亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ricci 孤立子的勢函數(shù)?

        2022-02-24 04:17:26李金楠
        關(guān)鍵詞:勢函數(shù)固定點(diǎn)流形

        李金楠, 高 翔

        (中國海洋大學(xué)數(shù)學(xué)科學(xué)學(xué)院, 山東 青島 266100)

        20世紀(jì)80年代,Hamilton[1]引進(jìn)了Ricci孤立子的概念,Ricci孤立子是愛因斯坦度量的自然推廣且為解決三維龐加萊猜想的主要工具。同時Ricci孤立子對應(yīng)于Ricci流的自相似解[2-3]且出現(xiàn)在Ricci流方程的奇異點(diǎn)經(jīng)伸縮變換后的極限中[4-6]。

        黎曼度量gij為愛因斯坦度量若其Ricci張量滿足:

        Rij=ρgij,

        式中ρ為常數(shù)。特別地,具有愛因斯坦度量的光滑流形稱為愛因斯坦流形。

        光滑流形Mn上的一個完備黎曼度量gij稱為Ricci孤立子,若存在一個光滑向量場V=(Vi)使其Ricci張量滿足:

        式中ρ為常數(shù)。此外,若V為一個梯度向量場,則有梯度Ricci孤立子滿足方程:

        Rij+▽i▽jf=ρgij。

        式中f為流形Mn上的光滑函數(shù),稱f為Ricci孤立子的勢函數(shù)。由于常數(shù)ρ取值不同,所以可將Ricci孤立子進(jìn)行分類,其中ρ=0稱為穩(wěn)定Ricci孤立子,ρ>0稱為收縮Ricci孤立子,ρ<0稱為擴(kuò)張Ricci孤立子。

        愛因斯坦流形是梯度Ricci孤立子勢函數(shù)為常數(shù)的特例,也稱為平凡孤立子,可見勢函數(shù)對于Ricci孤立子的分類具有十分重要的作用。此外結(jié)合余面積公式與勢函數(shù)估計(jì)還可進(jìn)一步給出孤立子的體積增長估計(jì),并最終應(yīng)用于研究孤立子的分類問題。因此研究Ricci孤立子的勢函數(shù)估計(jì)對孤立子的分類及其他幾何不變量的研究都具有十分重要意義。

        Bakry-Emery Ricci張量定義為:

        Ricf=Ric+Hessf。

        Bakry-Emery[7]對該張量進(jìn)行了詳細(xì)研究并拓展應(yīng)用解決了許多重要的孤立子問題。特別地,當(dāng)勢函數(shù)f為常數(shù)時,Bakry-Emery Ricci張量即為Ricci張量,因此很多關(guān)于Ricci張量的性質(zhì)及結(jié)果可以自然地推廣到Bakry-Emery Ricci張量上。本文我們將主要證明一個關(guān)于Bakry-Emery Ricci張量的Ambrose 型結(jié)論,并得到一些Ricci孤立子勢函數(shù)上下界更精確的估計(jì)結(jié)果。

        1 預(yù)備知識

        首先,關(guān)于流形的緊致性,Ambrose[8]證明了如下定理。

        引理1設(shè)在完備黎曼流形M上存在點(diǎn)p使得任意從點(diǎn)p出發(fā)的測地線γ(t)滿足:

        則M為緊致的。

        推廣到Bakry-Emery Ricci張量,張世金[9]證明了對應(yīng)的Ambrose-Myers型結(jié)果。

        引理2設(shè)在完備黎曼流形(M,g,f)上存在點(diǎn)p使得任意從p出發(fā)的測地線γ(t)滿足

        且勢函數(shù)滿足

        f(x)≤C(d(x,p)+1),

        式中C為常數(shù),d(x,p)為從點(diǎn)p到點(diǎn)x的距離函數(shù),則流形M為緊致的。

        此外,張世金[9]還給出了以下結(jié)論。

        引理3一個完備黎曼流形M若滿足

        Ricf≥λg

        f(x)≤C(d(x,p)+1),

        式中λ>0,C為常數(shù),則M為緊致的。

        2 主要結(jié)果

        改變勢函數(shù)上界條件可將引理3進(jìn)一步推廣到Bakry-Emery Ricci張量上,因此我們給出以下定理:

        定理1一個完備的黎曼流形(M,g,f)若其Bakry-Emery Ricci張量滿足

        Ricf≥-λg,

        λ>0為常數(shù),固定點(diǎn)p∈M,同時勢函數(shù)f滿足

        f(x)≤-δ(d(x,p)+C)2,

        應(yīng)用上述結(jié)果并結(jié)合孤立子性質(zhì)[10-11],將得到一些梯度Ricci孤立子的勢函數(shù)上下界估計(jì)結(jié)果。

        定理2令(Mn,gij,f)為一個具有非負(fù)Ricci曲率的完備非緊致擴(kuò)張?zhí)荻萊icci孤立子,標(biāo)準(zhǔn)化滿足

        則其勢函數(shù)f滿足估計(jì):

        式中r(x)=d(x,p)為點(diǎn)x到固定點(diǎn)p∈M的距離函數(shù);C為僅取決于維數(shù)n及單位球Bp(1)的度量gij的常數(shù)。

        結(jié)合Bakry-Emery Ricci張量,張世金[9]還給出了有關(guān)收縮Ricci孤立子的經(jīng)典勢函數(shù)下界估計(jì)結(jié)果[10],利用本文結(jié)論可給出該結(jié)論的其他證明方法。

        推論1令(Mn,gij,f)為一個完備非緊致的收縮梯度Ricci孤立子且

        則勢函數(shù)f滿足:

        式中:r(x)=d(x,p)為距離函數(shù);C>0為僅取決于流形的維數(shù)n及單位球Bp(1)的度量gij的常數(shù)。

        同理,推廣到穩(wěn)定梯度Ricci孤立子,將得到以下推論。

        定理3令(Mn,gij,f)為一個具有正Ricci曲率的完備非緊致穩(wěn)定梯度Ricci孤立子,則其勢函數(shù)f滿足下界估計(jì):

        f(x)≥-C(r(x)+1)。

        式中:r(x)=d(x,p)為距離函數(shù);C>0為僅取決于維數(shù)n及單位球Bp(1)的度量gij的常數(shù)。

        3 主要方法及證明

        本節(jié)將推廣利用Wraith[12]的方法給出滿足Bakry-Emery Ricci張量下界為負(fù)常數(shù)主要定理的證明。

        定理4一個完備黎曼流形(M,g,f)若滿足

        Ricf≥-λg,

        λ>0為常數(shù),同時固定點(diǎn)p∈M,勢函數(shù)f滿足

        f(x)≤-δ(d(x,p)+C)2,

        證明 (反證法)設(shè)黎曼流形M為非緊致的,固定點(diǎn)p∈M及單位速度射線γ(t),γ(t)滿足初始條件γ(0)=p(即測地線γ(t)從點(diǎn)p出發(fā))。任意時間t,令m(t)為以點(diǎn)γ(t)為中心、以t到p的距離為半徑的距離球面的平均曲率,這里以單位內(nèi)法向量計(jì)算平均曲率。值得注意的是,對任意射線γ(t),t>0時函數(shù)m(t)為光滑的,且Wraith[12]證明m(t)滿足 Riccati不等式:

        代入即Bakry-Emery Ricci張量滿足:

        由于

        [▽f,γ′](t)-[▽f,γ′]。

        由假設(shè)Ricf≥-λg,故對任意時間t>1,有

        -λ(t-1)-m(1)+[▽f,γ′]。

        令C1=λ-m(1)+[▽f,γ′](1),上述不等式為

        另外,由定理假設(shè)f(x)≤-δ(d(x,p)+C)2可知f(γ(t))≤-δ(t+C)2,則

        則任意t≥t1>3,有

        接下來令

        tn+1=tn+21-n,(n≥1),則對任意i≥1,ti∈

        [t1,t1+2)。

        由數(shù)學(xué)歸納法可知,對任意t∈[tn,t1+2)有F(t)≥2n。

        又對任意時間t∈[t1,+∞),函數(shù)F(t)為光滑的,故

        矛盾,綜上定理4得證。

        4 應(yīng)用

        應(yīng)用定理4并結(jié)合不同的Ricci孤立子方程條件,本節(jié)將主要采用定理2的結(jié)果對梯度擴(kuò)張Ricci孤立子的勢函數(shù)估計(jì)進(jìn)行證明并簡要介紹穩(wěn)定及收縮Ricci孤立子的情況。

        對于梯度擴(kuò)張Ricci孤立子,張珠洪[13]已給出其勢函數(shù)上下界估計(jì)的相關(guān)結(jié)果,本節(jié)我們將結(jié)合Bakry-Emery Ricci張量及定理4的結(jié)論采用不同的方法給出其勢函數(shù)的一個下界估計(jì)。

        定理5令(Mn,gij,f)為一個具有非負(fù)Ricci曲率的完備非緊致擴(kuò)張?zhí)荻萊icci孤立子,孤立子方程滿足

        則其勢函數(shù)f滿足估計(jì):

        式中:r(x)=d(x,p)為點(diǎn)x到固定點(diǎn)p∈M的距離函數(shù);C為僅取決于維數(shù)n及單位球Bp(1)的度量gij的常數(shù)。更準(zhǔn)確的說,常數(shù)C滿足

        固定點(diǎn)p∈M及單位速度射線γ(t),由Riccati 不等式可得

        特殊的,當(dāng)Ricf=-λg,則任意時間t>1滿足

        -λ(t-1)-m(1)+[▽f,γ′]。

        令C1=λ-m(1)+[▽f,γ′](1),上述不等式為

        由定理假設(shè)勢函數(shù)

        顯然有

        代入上式得

        存在t1>3,對任意t≥t1,令常數(shù)C滿足

        接下來的證明同定理4,可得矛盾,即證明了當(dāng)勢函數(shù)滿足上界估計(jì)

        時定理4也成立。

        作為應(yīng)用,令

        故對于非緊致擴(kuò)張?zhí)荻萊icci孤立子,存在僅取決于維數(shù)及黎曼度量的常數(shù)C使得

        綜上定理得證。

        注:上述定理推廣到非緊致穩(wěn)定梯度Ricci孤立子可得其勢函數(shù)的一個上界估計(jì)。準(zhǔn)確地說,若假設(shè)Bakry-Emery Ricci張量Ricf≥0,勢函數(shù)f(x)≤-C(r(x)+1),則存在常數(shù)C,當(dāng)C≥6n-[▽f,γ′](1)-m(1)時,定理1成立。

        特別地,Ricf=0(即(Mn,gij,f)為穩(wěn)定Ricci孤立子),自然可以證明曹懷東等[11]給出的經(jīng)典的勢函數(shù)估計(jì)結(jié)果。

        式中r(x)=d(x0,x)為點(diǎn)x到固定點(diǎn)x0∈M的距離函數(shù),常數(shù)c0=Rmax滿足R+|▽f|2=c0。

        此外,由定理1的證明顯然有如下推論。

        推論2完備黎曼流形M若滿足Ricf≥0及f(x)≤-Cd2(x,p),常數(shù)C>0,則M為緊致的。

        猜你喜歡
        勢函數(shù)固定點(diǎn)流形
        航天器姿態(tài)受限的協(xié)同勢函數(shù)族設(shè)計(jì)方法
        數(shù)學(xué)理論與應(yīng)用(2022年1期)2022-04-15 09:03:32
        金屬鎢級聯(lián)碰撞中勢函數(shù)的影響
        某車型座椅安全帶安裝固定點(diǎn)強(qiáng)度分析
        緊流形上的Schr?dinger算子的譜間隙估計(jì)
        迷向表示分為6個不可約直和的旗流形上不變愛因斯坦度量
        Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
        某N1類車輛安全帶固定點(diǎn)強(qiáng)度對標(biāo)及改進(jìn)
        SOME RESULTS OF WEAKLY f-STATIONARY MAPS WITH POTENTIAL
        中歐美ISOFIX固定點(diǎn)系統(tǒng)法規(guī)解析
        汽車零部件(2015年9期)2015-10-25 02:27:48
        美国又粗又长久久性黄大片| 成人天堂资源www在线| 国内精品人妻无码久久久影院94| 亚洲一区二区三在线播放| 国产自拍在线观看视频| 亚洲av日韩aⅴ无码色老头| 精品视频一区二区三三区四区| 午夜无码无遮挡在线视频| 国产精品自拍盗摄自拍 | 五月停停开心中文字幕| 加勒比东京热中文字幕| 99精品国产一区二区| 国产成人精品免费久久久久| 日韩中文字幕一区二十| 欧美牲交a欧美牲交| 欧美 变态 另类 人妖| 亚洲AV无码一区二区三区性色学| 国产成av人在线观看| 欧美伦费免费全部午夜最新 | 色多多性虎精品无码av| 五十路熟妇高熟无码视频| 欧洲国产精品无码专区影院| 中文字幕中文字幕777| 国产午夜福利久久精品| 亚州综合激情另类久久久| 天堂视频一区二区免费在线观看 | 精品综合一区二区三区| 午夜精品久久久久久| 婷婷综合缴情亚洲狠狠| 人妻少妇被猛烈进入中文| 天堂中文а√在线| 日韩精品无码一区二区三区免费| 亚洲视频在线播放免费视频| 免费人成视频网站在在线| 亚洲国产精品久久久久婷婷老年| 欧美日韩国产成人综合在线影院| 亚洲天堂av高清在线| 无码中文亚洲av影音先锋| 久久aⅴ无码av免费一区| 日本在线视频二区一区| 制服丝袜一区二区三区 |