強鳳鳴,寇宏超,賈夢宇,唐斌,李金山
β型γ-TiAl合金熱變形過程中組織演化及動態(tài)再結晶行為研究現狀
強鳳鳴,寇宏超,賈夢宇,唐斌,李金山
(西北工業(yè)大學 凝固技術國家重點實驗室,西安 710072)
TiAl合金以其低密度、高比強和良好的抗蠕變性等優(yōu)點,已在航空發(fā)動機上獲得應用。先進的β型γ-TiAl合金通過引入一定量的β/B2相,顯著改善了合金的熱加工能力,該類合金更適合熱機械加工。對β型γ-TiAl合金熱機械加工過程中的組織演化和變形行為形成完整的認識是制定和優(yōu)化熱加工工藝的前提。綜述了β型γ-TiAl合金的不同初始組織在熱機械加工過程中的組織演變及其動態(tài)再結晶機制,指出當熱加工溫度低于γ,solv時,組織演化主要與(α/α2+γ)片層團的破碎有關;當熱加工溫度高于γ,solv時,主要與α相的動態(tài)再結晶有關,同時分析了β相的存在對(α/α2+γ)片層團以及α相動態(tài)再結晶的影響,最后對β型γ-TiAl合金熱變形過程中的基礎問題進行了總結和展望。
TiAl合金;熱機械加工;變形行為;再結晶;組織演化
航空航天工業(yè)的發(fā)展,使人們以更輕的質量、更高的使用溫度和更快的運行速度為設計理念,對發(fā)動機材料的使用性能提出了更加苛刻的要求。TiAl合金作為一種新型高溫結構材料,具有低密度、高比強度、高比模量和良好的抗蠕變、抗氧化、抗燃燒性能等諸多優(yōu)點[1-4],在航空發(fā)動機上可用于制備低壓渦輪葉片、高壓壓氣機葉片和機匣等,對提高發(fā)動機的推重比和燃油效率具有重要作用,同時也可減少有害氣體排放和噪音污染[5-7]。2007年,美國Boeing公司宣布在GEnx發(fā)動機中采用由鑄造Ti-48Al-2Cr-2Nb合金制造的第6和7級低壓渦輪葉片,這是TiAl合金首次應用于商用飛機發(fā)動機的旋轉部件[8-10]。這種傳統γ-TiAl合金中添加的合金元素種類較少、含量較低,而Al含量較高(原子數分數為47%~48%),雖然具有塑性、韌性較高的優(yōu)點,但其強度通常都較低,抗蠕變和抗氧化性能不高,使用溫度一般不超過700 ℃,其次,TiAl合金的室溫塑性低、熱成形能力差、熱加工窗口窄一直是限制其廣泛應用的主要因素[11-13]。
為了提高γ-TiAl合金的熱加工能力和使用溫度,研究人員通過控制Al含量、添加適量的Nb和Mo等β穩(wěn)定化元素開發(fā)出了β型γ-TiAl合金,該類合金的化學成分可概括為[2,7-8]:Ti-(42-45)Al-(0-10)- (0-3)-(0-1)-(0-0.5RE),其中,指Cr,Mn,Nb,Ta等元素;指Mo,W,Hf,Zr等元素;指C,B,Si等元素;RE是指稀土元素。與傳統的γ-TiAl合金相比,β型γ-TiAl合金中Al的原子數分數通常≤45%,合金化程度較高,因此其強度、抗蠕變及抗氧化性能均有一定程度的提高,顯著提高了TiAl合金的使用溫度上限。此外,由于β穩(wěn)定化元素的引入,合金中含有一定量β/B2相,其在高溫下為BCC結構,能夠提供大量的獨立滑移系,從而顯著改善合金的熱加工能力,因而該類合金也稱為變形TiAl合金,更適合熱機械加工。典型代表為由奧地利、德國等國家的多家單位合作開發(fā)出的TNM(Ti-(43-44)Al-4Nb- 1Mo-0.1B)合金[14],利用該合金鍛造成形的低壓渦輪葉片已在PW1100G型航空發(fā)動機上獲得應用[15]。
在國外,滿足部件尺寸要求的高質量TiAl合金擠壓棒材、鍛件和板材均具備工業(yè)化生產能力[1,8,16-17]。我國雖然在TiAl合金軋制板材和大尺寸鍛件制備上有所突破[18-21],但在工藝穩(wěn)定性和質量控制上還有待提高。研究β型γ-TiAl合金熱加工變形行為是設計和優(yōu)化熱加工工藝參數的基礎,當前的研究主要集中在2個方面:一方面是以優(yōu)化熱加工工藝參數為目標,通過熱加工過程中應力-應變數據,構建熱加工圖以實現指導生產應用的目的;另一方面是以TiAl合金在熱加工過程中組織演化及動態(tài)再結晶為主的機理性研究。對于熱加工圖的建立,其研究過程是結構化的,有固定的模式,但對于機理性的研究則相對復雜而抽象。研究TiAl合金熱機械加工過程中的基礎問題,包括組織演變與動態(tài)再結晶機制等,可為合理制定熱機械加工工藝提供強有力的指導作用,從而促進我國β型γ-TiAl合金向工程化應用的發(fā)展。目前,相關學者針對β型γ-TiAl合金的變形機制及其組織調控方法進行了大量的科學研究,由于β型γ-TiAl合金成分的多樣性,熱加工工藝參數的選擇也各不相同,因此研究內容比較分散。事實上,TiAl合金熱機械加工過程中的組織演變與再結晶機制主要與變形溫度下的相組成及組織狀態(tài)有關,因此文中以β型γ-TiAl合金的變形溫度為參照,系統總結近年來不同初始組織在熱機械加工過程中的組織演化、動態(tài)再結晶機制以及熱/力誘導相變等,期望通過深入理解TiAl合金熱變形過程中的基礎問題,以此指導和控制工業(yè)尺寸TiAl合金的加工成形過程,制備大尺寸、高質量的TiAl合金材料。
圖1 TNM合金體系的偽二元相圖[22]與TNM合金的鑄態(tài)組織
值得注意的是,TiAl合金片層組織在變形過程中存在明顯的各向異性,據此可將其分為3種典型的取向:① 當片層界面平行于應力軸時,為硬取向I;② 片層界面垂直于應力軸時,為硬取向Ⅱ;③ 片層界面與應力軸傾斜時,處于軟取向。軟取向片層團內產生的位錯可在片層內滑移,與片層界面的交互作用小,因而位錯的滑移程長,只能在一個區(qū)域內堆積或在片層團邊界處堆積,故動態(tài)再結晶通常優(yōu)先從片層團邊界處開始,然而硬取向I反而是最有利于動態(tài)再結晶的[24,30]。在這種情況下,交叉孿晶可被大量激活,其剪切方向與片層界面成一定夾角,需要穿過片層界面繼續(xù)進行剪切,但是片層界面對孿生的剪切變形具有強烈的阻礙作用,相應地就會導致在剪切帶的前端存在較高的約束應力,進而激活其他的滑移系,這種變形孿晶、位錯和界面的交互作用可為動態(tài)再結晶提供更多形核質點。CHENG等[27]指出片層扭折和彎曲變形也多發(fā)生在硬取向I的片層團內,通過扭折帶的建立,可將硬取向I的片層團分解成多個軟取向的區(qū)域,甚至變成硬取向Ⅱ的片層團。硬取向Ⅱ的片層團為最穩(wěn)定的取向,位錯滑移很難激活,雖然可產生變形孿晶,但無法形成交叉孿晶[24],變形組織中殘余的片層團均表現為該取向。
圖2 TiAl合金中(α+γ)片層組織在熱機械加工過程中的組織演化機制[24-27]
部分研究[25,31]也對(α+γ)片層團中γ相和α相的動態(tài)再結晶分別展開了討論,指出γ相的堆垛層錯能(SFE)較低,而α相的堆垛層錯能相對較高,具有低層錯能的γ相容易發(fā)生動態(tài)再結晶,而高層錯能的α相有利于發(fā)生動態(tài)回復,直到局部應變達到其動態(tài)再結晶臨界應變。因此,γ板條比α板條更容易發(fā)生再結晶,當γ板條發(fā)生動態(tài)再結晶形成細小的動態(tài)再結晶晶粒時,α板條內部僅形成少量的小角度晶界或者亞晶界,發(fā)生彎曲變形,但在片層結構中仍處于板條狀態(tài)。因而,隨著變形溫度的升高,α相的體積分數和片層間距逐漸增加,片層團越難發(fā)生動態(tài)再結晶,導致殘余片層團數量增加[24-26]。反之,若變形溫度降低,熱激活能減少,變形抗力增大,也會導致材料發(fā)生破壞,因而合理選擇變形溫度至關重要。
β相通常以塊狀形式殘存于片層團的邊界處,對TiAl合金的熱變形存在顯著的影響。眾所周知,β相在高溫下比α相和γ相軟,為BCC結構,具有足夠數量的獨立滑移系,可充當潤滑劑的作用,能夠協調不同取向片層團之間的變形來釋放局部的應力集中,同時還可以為片層團的轉動提供空間,從而大大改善TiAl合金的熱加工性[30,32-33]。LIU等[34]研究指出,雖然β相對TiAl合金的熱成形有利,但是由于高溫下β相比γ和α相更易變形,大量的應變能集中在β相上,降低了作用在其他兩相上的應變能,即降低了γ和α相動態(tài)再結晶的驅動力,一定程度上抑制了其再結晶的發(fā)生,這也是含β相TiAl合金激活能的值較兩相TiAl合金高的一個原因。相同應變量下,含β相的TiAl合金中殘余片層團含量較高,但是由于合金變形能力的改善,可以通過增加變形量來獲得動態(tài)再結晶充分的組織。此外,添加Cr和Mo等合金元素引入β相的同時也會降低γ相的堆垛層錯能,促進其孿生變形機制的發(fā)生[30,32]。對于β相本身的變形而言,在相同變形量、采用高應變速率的壓縮條件下,β相通常呈連續(xù)長條狀分布在片層團邊界,無球化及再結晶特征;而在低應變速率下,由于高溫變形時間延長,晶界β相會發(fā)生動態(tài)再結晶并破碎球化,并與再結晶等軸γ相共同分布在殘余片層團邊界形成鏈狀組織。由于β相的層錯能較高,首先傾向于發(fā)生動態(tài)回復,使位錯發(fā)生重排,形成亞晶;隨著變形加劇,小角晶界不斷吸收位錯,增大取向差,逐漸演變?yōu)榇蠼蔷Ы?,形成新的動態(tài)再結晶β晶粒[28,35],即發(fā)生連續(xù)動態(tài)再結晶。
綜上,β型γ-TiAl合金在低于γ,solv進行熱機械加工時,其變形組織通常由再結晶的等軸γ晶粒、再結晶的等軸α晶粒冷卻后形成的片層團、被拉長的β相以及殘余的粗大片層團組成。這種殘余片層團的存在歸結于片層團的強烈各向異性,通過減小初始片層團尺寸、增加γ片層間距、合理選擇變形溫度并以相對高的應變速率進行多道次加工,有望減少殘余片層團的數量。
圖3 Ti-44.81Al-3.96Nb-0.98Mo-0.15B (原子數分數)合金在1280 ℃(α單相區(qū))單軸壓縮過程中高溫α相的連續(xù)動態(tài)再結晶行為[42]
CLEMENS團隊[31,43]利用原位高能X射線衍射技術研究了TNM合金在(α+β)相區(qū)的變形行為,根據變形過程中α相衍射峰的變化情況指出其經歷了動態(tài)回復和連續(xù)動態(tài)再結晶,同樣地,β相在變形過程中也經歷了一個動態(tài)回復的過程。β相的存在勢必也會影響α相的變形行為,一方面,軟質β相可協調部分應變,減少α相內所承受的應變,降低α相動態(tài)再結晶的驅動力,因而需要增加變形量來促使α相發(fā)生完全動態(tài)再結晶;另一方面,β相的存在可有效抑制α晶粒的長大[44]。然而,也有研究表明[45],TNM合金在(α+β)兩相區(qū)進行快速大擠壓變形時,組織表現出明顯的不均勻性,除了變形后被拉長的β條帶之外,顯微組織中還存在著微納尺度的β顆粒,如圖4所示。這些β顆??煞譃?種:一種為晶間β顆粒,其至少與一個相鄰的α晶粒符合Burgers取向關系;另一種為晶內β顆粒,其與基體α晶粒不存在任何特定取向關系。這是由于在快速大變形條件下產生了絕熱升溫,一方面誘導了α→β相變,該相變優(yōu)先在α晶界處發(fā)生,產生晶間β顆粒;另一方面,絕熱升溫也會造成α晶粒異常生長,當α晶粒發(fā)生異常長大時,就會吞并相鄰細小的α晶粒以及晶間β顆粒,因而產生了這種與基體α晶粒沒有任何特定取向關系的晶內β顆粒。這種晶內β顆粒若在冷卻過程中通過成分擴散被溶解,則不會對合金性能產生影響;但若保留下來,則會影響冷卻過程中γ片層的析出,破壞片層組織的完整性,損害合金性能。因此,在熱機械加工過程中,尤其是快速大變形條件下,還需合理選擇變形溫度,避免由于絕熱升溫造成類似的組織不均勻性。
圖4 TNM合金在(α+β)兩相區(qū)快速大擠壓變形過程中絕熱升溫誘導α→β相變以及晶粒異常長大吞并第二相的現象[45]
TiAl合金作為一種新型高溫結構材料,憑借其優(yōu)異的高溫性能,已在國外多種型號的主流航空發(fā)動機上獲得應用。近些年來,相關學者針對β型γ-TiAl合金在熱機械加工過程中的組織演變及潛在的動態(tài)再結晶機制進行了大量的研究,從而為β型γ-TiAl合金組織調控方法以及工業(yè)化加工成形等奠定了重要的理論基礎。然而,β型γ-TiAl合金的變形機制較為復雜,再加上多種相變行為的干擾,其組織演變規(guī)律難以厘清,目前仍有許多方面值得系統研究。
1)針對β型γ-TiAl合金中(α/α2+γ)片層團的變形行為,雖有研究分別討論了α2相和γ相各自的再結晶行為,但這兩相之間如何協調變形尚不清楚。此外,γ/γ界面以及α2/γ界面對位錯滑移的阻礙程度可能不同,從而影響合金的變形行為,這些方面仍缺乏細致研究。
2)針對γ,solv轉變溫度之上的熱變形,目前的研究相對較少,高溫α相變形過程中的位錯運動情況無法通過直觀的手段進行觀察,其潛在的變形機制尚需驗證。因此,需設計合適的合金成分及熱加工工藝探明α相的變形機制。
3)晶體結構本身決定了α相的變形行為存在著明顯的各向異性,往往會產生不均勻的組織,那么晶間β相的存在對α相變形組織均勻性的影響到底是利是弊,是否可以通過控制初始組織中β相的含量來獲得一個均勻的變形組織等,這些均需進一步研究。
[1] LORIA E A. Gamma Titanium Aluminides as Prospective Structural Materials[J]. Intermetallics, 2000, 8: 1339-1345.
[2] BEWLAY B P, NAG S, SUZUKI A, et al. TiAl Alloys in Commercial Aircraft Engines[J]. Materials at High Temperatures, 2016, 33: 549-559.
[3] CLEMENS H, MAYER S. Intermetallic Titanium Aluminides in Aerospace Applications-Processing, Microstructure and Properties[J]. Materials at High Temperatures, 2016, 33: 560-570.
[4] KIM Y W, KIM S L. Advances in Gammalloy Materials-Processes-Application Technology: Successes, Dilemmas, and Future[J]. JOM, 2018, 70: 553-560.
[5] WILLIAMS J C, STARKE E A. Progress in Structural Materials for Aerospace Systems[J]. Acta Materialia, 2003, 51: 5775-5799.
[6] BERTIN J J, CUMMINGS R M. Fifty Years of Hypersonics: Where We've Been, Where We're Going[J]. Progress in Aerospace Sciences, 2003, 39: 511-536.
[7] APPEL F, CLEMENS H, FISCHER F D. Modeling Concepts for Intermetallic Titanium Aluminides[J]. Progress in Materials Science, 2016, 81: 55-124.
[8] KOTHARI K, RADHAKRISHNAN R, WERELEY N M. Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1-16.
[9] GE Aviation. The GEnx Commercial Aircraft Engine[ER/OL]. (2006). [2021-12-09]. https://www. geaviation.com/commercial/engines/genx-engine.
[10] NORRIS G. Power House[R]. Fight Global—Flight International, 2006.
[11] TETSUI T, SHINDO K, KAJI S, et al. Fabrication of TiAl Components by Means of Hot Forging and Machining[J]. Intermetallics, 2005, 13: 971-978.
[12] WU X H. Review of Alloy and Process Development of TiAl Alloys[J]. Intermetallics, 2006, 14: 1114-1122.
[13] CASTELLANOS S D, CAVALEIRO A J, JESUS A, et al. Machinability of Titanium Aluminides: A Review[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233: 426-451.
[14] CLEMENS H, WALLGRAM W, KREMMER S, et al. Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot- Workability[J]. Advanced Engineering Materials, 2008, 10: 707-713.
[15] Pratt and Whitney. PW1100G Geared Turbofan Engine[ER/OL]. (2013). [2021-12-09]. https://theflying-engineer.com/flightdeck/pw1100g-gtf/.
[16] CLEMENS H, MAYER S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys[J]. Advanced Engineering Materials, 2013, 15: 191-215.
[17] DAS G, KESTLER H, CLEMENS H, et al. Sheet Gamma TiAl: Status and Opportunities[J]. JOM, 2004, 56: 42-45.
[18] SHEN Z Z, LIN J P, LIANG Y F, et al. A Novel Hot Pack Rolling of High Nb-TiAl Sheet from Cast Ingot[J]. Intermetallics, 2015, 67: 19-25.
[19] ZHANG Y, WANG X P, KONG F T, et al. A High-Performance β-Solidifying TiAl Alloy Sheet: Multi-Type Lamellar Microstructure and Phase Transformation[J]. Materials Characterization, 2018, 138: 136-144.
[20] 陳玉勇, 崔寧, 孔凡濤. 變形TiAl合金研究進展[J]. 航空材料學報, 2014, 34: 112-118.
CHEN Yu-yong, CUI Ning, KONG Fan-tao. Progress of Deformed TiAl Alloys[J]. Journal of Aeronautical Materials, 2014, 34: 112-118.
[21] 蘇勇軍. 含β/B2相TiAl合金的鍛造及組織性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2013: 33-47.
SU Yong-jun. Research on Forging and Microstructure and Mechanical Properties of TiAl Alloy Containing β/B2 Phases[D]. Harbin: Harbin Institute of Technology, 2013: 33-47.
[22] SCHWAIGHOFER E, CLEMENS H, MAYER S, et al. Microstructural Design and Mechanical Properties of a Cast and Heat-Treated Intermetallic Multi-Phase γ-TiAl Based Alloy[J]. Intermetallics, 2014, 44: 128-140.
[23] SINGH V, MONDAL C, SARKAR R, et al. Dynamic Recrystallization of a β(B2)-Stabilized γ-TiAl Based Ti-45Al-8Nb-2Cr-0.2B Alloy: The Contributions of Constituent Phases and Zener-Hollomon Parameter Modulated Recrystallization Mechanisms[J]. Journal of Alloys and Compounds, 2020, 828: 154386.
[24] IMAYEV R M, IMAYEV V M, OEHRING M, et al. Microstructural Evolution during Hot Working of Ti Aluminide Alloys: Influence of Phase Constitution and Initial Casting Texture[J]. Metallurgical and Materials Transactions A, 2005, 36: 859-867.
[25] ZHANG S Z, ZHANG C J, DU Z X, et al. Deformation Behavior of High Nb Containing TiAl Based Alloy in α+γ Two Phase Field Region[J]. Materials and Design, 2016, 90: 225-229.
[26] ZHANG W J, LORENZ U, APPEL F. Recovery, Recrystallization and Phase Transformations during Thermomechanical Processing and Treatment of TiAl-Based Alloys[J]. Acta Materialia, 2000, 48: 2803-2813.
[27] CHENG L, QIANG F M, LI J S, et al. Quantitative Evaluation of the Lamellar Kinking & Rotation on the Flow Softening of γ-TiAl-Based Alloys at Elevated Temperatures[J]. Materials Letters, 2021, 290: 129458.
[28] LI J B, LIU Y, WANG Y, et al. Dynamic Recrystallization Behavior of an As-Cast TiAl Alloy during Hot Compression[J]. Materials Characterization, 2014, 97: 169-177.
[29] JIANG H T, ZENG S W, ZHAO A M, et al. Hot Deformation Behavior of β Phase Containing γ-TiAl Alloy[J]. Materials Science and Engineering A, 2016, 661: 160-167.
[30] SINGH V, MONDAL C, KUMAR A, et al. High Temperature Compressive Flow Behavior and Associated Microstructural Development in a β-Stabilized High Nb-Containing γ-TiAl Based Alloy[J]. Journal of Alloys and Compounds, 2019, 788: 573-585.
[31] SCHMOELZER T, LISS K D, KIRCHLECHNER C, et al. An In-Situ High-Energy X-Ray Diffraction Study on the Hot-Deformation Behavior of a β-Phase Containing TiAl Alloy[J]. Intermetallics, 2013, 39: 25-33.
[32] JIANG H T, TIAN S W, GUO W Q, et al. Hot Deformation Behavior and Deformation Mechanism of Two TiAl-Mo Alloys during Hot Compression[J]. Materials Science and Engineering A, 2018, 719: 104-111.
[33] 馬騰飛, 陳瑞潤. β相穩(wěn)定元素對TiAl合金高溫變形行為的影晌[J]. 鈦工業(yè)進展, 2019, 36: 2-5.
MA Teng-fei, CHEN Rui-run. Effect of Beta Stabilizing Element on Hot Deformation Behavior of TiAl Alloys[J]. Titanium, 2019, 36: 2-5.
[34] LIU B, LIU Y, LI Y P, et al. Thermomechanical Characterization of β-Stabilized Ti-45Al-7Nb-0.4W-0.15B Alloy[J]. Intermetallics, 2011, 19: 1184-1190.
[35] JIANG H T, ZENG S W, TIAN S W, et al. Microstructural Evolution and Dynamic Recrystallization Behavior of β-γ TiAl-Based Alloy during Hot Compression[J]. Advanced Engineering Materials, 2017, 19: 1-8.
[36] LIU C T, MAZIASZ P J. Microstructural Control and Mechanical Properties of Dual-Phase TiAl Alloys[J]. Intermetallics, 1998, 6: 653-661.
[37] LIU C T, WRIGHT J L, DEEVI S C. Microstructures and Properties of a Hot-Extruded TiAl Containing No Cr[J]. Materials Science and Engineering A, 2002, 329/330//331: 416-423.
[38] CARNEIRO T, KIM Y W. Evaluation of Ingots and Alpha-Extrusions of Gamma Alloys Based on Ti-45Al-6Nb[J]. Intermetallics, 2005, 13: 1000-1007.
[39] PARK K S, BAE D S, LEE G H, et al. Orientation Control of a Lamellar Microstructure in a Ti-Al Intermetallic Compound by High-Temperature Compression in an Alpha Single-Phase and/or in a Two-Phase Region and the Alpha Re-Heat Treatment[J]. Metals and Materials International, 2005, 11: 481-486.
[40] HASEGAWA M, FUKUTOMI H. Lamellar Orientation Control in TiAl Base Alloys by a Two-Step Compression Process at High Temperature[J]. Materials Science and Engineering A, 2009, 508: 106-113.
[41] GAO S B, LIANG Y F, YE T, et al. In-Situ Control of Microstructure and Mechanical Properties during Hot Rolling of High-Nb TiAl Alloy[J]. Materialia, 2018, 1: 229-235.
[42] QIANG F M, BOUZY E, KOU H C, et al. Grain Fragmentation Associated Continuous Dynamic Recrystallization (CDRX ) of Hexagonal Structure during Uniaxial Isothermal Compression?: High-Temperature α Phase in TiAl Alloys[J]. Intermetallics, 2021, 129: 107028.
[43] SCHWAIGHOFER E, CLEMENS H, LINDEMANN J, et al. Hot-Working Behavior of an Advanced Intermetallic Multi-Phase γ-TiAl Based Alloy[J]. Materials Science and Engineering A, 2014, 614: 297-310.
[44] 劉宏武. (γ+α2+B2)三相TiAl合金熱加工特性及組織性能研究[D]. 秦皇島: 燕山大學, 2017: 35-50.
LIU Hong-wu. Hot Working, Structure and Properties of (γ+α2+B2) Multiphase TiAl Alloy[D]. Qinhuangdao: Yanshan University, 2017: 35-50.
[45] QIANG F M, KOU C, ZHANG Y D, et al. Thermally-Induced α→β Phase Transformation Interweaving with Abnormal a Grain Growth in Hot Extruded TNM Alloy[J]. Journal of Materials Research and Technology, 2021, 15: 2036-2044.
Microstructure Evolution and Dynamic Recrystallization Behavior in β-Solidifying γ-TiAl during Thermomechanical Processing
QIANG Feng-ming, KOU Hong-chao, JIA Meng-yu, TANG Bin, LI Jin-shan
(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China)
Due to the low density, high specific strength and good creep resistance at high temperature, TiAl alloys have been successfully used in aero-engines. Through introduction of high content of β-stabilizing alloying elements, the advanced β-type γ-TiAl alloys possess improved thermal workability and are more suitable for thermomechanical processing. A thorough understanding of the microstructure evolution and deformation mechanism of the β-type γ-TiAl alloys during thermomechanical processing is the prerequisite for formulating and optimizing the processing parameters. Therefore, the microstructure evolution and dynamic recrystallization mechanism of β-type γ-TiAl alloys with different initial microstructures during thermomechanical processing were reviewed and discussed. It was pointed out that when the thermal processing temperature was lower thanγ,solv, the microstructure evolution was mainly related to the fragmentation of the α2/γ lamellar colonies. When the thermal processing temperature was higher thanγ,solv, the microstructure evolution was mainly related to the dynamic recrystallization of the α phase. Besides, the effects β phase on the α2/γ lamellar colonies and the dynamic recrystallization of the α phase were analyzed. The fundamental issues related to β-type γ-TiAl alloys during thermomechanical processing are summarized prospected.
TiAl alloys; thermomechanical processing; deformation behavior; recrystallization; microstructure evolution
10.3969/j.issn.1674-6457.2022.01.002
TG146
A
1674-6457(2022)01-0011-08
2021-12-09
強鳳鳴(1992—),女,博士生,主要研究方向為鈦鋁合金及其組織調控技術。
寇宏超(1973—),男,博士,教授,主要研究方向為高性能鈦合金及其制備成形技術。