

        式中:δ(θ)是Dirac-delta函數(shù).

        對于φ∈C1([-1,0],R2), 定義

        于是, 方程(25)可改寫為

        (29)

        式中:U=(u,v),Ut(θ)=U(t+θ),θ∈[-1,0].

        對于ψ∈C1([-1,0],(R2)*), 定義A=A(0)的伴隨算子A*為

        和一個雙線性型

        然后, 將A和A*所在的特征方程的特征根iω0τ0與-iω0τ0的特征向量表示為為q(θ)和q*(s).于是

        A(0)q(θ)=iω0τ0q(θ),

        A*(0)q*(s)=-iω0τ0q*(s).

        通過計算, 可以得到

        這里

        下面給出μ=0處存在的中心流形C0的計算方法, 不妨設(shè)Xt為μ=0時方程(25)的解, 規(guī)定

        z(t)=〈q*(s),Xt〉,

        W(t,θ)=Xt(θ)-2Rez(t)q(θ)=

        在中心流形C0上, 有

        (30)

        由式(29)和式(30)得

        其中:

        通過比較系數(shù)可得

        綜合式(27)并比較系數(shù)可得

        其中,W20(θ),W11(θ)的計算結(jié)果如下:

        E=(E1,E2)T∈R2,G=(G1,G2)T∈R2是常向量, 它們分別為以下兩個代數(shù)方程的解

        由此可以得到

        (31)

        (32)

        式中:C1(0)由式(31)給出, 經(jīng)計算得出μ2,β2,T2的值.故有

        定理6令τ=τ0時, 式(32)的表達式確定了分支周期解在中心流形上的性質(zhì), 結(jié)論如下:

        1) Hopf分支的方向由μ2判斷.μ2>0(μ2<0), 則Hopf分支是超臨界的(次臨界的);

        2) 分支周期解的穩(wěn)定性由β2確定.β2<0(β2>0), 則周期解是穩(wěn)定的(不穩(wěn)定的);

        3) 分支周期解的周期由T2確定.T2>0(T2<0), 則周期解的周期增加(減少).

        3 數(shù)值模擬

        在進行理論分析后, 為了檢驗其正確性, 選擇合適的數(shù)對參數(shù)進行賦值, 原系統(tǒng)可以表示為

        (33)

        情形一:當τ1=τ2=0時, 系統(tǒng)(33)的平衡點的波動如圖 1 所示.

        圖 1 當τ1=τ2=0時, 系統(tǒng)(33)平衡點的變化圖

        圖 2 當時, 系統(tǒng)(33)的波圖和相圖

        圖 3 當時, 系統(tǒng)(33)的波圖和相圖

        根據(jù)定理6可得, 系統(tǒng)(33)在此處發(fā)生的Hopf分支是次臨界的, 而且分支周期解是不穩(wěn)定的、分支周期減少. 當τ=1.2<τ0≈1.213 6時, 平衡點E*是漸近穩(wěn)定的, 如圖 6 所示; 當τ=1.35>τ0≈1.213 6時, 平衡點E*穩(wěn)定狀態(tài)被打破, 如圖 7 所示.

        情形五:當τ1>0,τ2>0時, 固定τ1=1.2, 進行計算后得出ω*≈0.659 4,τ*≈1.982 7.那么當τ2=1.8<τ*≈1.982 7時, 平衡點E*是漸近穩(wěn)定的, 如圖 8 所示; 當τ2=2.1>τ*≈1.982 7時, 平衡點E*穩(wěn)定狀態(tài)被打破, 如圖 9 所示.

        圖 4 當時, 系統(tǒng)(33)的波圖和相圖

        圖時, 系統(tǒng)(33)的波圖和相圖

        圖 6 當τ1=τ2=τ=1.2<τ0≈1.213 6時, 系統(tǒng)(33)的波圖和相圖

        圖 7 當τ1=τ2=τ=1.35>τ0≈1.213 6時, 系統(tǒng)(33)的波圖和相圖

        圖 8 當τ1=1.2, τ2=1.8<τ*≈1.982 7時, 系統(tǒng)(33)的波圖和相圖

        圖 9 當τ1=1.2, τ2=2.1>τ*≈1.982 7時, 系統(tǒng)(33)的波圖和相圖

        4 結(jié) 論

        本文以時滯τ1,τ2為參數(shù)對一類具有Michaelis-Menten型收獲項的雙時滯捕食-食餌系統(tǒng)進行了探討. 經(jīng)過理論分析及驗證發(fā)現(xiàn), 只考慮種群x的妊娠期時滯τ1時, 時滯變化對系統(tǒng)的持續(xù)生存沒有影響; 只考慮種群y的妊娠期時滯τ2, 或同時考慮種群x和種群y的妊娠期時滯時, 種群的時滯變化會影響其種群數(shù)量的變化. 當時滯未達到臨界值時, 系統(tǒng)呈穩(wěn)定狀態(tài); 當時滯達到臨界值時, 系統(tǒng)的穩(wěn)定狀態(tài)被破壞, 此時發(fā)生Hopf分支并產(chǎn)生周期解.

        猜你喜歡
        特征方程食餌平衡點
        捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強迫波的唯一性
        相鄰三項線性遞推關(guān)系數(shù)列通項的簡便求法
        一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
        一些常系數(shù)非齊次線性微分方程的復數(shù)解法
        具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
        一類帶有交叉擴散的捕食-食餌模型的正解
        探尋中國蘋果產(chǎn)業(yè)的產(chǎn)銷平衡點
        煙臺果樹(2019年1期)2019-01-28 09:34:58
        電視庭審報道,如何找到媒體監(jiān)督與司法公正的平衡點
        傳媒評論(2018年7期)2018-09-18 03:45:52
        在給專車服務(wù)正名之前最好找到Uber和出租車的平衡點
        IT時代周刊(2015年7期)2015-11-11 05:49:56
        一類n階非齊次線性微分方程特解的證明及應(yīng)用*
        蜜桃视频中文字幕一区二区三区| 少妇被粗大的猛烈进出69影院一 | 成人一区二区免费视频| 99精品国产兔费观看久久| 蜜桃视频在线免费观看一区二区| 国产精品一区二区夜色不卡| 免费a级毛片高清在钱| 97久久草草超级碰碰碰| 粗了大了 整进去好爽视频| 久久亚洲精彩无码天堂 | 无码国产精品久久一区免费| 日本成本人三级在线观看| 亚洲欧美日韩国产一区二区精品 | 久久久国产精品无码免费专区 | 免费a级毛片永久免费| 欧美日本道免费二区三区| 国产在线拍91揄自揄视精品91| 亚洲精品中文字幕导航 | 我爱我色成人网| 老熟女毛茸茸浓毛| 男子把美女裙子脱了摸她内裤| 久久日韩精品一区二区| 成人无码av一区二区| aaaaaa级特色特黄的毛片| 精品久久久久久无码中文字幕| 夫妇交换刺激做爰视频| 成人综合久久精品色婷婷| 国产精品久久av高潮呻吟| 狠狠躁夜夜躁人人爽超碰97香蕉| 亚洲av无码一区二区三区不卡| 亚洲精品无码久久毛片| 白色月光在线观看免费高清| 日本免费精品一区二区| 亚洲人成电影网站色| 欧美孕妇xxxx做受欧美88| 欧美h久免费女| 中文字幕综合一区二区| 日本一区二区三区免费播放| 亚洲国产精品久久久久秋霞1| 日本第一区二区三区视频| 日本系列有码字幕中文字幕|