柯金宏 汪 波
有氧運(yùn)動(dòng)對(duì)記憶的影響及其神經(jīng)生物學(xué)機(jī)制*
柯金宏 汪 波
(中央財(cái)經(jīng)大學(xué)社會(huì)與心理學(xué)院, 北京 100081)
有氧運(yùn)動(dòng)是氧氣充足時(shí)運(yùn)用大型肌肉群進(jìn)行有節(jié)奏的持續(xù)運(yùn)動(dòng)。有氧運(yùn)動(dòng)可以加快工作記憶任務(wù)中的反應(yīng)速度; 在記憶編碼前和記憶鞏固階段進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng)有助于提升情景記憶; 高強(qiáng)度有氧運(yùn)動(dòng)可以促進(jìn)內(nèi)隱記憶。有氧運(yùn)動(dòng)可以促進(jìn)神經(jīng)營(yíng)養(yǎng)因子的產(chǎn)生, 引起長(zhǎng)時(shí)程增強(qiáng), 激活海馬等與記憶相關(guān)的腦區(qū)并促進(jìn)神經(jīng)元再生。未來(lái)可探究有氧運(yùn)動(dòng)開始和持續(xù)時(shí)間的影響、有氧運(yùn)動(dòng)強(qiáng)度和認(rèn)知參與的影響、有氧運(yùn)動(dòng)對(duì)不同年齡性別群體的影響以及腦源性神經(jīng)營(yíng)養(yǎng)因子的中介作用, 從而深入揭示有氧運(yùn)動(dòng)對(duì)記憶的影響及其神經(jīng)生物學(xué)機(jī)制。
有氧運(yùn)動(dòng), 記憶, 神經(jīng)生物學(xué)機(jī)制
有氧運(yùn)動(dòng)是一種在氧氣充足的情況下, 運(yùn)用大型肌肉群進(jìn)行有節(jié)奏的持續(xù)運(yùn)動(dòng)。心率儲(chǔ)備(heart rate reserve, HRR)和攝氧量?jī)?chǔ)備(oxygen uptake reserve, VO2R)常作為衡量有氧運(yùn)動(dòng)強(qiáng)度的指標(biāo), 低強(qiáng)度為30%至39% HRR或VO2R, 中強(qiáng)度為40%至59% HRR或VO2R, 高強(qiáng)度為60%至89% HRR或VO2R (American College of Sports Medicine, 2016)。有氧運(yùn)動(dòng)的形式多種多樣。在室內(nèi)可借助跳繩、固定式單車、跑步機(jī)等器材進(jìn)行有氧運(yùn)動(dòng); 在室外可通過(guò)健步走、跑步、輪滑、騎單車、游泳等方式進(jìn)行有氧運(yùn)動(dòng)(American Heart Association, 2018)。
有氧運(yùn)動(dòng)有助于提升記憶, 緩解因壓力(Loprinzi & Frith, 2019b)、高熱量飲食(Loprinzi, Ponce, et al., 2019)、高血壓(陳靜等, 2020)以及毒品成癮(李夏雯等, 2019, 11月)等誘發(fā)的記憶損傷。但是, 因?yàn)闀r(shí)間少和場(chǎng)地不足, 我國(guó)仍有超過(guò)一半的成年人幾乎沒有體育鍛煉(國(guó)家體育總局, 2015)。研究發(fā)現(xiàn), 兒童久坐行為和工作記憶的下降呈正相關(guān)(Lopez-Vicente et al., 2017)。缺乏有氧運(yùn)動(dòng)可能對(duì)國(guó)民的記憶產(chǎn)生不良影響。
本文將從有氧運(yùn)動(dòng)對(duì)不同類型記憶的影響著手, 分別闡述有氧運(yùn)動(dòng)對(duì)工作記憶、情景記憶和內(nèi)隱記憶的影響, 同時(shí)指出對(duì)有氧運(yùn)動(dòng)與記憶的關(guān)系的多個(gè)調(diào)節(jié)變量。本文還將從腦源性神經(jīng)營(yíng)養(yǎng)因子、海馬等方面闡述有氧運(yùn)動(dòng)影響記憶的神經(jīng)生物學(xué)機(jī)制。最后提出未來(lái)可探究記憶類型、有氧運(yùn)動(dòng)開始和持續(xù)時(shí)間、有氧運(yùn)動(dòng)強(qiáng)度和認(rèn)知參與、以及性別年齡的調(diào)節(jié)作用, 并進(jìn)一步探究腦源性神經(jīng)營(yíng)養(yǎng)因子的中介作用, 從而揭示有氧運(yùn)動(dòng)對(duì)記憶產(chǎn)生影響的神經(jīng)生物學(xué)機(jī)制。
根據(jù)保持時(shí)間的長(zhǎng)短, 可將記憶分為短時(shí)記憶和長(zhǎng)時(shí)記憶(Atkinson & Shiffrin, 1968)。工作記憶的概念從短時(shí)記憶發(fā)展而來(lái)。根據(jù)Baddeley和Hitch (1974)提出的工作記憶模型, 工作記憶具有多個(gè)子系統(tǒng), 由一個(gè)中樞系統(tǒng)控制語(yǔ)音環(huán)和視覺空間板的記憶信息。根據(jù)多重記憶模型, 長(zhǎng)時(shí)記憶可以分為語(yǔ)義記憶、情景記憶和程序性記憶(Tulving, 1985)。程序性記憶是內(nèi)隱記憶的一種, 除此之外內(nèi)隱記憶還包括啟動(dòng)和經(jīng)典條件反射(Goldstein, 2018)。工作記憶、情景記憶和內(nèi)隱記憶是有氧運(yùn)動(dòng)與記憶研究中受到廣泛關(guān)注的三種記憶。越來(lái)越多的證據(jù)表明, 有氧運(yùn)動(dòng)對(duì)這三種記憶有不同的影響。
元分析發(fā)現(xiàn), 有2/3的研究表明有氧運(yùn)動(dòng)對(duì)工作記憶有顯著的促進(jìn)作用(Rathore & Lom, 2017), 其中多數(shù)研究發(fā)現(xiàn)可以提升記憶廣度任務(wù)中正確回憶數(shù)字或字母的個(gè)數(shù)(Albinet et al., 2016; Basso et al., 2015; Budde et al., 2010; Chang et al., 2011; Fisher et al., 2011), 少數(shù)研究發(fā)現(xiàn)可以縮短反應(yīng)時(shí)(Chen et al., 2014; Hogan et al., 2013)。在一個(gè)研究中, 老年人早晨進(jìn)行30分鐘, 強(qiáng)度為65%至75%最大心率(maximum heart rate, HRmax)的步行, 接著每隔30分鐘久坐后再次起身步行, 比一直久坐的老年人在記憶廣度任務(wù)中正確率更高(Wheeler et al., 2020)。
研究常用n-back任務(wù)測(cè)量工作記憶, 連續(xù)呈現(xiàn)刺激時(shí), 被試判斷當(dāng)前刺激是否與之前第n個(gè)刺激相同。人們?cè)谶M(jìn)行工作記憶任務(wù)時(shí)存在速度和準(zhǔn)確性的權(quán)衡。早期的元分析發(fā)現(xiàn), 有氧運(yùn)動(dòng)可以大幅提高工作記憶任務(wù)中的反應(yīng)速度, 但對(duì)準(zhǔn)確率有小到中等程度的不利影響(Mcmorris et al., 2011)。運(yùn)用事件相關(guān)電位技術(shù)可以在時(shí)間維度上發(fā)現(xiàn)細(xì)微的變化。相比于坐著休息的被試, 使用固定式自行車和跑步機(jī)進(jìn)行有氧運(yùn)動(dòng)的被試在視覺工作記憶任務(wù)中表現(xiàn)更好, 加工速度更快; 在電生理數(shù)據(jù)結(jié)果上, 有氧運(yùn)動(dòng)被試比休息被試的刺激鎖定偏側(cè)預(yù)備電位(stimulus-locked lateralized readiness potential, sLRP)更早出現(xiàn), 而且sLRP和反應(yīng)鎖定偏側(cè)預(yù)備電位(response- locked lateralized readiness potential, rLRP)的振幅更大(Dodwell et al., 2019)。
低強(qiáng)度有氧運(yùn)動(dòng)更有利于工作記憶。存在一種假設(shè), 在記憶編碼期間, 高強(qiáng)度有氧運(yùn)動(dòng)導(dǎo)致認(rèn)知資源分配到其他任務(wù), 從而損害工作記憶(Dietrich, 2006)。有實(shí)驗(yàn)結(jié)果支持這個(gè)假設(shè)。單次高強(qiáng)度(80% HRR)有氧運(yùn)動(dòng)降低工作記憶任務(wù)的正確率, 但單次低強(qiáng)度(30% HRR)和中強(qiáng)度(50% HRR)有氧運(yùn)動(dòng)沒有影響(Loprinzi, Day, et al., 2019)。對(duì)于兒童, 強(qiáng)度小于70% HRmax的有氧運(yùn)動(dòng)可以提升工作記憶能力和工作記憶刷新功能, 而高強(qiáng)度有氧運(yùn)動(dòng)(70%至80% HRmax或75%至85%最大攝氧量, maximal oxygen uptake, VO2max)則沒有影響(董俊, 2018; 解超, 2020)。對(duì)于大學(xué)生被試, 發(fā)生在記憶編碼過(guò)程中的高強(qiáng)度有氧運(yùn)動(dòng)(70%~85% HRmax)不利于工作記憶(Loprinzi, 2018), 這可能是由于單次高強(qiáng)度有氧運(yùn)動(dòng)會(huì)產(chǎn)生神經(jīng)信號(hào)噪音(Kashihara et al., 2009)。
有氧運(yùn)動(dòng)所需的認(rèn)知參與程度對(duì)工作記憶有積極影響。當(dāng)環(huán)境不可預(yù)測(cè)時(shí), 人們需要更多的認(rèn)知參與, 此時(shí)進(jìn)行的有氧運(yùn)動(dòng)稱為開放性有氧運(yùn)動(dòng)(如乒乓球、羽毛球等); 而認(rèn)知參與較低, 對(duì)體能和心肺功能需求相對(duì)較高的有氧運(yùn)動(dòng)稱為閉鎖性有氧運(yùn)動(dòng)(如跑步和游泳) (郭瑋等, 2019)。有行為實(shí)驗(yàn)表明, 打排球比跑步更能提升工作記憶的正確率(Zach & Shalom, 2016)。另外一個(gè)研究也表明, 在視空間信息干擾任務(wù)中, 有干擾條件下開放性有氧運(yùn)動(dòng)老年人的正確率顯著高于閉鎖性有氧運(yùn)動(dòng)組和久坐組(郭瑋等, 2019)。因此, 更高認(rèn)知參與程度的有氧運(yùn)動(dòng)更有利于提升工作記憶。
情景記憶是有關(guān)特定時(shí)空環(huán)境下個(gè)體經(jīng)歷的記憶(Tulving, 1972)。研究可以用自由回憶或再認(rèn)的形式測(cè)量情景記憶。自由回憶是被試首先學(xué)習(xí)一個(gè)詞匯列表, 延遲一段時(shí)間后不憑借任何線索對(duì)學(xué)習(xí)過(guò)的詞匯列表進(jìn)行回憶, 而再認(rèn)則是學(xué)習(xí)過(guò)一個(gè)舊的詞表之后, 混入新詞匯, 要求被試判斷詞匯是學(xué)過(guò)的舊詞還是新詞。
發(fā)生在記憶編碼, 記憶鞏固和記憶提取等不同階段的有氧運(yùn)動(dòng)對(duì)情景記憶存在不同影響。實(shí)驗(yàn)表明, 記憶編碼前進(jìn)行15分鐘步行比記憶鞏固階段步行的效果更好(Haynes et al., 2019)。在記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng)也有利于減少錯(cuò)誤記憶的發(fā)生, 但還需要更強(qiáng)有力的證據(jù)(Loprinzi, Lovorn, et al., 2019)。元分析也支持上述結(jié)果, 在編碼前有氧運(yùn)動(dòng)促進(jìn)情景記憶, 編碼時(shí)有氧運(yùn)動(dòng)損害情景記憶, 記憶鞏固的早期和晚期進(jìn)行有氧運(yùn)動(dòng)可以促進(jìn)情景記憶(Loprinzi, Blough, et al., 2019)。
現(xiàn)有研究不僅僅局限于探究單次有氧運(yùn)動(dòng)開始時(shí)間的影響, 也有多個(gè)研究考察在編碼和提取階段均開始有氧運(yùn)動(dòng)是否更能促進(jìn)情景記憶。前人研究發(fā)現(xiàn), 編碼和提取所處的狀態(tài)或環(huán)境相同, 更有利于記憶的提取, 這被稱為編碼特異性(Encoding Specificity) (Tulving & Thomson, 1973)。有研究表明, 記憶編碼前和記憶鞏固階段均進(jìn)行有氧運(yùn)動(dòng), 和只在記憶編碼前進(jìn)行有氧運(yùn)動(dòng)的效果沒有差異(Loprinzi, Chism, et al., 2019)。該研究的缺點(diǎn)在于沒有設(shè)置休息組。另一個(gè)研究具有相容兩組(編碼時(shí)和提取時(shí)分別為休息?休息或運(yùn)動(dòng)?運(yùn)動(dòng))和不相容兩組(休息?運(yùn)動(dòng)或運(yùn)動(dòng)?休息), 發(fā)現(xiàn)相容的狀態(tài)下記憶效果更好, 支持編碼特異性, 但是休息?休息組的成績(jī)與運(yùn)動(dòng)?運(yùn)動(dòng)組的成績(jī)沒有顯著差異(Yanes et al., 2019)。在記憶編碼時(shí)進(jìn)行有氧運(yùn)動(dòng), 記憶提取時(shí)的狀態(tài)(休息)與編碼時(shí)的狀態(tài)(有氧運(yùn)動(dòng))往往不相同, 因此這可能也是編碼時(shí)進(jìn)行有氧運(yùn)動(dòng)不利于提升記憶的原因之一。
只有一個(gè)運(yùn)動(dòng)階段(session)的運(yùn)動(dòng)稱為單次運(yùn)動(dòng), 長(zhǎng)期運(yùn)動(dòng)指有多個(gè)階段的運(yùn)動(dòng)(Rathore & Lom, 2017)。與單次有氧運(yùn)動(dòng)相比, 長(zhǎng)期有氧運(yùn)動(dòng)更有利于提升情景記憶。在一項(xiàng)研究中, 75名健康年輕成人被隨機(jī)分配到4組(4周有氧運(yùn)動(dòng)且最后1天運(yùn)動(dòng)、4周有氧運(yùn)動(dòng)且最后1天不運(yùn)動(dòng)、只在最后1天有氧運(yùn)動(dòng)、完全不運(yùn)動(dòng))。有氧運(yùn)動(dòng)內(nèi)容是每周4次30分鐘以上的健步走。結(jié)果表明, 僅在4周有氧運(yùn)動(dòng)且最后1天運(yùn)動(dòng)條件下, 物體再認(rèn)記憶提升, 其他3個(gè)條件下被試的記憶下降(Hopkins et al., 2012), 這表明一旦終止長(zhǎng)期有氧運(yùn)動(dòng), 對(duì)記憶的促進(jìn)作用也隨之消失。
高強(qiáng)度有氧運(yùn)動(dòng)更有利于情景記憶。在記憶編碼前和記憶鞏固階段進(jìn)行強(qiáng)度高于76% HRmax有氧運(yùn)動(dòng)比低于76% HRmax更能提升情景記憶(Loprinzi, Blough, et al., 2019)。對(duì)于20多歲的年輕人, 進(jìn)行強(qiáng)度為65%~75% HRmax的有氧運(yùn)動(dòng)對(duì)情景記憶的促進(jìn)效果最佳(Pyke et al., 2020)。
步行和跑步對(duì)情景記憶沒有顯著影響, 而騎行對(duì)情景記憶有促進(jìn)作用(Loprinzi, Blough, et al., 2019), 這可能由于跑步過(guò)程中更需要注意平衡和上下肢協(xié)調(diào), 進(jìn)行垂直位移, 進(jìn)而身體內(nèi)部產(chǎn)生更多的噪音干擾(張斌, 劉瑩, 2019)。
前人研究發(fā)現(xiàn), 情緒對(duì)記憶鞏固具有一定影響, 誘發(fā)悲傷比誘發(fā)憤怒導(dǎo)致更好的詞匯再認(rèn)成績(jī)(Wang, 2021)。有氧運(yùn)動(dòng)和情緒可能具有協(xié)同作用, 影響創(chuàng)傷性刺激記憶, 這對(duì)恐懼記憶調(diào)節(jié)和焦慮癥的治療有實(shí)際意義(Keyan & Bryant, 2019)。有研究發(fā)現(xiàn), 觀看車禍影片后進(jìn)行10分鐘步行的被試比觀看影片后休息的被試報(bào)告了更多的侵入性記憶(Keyan & Bryant, 2017)。Jentsch和Wolf (2020)探究有氧運(yùn)動(dòng)、性別對(duì)情緒記憶的復(fù)雜交互作用。他們發(fā)現(xiàn), 針對(duì)負(fù)性圖片, 有氧運(yùn)動(dòng)促進(jìn)了女性被試的記憶, 但對(duì)男性被試的記憶沒有顯著影響; 針對(duì)正性圖片, 有氧運(yùn)動(dòng)促進(jìn)了男性被試的記憶, 但對(duì)女性被試的記憶沒有顯著影響。由此可見, 有氧運(yùn)動(dòng)對(duì)情景記憶鞏固的影響依賴于學(xué)習(xí)材料的情緒特性和性別。
內(nèi)隱記憶是先前經(jīng)驗(yàn)對(duì)當(dāng)前活動(dòng)的無(wú)意識(shí)的影響(Schacter, 1987)。內(nèi)隱記憶和外顯記憶是兩套相對(duì)的記憶系統(tǒng), 有氧運(yùn)動(dòng)對(duì)外顯記憶和內(nèi)隱記憶存在不同的影響。有研究發(fā)現(xiàn), 有氧運(yùn)動(dòng)和外顯記憶呈正相關(guān), 而與內(nèi)隱概率序列學(xué)習(xí)呈負(fù)相關(guān), 這對(duì)于女性更加明顯(Stillman et al., 2016)。但是Eich和Metcalfe (2009)卻發(fā)現(xiàn), 馬拉松對(duì)外顯記憶有負(fù)面影響, 但有助于提升內(nèi)隱記憶。啟動(dòng)和經(jīng)典條件反射均屬于內(nèi)隱記憶(Goldstein, 2018)。動(dòng)作記憶編碼階段中及編碼階段后既有外顯、也有內(nèi)隱的成分(Kantak et al., 2012), 但外顯的動(dòng)作技能學(xué)習(xí)依賴于工作記憶, 而獨(dú)立于工作記憶的部分為內(nèi)隱的動(dòng)作技能學(xué)習(xí)(Jongbloed-Pereboom et al., 2017)。
在實(shí)驗(yàn)室研究中, 一般采用視覺運(yùn)動(dòng)精度跟蹤任務(wù)進(jìn)行測(cè)量, 即使用操縱桿控制屏幕光標(biāo)快速移動(dòng)到不斷變化的指定目標(biāo)位置(Mang et al., 2014)。一項(xiàng)研究以學(xué)齡兒童為被試, 采用視覺運(yùn)動(dòng)精度跟蹤任務(wù), 考察了記憶鞏固階段跑步對(duì)動(dòng)作記憶的影響, 發(fā)現(xiàn)即時(shí)測(cè)試中跑步組的成績(jī)低于休息組, 但7天后的測(cè)試中跑步組的成績(jī)高于休息組(Lundbye-Jensen et al., 2017)。在另一項(xiàng)研究中, 相比于不運(yùn)動(dòng)的兒童, 進(jìn)行單次短時(shí)間和單次長(zhǎng)時(shí)間有氧運(yùn)動(dòng)之后的兒童在旋轉(zhuǎn)視覺運(yùn)動(dòng)適應(yīng)任務(wù)中的表現(xiàn)更好, 動(dòng)作記憶保持時(shí)間更長(zhǎng)(Angulo-Barroso et al., 2019)。因此在記憶編碼前和記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng), 均有助于促進(jìn)內(nèi)隱記憶, 使兒童習(xí)得新的運(yùn)動(dòng)技能。近期元分析發(fā)現(xiàn), 單次有氧運(yùn)動(dòng)對(duì)動(dòng)作記憶的鞏固有顯著促進(jìn)作用, 但效應(yīng)量較小(Wanner, Cheng, et al., 2020)。
單次和長(zhǎng)期有氧運(yùn)動(dòng)均能促進(jìn)動(dòng)作記憶, 不過(guò)迄今為止只有極少數(shù)研究對(duì)長(zhǎng)期有氧運(yùn)動(dòng)對(duì)動(dòng)作記憶影響進(jìn)行探究。在一項(xiàng)研究中, 38名慢性中風(fēng)幸存者被隨機(jī)分配到固定式單車有氧運(yùn)動(dòng)組或伸展運(yùn)動(dòng)組, 進(jìn)行為期8周, 每周3次, 每次45分鐘, 強(qiáng)度為70% HRmax的運(yùn)動(dòng), 運(yùn)動(dòng)后用序列反應(yīng)時(shí)任務(wù)即時(shí)測(cè)驗(yàn)。結(jié)果表明, 有氧運(yùn)動(dòng)組成績(jī)顯著高于伸展運(yùn)動(dòng)組, 但是在運(yùn)動(dòng)結(jié)束后的第8周進(jìn)行延遲測(cè)驗(yàn), 結(jié)果沒有顯著差異(Quaney et al., 2009)。這表明長(zhǎng)期有氧運(yùn)動(dòng)對(duì)動(dòng)作記憶存在相對(duì)短暫的積極影響。最新研究發(fā)現(xiàn), 進(jìn)行2周自行車有氧運(yùn)動(dòng)的健康年輕被試比沒有運(yùn)動(dòng)的被試可以更快速地學(xué)習(xí)動(dòng)態(tài)平衡任務(wù)(Lehmann et al., 2020)。
高強(qiáng)度(>80%最大功率輸出maximal power output, Wmax, 基本單位瓦特Watt, W)有氧運(yùn)動(dòng)可以促進(jìn)動(dòng)作記憶的鞏固, 而強(qiáng)度為40%~79% Wmax的有氧運(yùn)動(dòng)對(duì)動(dòng)作記憶鞏固沒有顯著影響(Wanner, Cheng, et al., 2020)。但是, 由于肌肉群均參與有氧運(yùn)動(dòng)和動(dòng)作記憶任務(wù), 高強(qiáng)度有氧運(yùn)動(dòng)可能導(dǎo)致疲勞或干擾效應(yīng), 這將使有氧運(yùn)動(dòng)強(qiáng)度的調(diào)節(jié)效應(yīng)消失(Wanner, Müller, et al., 2020)。最新研究發(fā)現(xiàn), 分別進(jìn)行17分鐘強(qiáng)度為60%~90% Wmax、25%~45% Wmax、和25 W自行車騎行后, 復(fù)雜動(dòng)作記憶任務(wù)的表現(xiàn)沒有顯著差異(Wanner, Müller, et al., 2020)。因此, 探究高強(qiáng)度有氧運(yùn)動(dòng)的影響, 需要排除被試的認(rèn)知資源超負(fù)荷和肌肉疲勞干擾因素。
經(jīng)典條件反射和啟動(dòng)也屬于內(nèi)隱記憶。經(jīng)典條件反射是指當(dāng)中性刺激與無(wú)條件刺激多次聯(lián)結(jié)后, 單獨(dú)呈現(xiàn)中性刺激也會(huì)引發(fā)類似無(wú)條件反射的條件反射(Goldstein, 2018)。目前, 大部分動(dòng)物研究考察小鼠跑步后的條件反射。有研究表明, 2至8周的跑步可以增強(qiáng)小鼠的恐懼條件反射(Loprinzi & Edwards, 2018)。另一項(xiàng)研究將聲調(diào)這種中性刺激和電擊聯(lián)結(jié), 隨后單獨(dú)呈現(xiàn)聲調(diào)并測(cè)量條件反射, 結(jié)果表明, 單次60分鐘的高強(qiáng)度跑步損害了小鼠的聲調(diào)恐懼條件反射(Aguiar et al., 2010)。因此, 有氧運(yùn)動(dòng)對(duì)條件反射的影響可能取決于有氧運(yùn)動(dòng)的持續(xù)時(shí)間。
啟動(dòng)指某個(gè)啟動(dòng)刺激的出現(xiàn)影響了對(duì)隨后測(cè)試刺激的反應(yīng), 比如在詞干補(bǔ)全任務(wù)中, 啟動(dòng)刺激parrot會(huì)使人們補(bǔ)全詞干par__時(shí)更可能填寫(Goldstein, 2018)。只有一個(gè)研究探究了單次有氧運(yùn)動(dòng)對(duì)啟動(dòng)的影響。Eich和Metcalfe (2009)發(fā)現(xiàn), 與休息組被試相比, 完成馬拉松的運(yùn)動(dòng)員們?cè)谠~干補(bǔ)全任務(wù)上表現(xiàn)更優(yōu)秀。
研究發(fā)現(xiàn)長(zhǎng)期有氧運(yùn)動(dòng)有利于工作記憶和情景記憶, 而單次有氧運(yùn)動(dòng)則沒有顯著影響(Hopkins et al., 2012; Rathore & Lom, 2017)。對(duì)于動(dòng)作記憶, 現(xiàn)有研究表明單次和長(zhǎng)期有氧運(yùn)動(dòng)均能促進(jìn)動(dòng)作記憶(Lehmann et al., 2020; Wanner, Cheng, et al., 2020), 但尚未有研究直接比較單次和長(zhǎng)期有氧運(yùn)動(dòng)的影響。除此之外, 單次有氧運(yùn)動(dòng)可以促進(jìn)啟動(dòng)效應(yīng)(Eich & Metcalfe, 2009), 而沒有研究探討長(zhǎng)期有氧運(yùn)動(dòng)對(duì)啟動(dòng)的影響。
有氧運(yùn)動(dòng)強(qiáng)度對(duì)三種記憶的影響具有差異。高強(qiáng)度有氧運(yùn)動(dòng)(大于70% HRmax)不利于工作記憶(Loprinzi, 2018), 中強(qiáng)度有氧運(yùn)動(dòng)(40%至59% HRmax)對(duì)工作記憶的促進(jìn)作用最大(Roig et al., 2013)。但高強(qiáng)度有氧運(yùn)動(dòng)(大于76% HRmax)更能提升情景記憶(Loprinzi, Blough, et al., 2019)。高強(qiáng)度有氧運(yùn)動(dòng)(大于80% HRmax)也可以促進(jìn)內(nèi)隱記憶(Wanner, Cheng, et al., 2020), 但可能導(dǎo)致疲勞或干擾效應(yīng)(Wanner, Müller, et al., 2020)。
對(duì)于有氧運(yùn)動(dòng)種類, 開放性有氧運(yùn)動(dòng)(如排球)比閉鎖性有氧運(yùn)動(dòng)(如跑步)更能促進(jìn)工作記憶(郭瑋等, 2019; Zach & Shalom, 2016), 自行車有氧運(yùn)動(dòng)對(duì)情景記憶有促進(jìn)作用, 而跑步對(duì)情景記憶幾乎沒有影響(Loprinzi, Blough, et al., 2019)。自行車有氧運(yùn)動(dòng)有利于動(dòng)作記憶(Quaney et al., 2009)。
有氧運(yùn)動(dòng)開始于記憶的某一階段, 該因素對(duì)三種記憶的影響存在共性。在記憶任務(wù)編碼之前進(jìn)行有氧運(yùn)動(dòng)對(duì)工作記憶(Loprinzi, 2018)、情景記憶(Loprinzi, Blough, et al., 2019)和內(nèi)隱記憶(Angulo-Barroso et al., 2019)均有促進(jìn)作用。在記憶編碼階段中進(jìn)行有氧運(yùn)動(dòng)會(huì)損害工作記憶(Loprinzi, 2018)和情景記憶(Loprinzi, Blough, et al., 2019), 進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng)的損害作用更大(Crawford et al., 2021)。在記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng)可以促進(jìn)情景記憶(Loprinzi, Blough, et al., 2019)和內(nèi)隱記憶(Lundbye-Jensen et al., 2017)。由于工作記憶的記憶鞏固階段較短(約為500到2000毫秒) (Ricker et al., 2018), 難以探究在工作記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng)的影響。除此之外, 目前尚未有人探究在記憶編碼中進(jìn)行有氧運(yùn)動(dòng)對(duì)內(nèi)隱記憶有何影響。
從總體上看, 有氧運(yùn)動(dòng)對(duì)三種記憶均有某種程度的促進(jìn)作用, 但受到記憶種類、有氧運(yùn)動(dòng)持續(xù)時(shí)間、有氧運(yùn)動(dòng)強(qiáng)度, 和有氧運(yùn)動(dòng)發(fā)生在記憶任務(wù)階段的影響, 如表1所示。
表1 有氧運(yùn)動(dòng)對(duì)工作記憶、情景記憶和內(nèi)隱記憶的影響及其調(diào)節(jié)變量
注:“↑”表示對(duì)記憶有顯著的促進(jìn)作用, “↓”表示對(duì)記憶有顯著的損害作用, “—”表示對(duì)記憶的影響不顯著。由于工作記憶的記憶鞏固階段較短(約為500到2000 ms) (Ricker et al., 2018), 難以探究在工作記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng)的影響; 除此之外, 目前尚未有人探究在記憶編碼中進(jìn)行有氧運(yùn)動(dòng)對(duì)內(nèi)隱記憶有何影響, 因此這兩個(gè)地方用空格表示。
Stillman等(2020)指出, 有氧運(yùn)動(dòng)可能通過(guò)多個(gè)層次影響腦和認(rèn)知:分子和細(xì)胞、腦結(jié)構(gòu)與功能, 以及心理狀態(tài)和行為(比如睡眠)。下文從分子層面和海馬結(jié)構(gòu)闡述有氧運(yùn)動(dòng)對(duì)記憶的影響機(jī)制。
有氧運(yùn)動(dòng)可以調(diào)節(jié)與記憶相關(guān)的激素、促進(jìn)腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)的產(chǎn)生, 改變膜受體表達(dá)、移位, 激活數(shù)條通路, 進(jìn)而改變突觸的可塑性, 促進(jìn)記憶(Loprinzi & Frith, 2019a)。小鼠研究表明, 肌肉在有氧運(yùn)動(dòng)過(guò)程中釋放的乳酸代謝物穿過(guò)血腦屏障, 并在海馬體中誘導(dǎo)BDNF的表達(dá)(El Hayek et al., 2019), 與此同時(shí)促進(jìn)鳶尾素(irisin, 是纖維結(jié)合蛋白Ⅲ型結(jié)構(gòu)域片段)的合成, 這也有利于促進(jìn)BDNF的表達(dá)(Lourenco et al., 2019)。除此之外, FNDC5/irisin刺激了小鼠和人腦切片中的cAMP/ PKA/CREB通路, 是體育鍛煉對(duì)阿爾茨海默癥患者神經(jīng)保護(hù)作用的潛在機(jī)制, 但是FNDC5/ irisin是否中介有氧運(yùn)動(dòng)對(duì)神經(jīng)系統(tǒng)的其他影響(比如神經(jīng)元再生)還有待探索(de Freitas et al., 2020)。
在動(dòng)物研究中普遍發(fā)現(xiàn), BDNF是有氧運(yùn)動(dòng)和記憶的中介(付燕等, 2015; Hyuk, 2009)。但是, 有氧運(yùn)動(dòng)對(duì)人類被試記憶的影響是否通過(guò)BDNF中介尚有爭(zhēng)論。在一項(xiàng)元分析中, 16個(gè)人類被試研究中有7個(gè)觀測(cè)到有氧運(yùn)動(dòng)后BDNF水平的提升(Loprinzi, 2019)。這16個(gè)研究中有10個(gè)研究對(duì)BDNF和記憶的相關(guān)進(jìn)行檢驗(yàn), 4個(gè)研究觀測(cè)到BDNF具有中介作用(Heisz et al., 2017; Maass et al., 2016; Wagner et al., 2017; Winter et al., 2007)。在被試方面, 既有約22歲的年輕男性(Winter et al., 2007), 也有60至77歲的老年人, 其中男性占45% (Maass et al., 2016), 4個(gè)研究的樣本均是健康被試。運(yùn)動(dòng)方面, 所有研究均采用發(fā)生在記憶編碼前的高強(qiáng)度有氧運(yùn)動(dòng)方案, Winter等采用單次40分鐘跑步, Maass等人采用3個(gè)月跑步, Wagner等和Heisz等采用6周的固定式單車有氧運(yùn)動(dòng)。記憶方面, 4項(xiàng)研究均測(cè)量情景記憶。BDNF均在最后一次有氧運(yùn)動(dòng)的前后立即測(cè)量。
綜上, 能否發(fā)現(xiàn)BDNF的中介作用可能與有氧運(yùn)動(dòng)強(qiáng)度、有氧運(yùn)動(dòng)開始于記憶的某個(gè)階段、記憶類型以及測(cè)量BDNF的時(shí)機(jī)有關(guān)。在記憶編碼前進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng)有助于引起B(yǎng)DNF水平的變化, 進(jìn)而影響人們的情景記憶。對(duì)于BDNF的測(cè)量時(shí)機(jī), 單次有氧運(yùn)動(dòng)后BDNF水平升高, 但在數(shù)小時(shí)內(nèi)會(huì)回到正常水平(Knaepen et al., 2010)。因此, 如果測(cè)量的時(shí)刻距離有氧運(yùn)動(dòng)的時(shí)段較遠(yuǎn), 則可能觀測(cè)不到BDNF水平的提升。一項(xiàng)研究考察了持續(xù)5周, 每周5天, 每天35分鐘的有氧運(yùn)動(dòng)對(duì)老年人BDNF水平的影響; 在有氧運(yùn)動(dòng)結(jié)束平均3.8天后測(cè)量BDNF, 并未發(fā)現(xiàn)BDNF水平提升(Ledreux et al., 2019)。由此可見, 有氧運(yùn)動(dòng)引起B(yǎng)DNF變化的時(shí)長(zhǎng)相對(duì)短暫, 只有在有氧運(yùn)動(dòng)后立即測(cè)量, 才更容易觀測(cè)到BDNF水平的提升。
具有特定基因的人進(jìn)行長(zhǎng)期有氧運(yùn)動(dòng), 更有助于BDNF的表達(dá), 進(jìn)而提升情景記憶。研究發(fā)現(xiàn)等位基因狀態(tài)(即Val/Val或Val/Met基因多態(tài)性)與BDNF的表達(dá)有關(guān), 進(jìn)行4周且最后1天有氧運(yùn)動(dòng)的被試中, 只有Val/Val純合子基因攜帶者的物體再認(rèn)記憶得到顯著提升, Val/Met雜合子基因攜帶者的記憶沒有顯著提升(Hopkins et al., 2012)。這進(jìn)一步表明長(zhǎng)期有氧運(yùn)動(dòng)提升情景記憶與BDNF表達(dá)的相關(guān)性。
有氧運(yùn)動(dòng)通過(guò)改變分子和細(xì)胞, 影響腦結(jié)構(gòu)和功能, 最終影響記憶。對(duì)于記憶編碼和鞏固, BDNF等分子在血清中含量的提升會(huì)引起記憶相關(guān)腦區(qū)的激活, 進(jìn)而增強(qiáng)記憶。研究發(fā)現(xiàn), 持續(xù)六個(gè)星期的自行車有氧運(yùn)動(dòng)導(dǎo)致BDNF水平的提升, 與此同時(shí), 有氧運(yùn)動(dòng)組和對(duì)照組左前海馬的激活模式出現(xiàn)顯著差異, 該激活的變化與BDNF水平的變化呈正相關(guān)(Wagner et al., 2017)。除此之外, 有氧運(yùn)動(dòng)減輕遺忘可能有如下假設(shè)機(jī)制:?jiǎn)未斡醒踹\(yùn)動(dòng)通過(guò)激活迷走神經(jīng)或肌肉紡錘體, 由腦干傳導(dǎo)至杏仁核、內(nèi)側(cè)前額葉皮質(zhì)和齒狀回, 提升這些區(qū)域的神經(jīng)活動(dòng); 長(zhǎng)期有氧運(yùn)動(dòng)通過(guò)促進(jìn)這些區(qū)域的細(xì)胞生成、增強(qiáng)功能連接, 進(jìn)而減弱遺忘(Crawford et al., 2020)。然而元分析并未發(fā)現(xiàn)有氧運(yùn)動(dòng)對(duì)減輕遺忘有顯著作用(= 0.10; 95% CI [?0.04, 0.25],= 0.17) (Moore et al., 2020)。
單次和長(zhǎng)期有氧運(yùn)動(dòng)均能使海馬激活發(fā)生變化。有證據(jù)表明, 即使是低強(qiáng)度(30% VO2max)的10分鐘自行車有氧運(yùn)動(dòng), 也可以迅速增強(qiáng)海馬DG/CA3和皮層區(qū)域的功能連接(Suwabe et al., 2018)。運(yùn)用fMRI技術(shù), 對(duì)比6個(gè)月臥床組和跳躍有氧運(yùn)動(dòng)組的情景記憶和海馬激活的變化, 結(jié)果發(fā)現(xiàn)情景記憶沒有顯著差異, 而臥床組的海馬左側(cè)和海馬旁回的血氧水平依賴信號(hào)增加, 由此推測(cè)臥床組由于身體沒有活動(dòng)而導(dǎo)致功能失調(diào)(Friedl-Werner et al., 2020)。
有氧運(yùn)動(dòng)不僅使海馬激活, 還可以引起海馬的神經(jīng)元再生。研究發(fā)現(xiàn)有氧運(yùn)動(dòng)可以促進(jìn)成年老鼠的海馬神經(jīng)元再生(van Praag et al., 2005)。成年海馬神經(jīng)元再生通過(guò)齒狀回顆粒下區(qū)的神經(jīng)干細(xì)胞池驅(qū)動(dòng), 神經(jīng)干細(xì)胞從靜止?fàn)顟B(tài)激活后產(chǎn)生神經(jīng)祖細(xì)胞, 分裂并產(chǎn)生神經(jīng)細(xì)胞, 最后整合到現(xiàn)有的海馬網(wǎng)絡(luò)中, 該過(guò)程隨海馬可塑性的生理需求不斷調(diào)控, 隨年齡增長(zhǎng), 神經(jīng)元再生的水平緩慢下降(Bielefeld et al., 2019)。有氧運(yùn)動(dòng)可以暫緩甚至扭轉(zhuǎn)這種下降趨勢(shì), 一項(xiàng)采用fMRI技術(shù)的研究表明, 有氧運(yùn)動(dòng)干預(yù)后小鼠和人類被試海馬齒狀回的腦血容量均增加, 這與神經(jīng)元再生相關(guān)(Pereira et al., 2007), 此外有證據(jù)表明, 12周的健步走訓(xùn)練增大了年輕被試的海馬前部齒狀回體積(Nauer et al., 2020)。
對(duì)于工作記憶, 單次低強(qiáng)度(30% VO2max)騎行可以導(dǎo)致空間工作記憶的改善, 同時(shí)提高前額葉的氧合血紅蛋白水平(Yamazaki et al., 2017)。長(zhǎng)期有氧運(yùn)動(dòng)可以通過(guò)提升心肺適能, 使其維持在最佳水平, 而良好的心肺適能通過(guò)增強(qiáng)額頂葉的激活, 從而提高工作記憶的表現(xiàn)(Ishihara et al., 2020)。在一項(xiàng)研究中, 34名老年人參加12周中強(qiáng)度(58.2% HRmax)自行車有氧運(yùn)動(dòng)后完成工作記憶任務(wù), 發(fā)現(xiàn)右側(cè)額頂葉的功能連接增強(qiáng), 工作記憶任務(wù)的表現(xiàn)也顯著改善, 且功能連接和工作記憶任務(wù)表現(xiàn)呈正相關(guān)(Voss et al., 2020)。一個(gè)以中老年人為被試的fMRI實(shí)驗(yàn)顯示, 開放性有氧運(yùn)動(dòng)組比閉鎖性有氧運(yùn)動(dòng)組空間工作記憶更好, 前額葉、前扣帶皮質(zhì)/輔助運(yùn)動(dòng)區(qū)和海馬體的激活更強(qiáng)(Chen et al., 2019)。
情景記憶由內(nèi)側(cè)顳葉和相關(guān)腦網(wǎng)絡(luò)維持, 增強(qiáng)該區(qū)域細(xì)胞和神經(jīng)的溝通稱為長(zhǎng)時(shí)程增強(qiáng)。BDNF可以促進(jìn)長(zhǎng)時(shí)程增強(qiáng), 進(jìn)而改善情景記憶(Moore & Loprinzi, 2020)。具體來(lái)講, 通過(guò)有氧運(yùn)動(dòng)誘導(dǎo)刺激肌梭和迷走神經(jīng), 海馬旁和海馬神經(jīng)元激活將隨之發(fā)生, 最終激活BDNF-TrkB通路, 激活該通路可激活細(xì)胞內(nèi)通路(例如PI3K-AKT和MAPK/ERK), 磷酸化CREB, 最終誘導(dǎo)長(zhǎng)時(shí)程增強(qiáng)(Moore & Loprinzi, 2021), 促進(jìn)突觸可塑性(Zou et al., 2020)。內(nèi)源性大麻素系統(tǒng)的變化也可能是有氧運(yùn)動(dòng)影響情景記憶的中介機(jī)制(Loprinzi, Zou, et al., 2019)。
有氧運(yùn)動(dòng)對(duì)動(dòng)作記憶的提升與多巴胺有關(guān)(Christiansen et al., 2019), 可以改變大腦運(yùn)動(dòng)皮層的電信號(hào)(Dal Maso et al., 2018), 避免其他干擾因素的影響, 對(duì)動(dòng)作記憶鞏固起保護(hù)作用(Beck et al., 2020; Jo et al., 2019)。有氧運(yùn)動(dòng)可以保護(hù)初級(jí)運(yùn)動(dòng)皮層免受rTMS引起的干擾, 從而保護(hù)動(dòng)作記憶(Beck et al., 2020)。有氧運(yùn)動(dòng)也通過(guò)誘導(dǎo)額葉大腦區(qū)域激活增強(qiáng)動(dòng)作記憶, 除此之外, 還改變了額顳纖維束中白質(zhì)的微結(jié)構(gòu)(Lehmann et al., 2020)。
未來(lái)研究可從有氧運(yùn)動(dòng)相關(guān)因素及其他因素入手, 探究有氧運(yùn)動(dòng)的影響及神經(jīng)生物學(xué)機(jī)制。與有氧運(yùn)動(dòng)相關(guān)的因素包含有氧運(yùn)動(dòng)的時(shí)間(有氧運(yùn)動(dòng)開始的記憶階段和持續(xù)時(shí)間)、有氧運(yùn)動(dòng)強(qiáng)度, 有氧運(yùn)動(dòng)的認(rèn)知參與; 其他因素包含記憶種類、被試性別和年齡。
何時(shí)開始有氧運(yùn)動(dòng)(timing)、持續(xù)多長(zhǎng)時(shí)間(duration), 這兩個(gè)問題都與時(shí)間有關(guān)。有氧運(yùn)動(dòng)開始于記憶任務(wù)的不同階段具有調(diào)節(jié)作用。目前發(fā)現(xiàn)記憶編碼前和記憶鞏固階段進(jìn)行有氧運(yùn)動(dòng)對(duì)內(nèi)隱記憶有促進(jìn)作用(Angulo-Barroso et al., 2019; Lundbye-Jensen et al., 2017), 但目前尚無(wú)研究探索記憶編碼過(guò)程中進(jìn)行有氧運(yùn)動(dòng)對(duì)內(nèi)隱記憶的影響。已有研究發(fā)現(xiàn)在記憶編碼過(guò)程中進(jìn)行有氧運(yùn)動(dòng)可能損害外顯記憶, 比如工作記憶(Loprinzi, 2018)和情景記憶(Loprinzi, Blough, et al., 2019)。這可能是由于分散注意造成的(Perez et al., 2014), 因?yàn)閮?nèi)隱記憶和外顯記憶的編碼均依賴于注意(Turk-Browne et al., 2006), 可以推測(cè)在記憶編碼階段進(jìn)行有氧運(yùn)動(dòng)也可能損害內(nèi)隱記憶。納入編碼過(guò)程中有氧運(yùn)動(dòng)這一水平, 考察有氧運(yùn)動(dòng)開始的記憶階段對(duì)內(nèi)隱記憶的影響, 對(duì)于深入了解有氧運(yùn)動(dòng)、注意和記憶三者的關(guān)系, 以及對(duì)內(nèi)隱和外顯記憶是否有相同影響, 具有一定的理論價(jià)值。
可以探究有氧運(yùn)動(dòng)持續(xù)時(shí)間, 即對(duì)比長(zhǎng)期和單次有氧運(yùn)動(dòng)對(duì)內(nèi)隱記憶的影響。長(zhǎng)期有氧運(yùn)動(dòng)比單次有氧運(yùn)動(dòng)更能促進(jìn)工作記憶和情景記憶, 這一結(jié)論是否能推廣到內(nèi)隱記憶尚待考究。因?yàn)殚L(zhǎng)期和單次有氧運(yùn)動(dòng)可能對(duì)不同類型的記憶有利, 有小鼠研究發(fā)現(xiàn)單次跑步阻礙再認(rèn)記憶, 而長(zhǎng)期跑步增強(qiáng)了空間學(xué)習(xí)(Mello et al., 2008)。這可能是由于不同有氧運(yùn)動(dòng)持續(xù)時(shí)間誘導(dǎo)不同的基因表達(dá), CaM‐K信號(hào)系統(tǒng)在單次和長(zhǎng)期跑步中均處于活躍狀態(tài), 而長(zhǎng)期跑步更能激活MAP‐K/ERK系統(tǒng)(Molteni et al., 2002)。目前的研究更多聚焦于單次有氧運(yùn)動(dòng)造成的影響, 但通常有長(zhǎng)期鍛煉習(xí)慣的人才會(huì)進(jìn)行有氧運(yùn)動(dòng), 因此對(duì)比長(zhǎng)期和單次有氧運(yùn)動(dòng)的效果有助于提升研究的生態(tài)效度。
高強(qiáng)度有氧運(yùn)動(dòng)能否提升記憶仍然存在爭(zhēng)論, 主要原因是強(qiáng)度需要和其他調(diào)節(jié)因素相結(jié)合進(jìn)行考察, 比如有氧運(yùn)動(dòng)開始于記憶的階段以及持續(xù)時(shí)間。元分析發(fā)現(xiàn), 發(fā)生在記憶編碼前的高強(qiáng)度有氧運(yùn)動(dòng)有助于提升情景記憶, 而記憶編碼后的高強(qiáng)度有氧運(yùn)動(dòng)對(duì)情景記憶沒有影響(Loprinzi, 2018)。但是由于該元分析只納入了1篇記憶編碼后進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng)的研究, 因此結(jié)果的穩(wěn)定性還有待考證。如果在記憶編碼后進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng), 可適當(dāng)延長(zhǎng)有氧運(yùn)動(dòng)后的體能恢復(fù)時(shí)間, 再測(cè)量記憶。單次高強(qiáng)度有氧運(yùn)動(dòng)(80% HRR)損害工作記憶(Loprinzi, Day, et al., 2019), 而長(zhǎng)期高強(qiáng)度有氧運(yùn)動(dòng)(70% VO2R)則有利于工作記憶(Jeon & Ha, 2017)。未來(lái)研究除了考察客觀有氧運(yùn)動(dòng)強(qiáng)度生理指標(biāo), 還可以結(jié)合主觀體力感覺(rating of perceived exertion)心理指標(biāo)(Hacker et al., 2020)。
除了有氧運(yùn)動(dòng)強(qiáng)度, 有氧運(yùn)動(dòng)的認(rèn)知參與也應(yīng)受到關(guān)注。有的有氧運(yùn)動(dòng)需要較高的認(rèn)知參與, 而有的則不需要, 更高認(rèn)知參與的有氧運(yùn)動(dòng)可能更有利于記憶。雖然跑步有氧運(yùn)動(dòng)較為常見, 但是在記憶編碼前跑步對(duì)情景記憶幾乎沒有影響(Loprinzi, Blough, et al., 2019)。打排球比跑步對(duì)工作記憶的提升更大(Zach & Shalom, 2016)。未來(lái)研究可探索其他種類有氧運(yùn)動(dòng)對(duì)記憶的影響, 特別是不同認(rèn)知參與的有氧運(yùn)動(dòng), 比如, 輪滑、球類等開放性有氧運(yùn)動(dòng)和跳繩、游泳、爬樓梯等閉鎖性有氧運(yùn)動(dòng), 可能對(duì)工作記憶有不同影響。
有氧運(yùn)動(dòng)對(duì)多個(gè)種類記憶的影響尚待考察。情景記憶可以細(xì)分為項(xiàng)目記憶和來(lái)源記憶, 項(xiàng)目記憶是指對(duì)于發(fā)生事件內(nèi)容本身的記憶(Slotnick et al., 2003); 而來(lái)源記憶則是該事件發(fā)生時(shí), 對(duì)于相關(guān)背景及周遭的其他事物和當(dāng)時(shí)感受的記憶(Johnson et al., 1993)。未來(lái)可探究有氧運(yùn)動(dòng)對(duì)項(xiàng)目記憶和來(lái)源記憶是否存在不同影響。目前發(fā)現(xiàn)在記憶編碼前和編碼后進(jìn)行單次有氧運(yùn)動(dòng)促進(jìn)來(lái)源記憶(Delancey et al., 2019; Frith et al., 2017), 然而, 在記憶編碼過(guò)程中進(jìn)行有氧運(yùn)動(dòng)會(huì)損害來(lái)源記憶(Soga et al., 2017)。事件相關(guān)電位測(cè)量結(jié)果表明, 在有氧運(yùn)動(dòng)狀態(tài)下可以觀察到與記憶加工相關(guān)的頂葉新/舊效應(yīng), 即判斷詞匯是新詞還是舊詞的再認(rèn)任務(wù)中, 出現(xiàn)在刺激呈現(xiàn)后400至900毫秒的一個(gè)腦電波, 波幅最高在8 μV以上, 休息狀態(tài)下并未觀察到此效應(yīng), 這可能是由于有氧運(yùn)動(dòng)時(shí)的源編碼效率低下(Soga et al., 2017)。有氧運(yùn)動(dòng)對(duì)來(lái)源記憶的影響及其機(jī)制仍有待進(jìn)一步探索。
有氧運(yùn)動(dòng)可能增強(qiáng)某種情緒屬性的記憶。最新研究發(fā)現(xiàn), 有氧運(yùn)動(dòng)可以增強(qiáng)女性的悲傷情緒圖片記憶和男性的積極情緒圖片記憶(Jentsch & Wolf, 2020)。未來(lái)研究可以進(jìn)一步探索有氧運(yùn)動(dòng)對(duì)其他情緒類型記憶的影響, 在倫理允許的范圍內(nèi)對(duì)具有焦慮或創(chuàng)傷記憶的被試開展研究, 通過(guò)有氧運(yùn)動(dòng)干預(yù)情緒記憶, 對(duì)相應(yīng)心理障礙的干預(yù)具有一定的實(shí)際意義。
在某些記憶類型上, 動(dòng)物模型方面已經(jīng)有充分的證據(jù), 但是亟需人類被試的研究。比如, 有30個(gè)動(dòng)物實(shí)驗(yàn)考察了有氧運(yùn)動(dòng)對(duì)視覺空間記憶的影響, 但僅有2個(gè)人類被試的實(shí)驗(yàn)考察這一問題(Zou et al., 2020)。在內(nèi)隱記憶的啟動(dòng)范式方面, 僅有3個(gè)人類被試的研究, 而且尚未有研究考察長(zhǎng)期有氧運(yùn)動(dòng)對(duì)啟動(dòng)的影響(Loprinzi & Edwards, 2018)。動(dòng)物實(shí)驗(yàn)結(jié)論能否推廣到人類, 還尚待檢驗(yàn)。
不同年齡的群體進(jìn)行有氧運(yùn)動(dòng), 對(duì)記憶可能有不同影響。在行為學(xué)方面, 年輕人和老年人都有將事件作為整體回憶或遺忘的傾向, 與年輕人相比, 老年人整體檢索程度較低, 整體回憶隨著年齡的增長(zhǎng)而顯著下降(Ngo & Newcombe, 2020)。年輕人的有氧運(yùn)動(dòng)習(xí)慣和情景記憶呈正相關(guān), 而老年人有氧運(yùn)動(dòng)習(xí)慣和情景記憶無(wú)關(guān)(Heisz et al., 2015)。運(yùn)用fMRI技術(shù)的研究表明, 兒童和成人在記憶過(guò)程中海馬激活具有差異性, 隨著年齡的增長(zhǎng), 海馬的特異性程度增加(Geng et al., 2019)。因此年齡可能調(diào)節(jié)有氧運(yùn)動(dòng)與記憶的關(guān)系。
關(guān)于性別是否影響有氧運(yùn)動(dòng)與記憶的關(guān)系, 研究者并沒有統(tǒng)一的結(jié)論。Loprinzi和Frith (2018)總結(jié)了男女在記憶方面存在差異的心理和生理原因, 心理原因包括女性的情緒強(qiáng)度更高, 認(rèn)知風(fēng)格上女性比男性的記憶編碼更加細(xì)節(jié)化, 生理原因包括男女性在雌性激素水平、海馬、額葉和顳葉激活水平的差異。在行為學(xué)方面, 研究發(fā)現(xiàn)有氧運(yùn)動(dòng)可以增強(qiáng)女性的悲傷情緒圖片記憶和男性的積極情緒圖片記憶(Jentsch & Wolf, 2020)。然而, 一篇情景記憶的元分析并未發(fā)現(xiàn)性別的調(diào)節(jié)作用(Loprinzi, Blough, et al., 2019)。未來(lái)研究可以關(guān)注有氧運(yùn)動(dòng)對(duì)記憶影響的性別差異。
成熟的BDNF (mature BDNF, mBDNF)是在不成熟BDNF (proBDNF)的基礎(chǔ)上被酶促修飾形成的, 有研究發(fā)現(xiàn), 單次高強(qiáng)度自行車有氧運(yùn)動(dòng)(85% VO2R)可以提升mBDNF而非proBDNF, 但有氧運(yùn)動(dòng)后Val/Met雜合子攜帶者的mBDNF濃度比Val/Val純合子攜帶者的濃度更低(Piepmeier et al., 2020)。盡管有氧運(yùn)動(dòng)不利于提升Val/Met雜合子攜帶者的情景記憶, 但是有研究發(fā)現(xiàn)大量的有氧運(yùn)動(dòng)可以抵消Met基因?qū)ぷ饔洃浀牟焕绊?Erickson et al., 2013)。因此Val/Met雜合子攜帶者同樣需要進(jìn)行有氧運(yùn)動(dòng)以提升工作記憶。未來(lái)研究可以聚焦于如何進(jìn)行有氧運(yùn)動(dòng)才能改善Val/Met雜合子攜帶者的記憶, 以及是通過(guò)何種機(jī)制改變的。
目前的研究大多針對(duì)情景記憶, 較少研究考察BDNF在有氧運(yùn)動(dòng)和內(nèi)隱記憶之間的中介作用, 研究結(jié)果尚存在分歧。有研究發(fā)現(xiàn)騎自行車后1小時(shí)和7天的BDNF水平更高, 和在視覺運(yùn)動(dòng)追蹤任務(wù)中更好的表現(xiàn)呈正相關(guān)(Skriver et al., 2014)。但也有研究發(fā)現(xiàn)有氧運(yùn)動(dòng)后BDNF和其他動(dòng)作記憶任務(wù)無(wú)關(guān)(Mang et al., 2014; Piepmeier et al., 2020)。因此, 實(shí)驗(yàn)需要采用對(duì)有氧運(yùn)動(dòng)較為敏感的記憶任務(wù), 比如用視覺運(yùn)動(dòng)精度跟蹤任務(wù)。
高強(qiáng)度有氧運(yùn)動(dòng)可能有利于情景記憶(Loprinzi, Blough, et al., 2019)和內(nèi)隱記憶(Wanner, Cheng, et al., 2020)。BDNF可能是有氧運(yùn)動(dòng)強(qiáng)度劑量效應(yīng)的機(jī)制。在兩個(gè)研究中, 與低強(qiáng)度有氧運(yùn)動(dòng)和控制組相比, 高強(qiáng)度有氧運(yùn)動(dòng)更能增強(qiáng)BDNF水平(Jeon & Ha, 2017; Piepmeier et al., 2020)。一項(xiàng)元分析也發(fā)現(xiàn)更高的有氧運(yùn)動(dòng)強(qiáng)度能引起更高的BDNF濃度(Knaepen et al., 2010)。因此有必要進(jìn)行高強(qiáng)度有氧運(yùn)動(dòng), 以提升BDNF水平, 進(jìn)而提升記憶。
有氧運(yùn)動(dòng)強(qiáng)度可能影響腦結(jié)構(gòu)與功能, 進(jìn)而對(duì)記憶產(chǎn)生影響。已有小鼠研究發(fā)現(xiàn), 隨著有氧運(yùn)動(dòng)強(qiáng)度的提升, 海馬神經(jīng)元數(shù)量也線性增加(Diederich et al., 2017)。未來(lái)研究可考察有氧運(yùn)動(dòng)開始時(shí)間、有氧運(yùn)動(dòng)強(qiáng)度和認(rèn)知參與是否對(duì)神經(jīng)遞質(zhì)以及腦區(qū)激活產(chǎn)生影響, 以了解這些因素的機(jī)制。有氧運(yùn)動(dòng)可能通過(guò)多種神經(jīng)遞質(zhì)影響記憶, 降低前攝抑制, 比如通過(guò)谷氨酸系統(tǒng)、膽堿能系統(tǒng)、多巴胺系統(tǒng)和氨基丁酸能系統(tǒng)等(Li et al., 2020)。應(yīng)用神經(jīng)成像技術(shù)可考察有氧運(yùn)動(dòng)對(duì)記憶相關(guān)腦區(qū)激活和體積變化的影響, Herold等(2020)建議此類研究應(yīng)采用更嚴(yán)格的研究設(shè)計(jì)、提供精確的有氧運(yùn)動(dòng)方法和功能磁共振成像處理步驟描述, 分析時(shí)應(yīng)用更復(fù)雜的濾波方法。研究表明左半球因年齡增長(zhǎng)可能會(huì)出現(xiàn)更嚴(yán)重的萎縮(Taki et al., 2011), 而有氧運(yùn)動(dòng)對(duì)腦結(jié)構(gòu)和功能的影響也出現(xiàn)左偏側(cè)化, 比如健步走訓(xùn)練可以增大左半球的海馬前部齒狀回體積(Nauer et al., 2020), 自行車有氧運(yùn)動(dòng)引起左前海馬激活模式的變化(Wagner et al., 2017), 未來(lái)研究可通過(guò)偏側(cè)化檢驗(yàn), 探究有氧運(yùn)動(dòng)是否能維持易受衰老影響腦區(qū)的健康。
致謝:感謝Paul D. Loprinzi對(duì)本文英文摘要的細(xì)致修改。
陳靜, 劉涵慧, 李會(huì)杰. (2020). 有氧運(yùn)動(dòng)對(duì)高血壓患者血壓和記憶功能的影響.(5), 709–712.
董俊. (2018). 有氧運(yùn)動(dòng)對(duì)學(xué)齡兒童工作記憶刷新功能影響的Meta分析.(9), 1343–1346.
付燕, 謝攀, 李雪, 王璐, 楊澎湃, 袁瓊嘉. (2015). 長(zhǎng)期有氧運(yùn)動(dòng)對(duì)大鼠腦衰老過(guò)程中學(xué)習(xí)記憶與海馬BDNF表達(dá)的影響.(8), 750–756.
國(guó)家體育總局. (2015).. 2015-11-16取自http://www.sport.gov.cn/n316/n340/ c212777/content.html
郭瑋, 王碧野, 任杰. (2019). 開放性運(yùn)動(dòng)鍛煉老年人視空間工作記憶優(yōu)勢(shì)的機(jī)制研究.(10), 50–55+80.
李夏雯, 周成林, 王小春. (2019, 11月).[摘要]. 第十一屆全國(guó)體育科學(xué)大會(huì), 南京.
解超. (2020). 不同運(yùn)動(dòng)強(qiáng)度對(duì)兒童青少年工作記憶影響的Meta分析.(3), 356–360+364.
張斌, 劉瑩. (2019). 急性有氧運(yùn)動(dòng)對(duì)認(rèn)知表現(xiàn)的影響.(6), 1058–1071.
Aguiar, A. S., Jr., Boemer, G., Rial, D., Cordova, F. M., Mancini, G., Walz, R., ... Prediger, R. D. S. (2010). High-intensity physical exercise disrupts implicit memory in mice involvement of the striatal glutathione antioxidant system and intracellular signaling.(4), 1216–1227.
Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance., 69–77.
American College of Sports Medicine. (2016).(10th ed.). Philadelphia, PA: Wolters Kluwer Health.
American Heart Association. (2018).. Retrieved August 23, 2020 from https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults
Angulo-Barroso, R., Ferrer-Uris, B., & Busquets, A. (2019). Enhancing children's motor memory retention through acute intense exercise: Effects of different exercise durations., Article 2000.https://doi.org/10.3389/fpsyg.2019.02000
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence, J. T. Spence (Eds.),(Vol. 2, pp. 89–195). New York: Academic Press.https://doi.org/10.1016/S0079-7421(08)60422-3
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.),(Vol. 8, pp. 47–89). New York: Academic Press.https:// doi.org/10.1016/S0079-7421(08)60452-1
Basso, J. C., Shang, A., Elman, M., Karmouta, R., & Suzuki, W. A. (2015). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults.(10), 791–801.
Beck, M. M., Grandjean, M. U., Hartmand, S., Spedden, M. E., Christiansen, L., Roig, M., & Lundbye-Jensen, J. (2020). Acute exercise protects newly formed motor memories against rTMS-induced interference targeting primary motor cortex., 110–121.
Bielefeld, P., Dura, I., Danielewicz, J., Lucassen, P. J., Baekelandt, V., Abrous, D. N., ... Fitzsimons, C. P. (2019). Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies., Article 112032.https://doi.org/10.1016/j.bbr.2019.112032
Budde, H., Voelcker-Rehage, C., Pietrassyk-Kendziorra, S., Machado, S., Ribeiro, P., & Arafat, A. M. (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting.(3), 382–391.
Chang, Y.-K., Tsai, C.-L., Hung, T.-M., So, E. C., Chen, F.-T., & Etnier, J. L. (2011). Effects of acute exercise on executive function: A study with a tower of london task.(6), 847–865.
Chen, A.-G., Yan, J., Yin, H.-C., Pan, C.-Y., & Chang, Y.-K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children.(6), 627–636.
Chen, F.-T., Chen, Y.-P., Schneider, S., Kao, S.-C., Huang, C.-M., & Chang, Y.-K. (2019). Effects of exercise modes on neural processing of working memory in late middle-aged adults: An fMRI study., Article 224.https://doi.org/10.3389/ fnagi.2019.00224
Christiansen, L., Thomas, R., Beck, M. M., Pingel, J., Andersen, J. D., Mang, C. S., ... Lundbye-Jensen, J. (2019). The beneficial effect of acute exercise on motor memory consolidation is modulated by dopaminergic gene profile.(5), Article 578.https://doi.org/10.3390/jcm8050578
Crawford, L. K., Caplan, J. B., & Loprinzi, P. D. (2021). The impact of acute exercise timing on memory interference.(3), 1215–1234.
Crawford, L. K., Li, H., Zou, L., Wei, G. X., & Loprinzi, P. D. (2020). Hypothesized mechanisms through which exercise may attenuate memory interference.(3), Article 129.https://doi.org/10.3390/ medicina56030129
Dal Maso, F., Desormeau, B., Boudrias, M. H., & Roig, M. (2018). Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation., 380–392.
de Freitas, G. B., Lourenco, M. V., & de Felice, F. G. (2020). Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer's disease.(6), 602–611.
Delancey, D., Frith, E., Sng, E., & Loprinzi, P. D. (2019). Randomized controlled trial examining the long-term memory effects of acute exercise during the memory consolidation stage of memory formation.(3), 245–250.
Diederich, K., Bastl, A., Wersching, H., Teuber, A., Strecker, J.-K., Schmidt, A., ... Sch?bitz, W.-R. (2017). Effects of different exercise strategies and intensities on memory performance and neurogenesis., Article 47.https://doi.org/10.3389/ fnbeh.2017.00047
Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise.(1), 79–83.
Dodwell, G., Müller, H. J., & T?llner, T. (2019). Electroencephalographic evidence for improved visual working memory performance during standing and exercise.(2), 400–427.
Eich, T. S., & Metcalfe, J. (2009). Effects of the stress of marathon running on implicit and explicit memory.(3), 475–479.
El Hayek, L., Khalifeh, M., Zibara, V., Assaad, R. A., Emmanuel, N., Karnib, N., ... Sleiman, S. F. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF).(13), 2369–2382.
Erickson, K. I., Banducci, S. E., Weinstein, A. M., MacDonald, A. W., III., Ferrell, R. E., Halder, I., ... Manuck, S. B. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance.(9), 1770–1779.
Fisher, A., Boyle, J. M. E., Paton, J. Y., Tomporowski, P., Watson, C., McColl, J. H., & Reilly, J. J. (2011). Effects of a physical education intervention on cognitive function in young children: Randomized controlled pilot study., Article 97.https://doi.org/10.1186/1471- 2431-11-97
Friedl-Werner, A., Brauns, K., Gunga, H.-C., Kühn, S., & Stahn, A. C. (2020). Exercise-induced changes in brain activity during memory encoding and retrieval after long-term bed rest., Article 117359.https://doi.org/10.1016/j.neuroimage.2020.117359
Frith, E., Sng, E., & Loprinzi, P. D. (2017). Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.(10), 2557–2564.
Geng, F., Redcay, E., & Riggins, T. (2019). The influence of age and performance on hippocampal function and the encoding of contextual information in early childhood., 433–443.
Goldstein, E. B. (2018).(5th ed.). Boston, MA: Cengage Learning.
Hacker, S., Banzer, W., Vogt, L., & Engeroff, T. (2020). Acute effects of aerobic exercise on cognitive attention and memory performance: An investigation on duration-based dose-response relations and the impact of increased arousal levels.(5), Article 1380.https://doi.org/10.3390/jcm9051380
Haynes, A. T., Frith, E., Sng, E., & Loprinzi, P. D. (2019). Experimental effects of acute exercise on episodic memory function: Considerations for the timing of exercise.(5), 1744–1754.
Heisz, J. J., Clark, I. B., Bonin, K., Paolucci, E. M., Michalski, B., Becker, S., & Fahnestock, M. (2017). The effects of physical exercise and cognitive training on memory and neurotrophic factors.(11), 1895–1907.
Heisz, J. J., Vandermorris, S., Wu, J., McIntosh, A. R., & Ryan, J. D. (2015). Age differences in the association of physical activity, sociocognitive engagement, and tv viewing on face memory.(1), 83–88.
Herold, F., Aye, N., Lehmann, N., Taubert, M., & Müller, N. G. (2020). The contribution of functional magnetic resonance imaging to the understanding of the effects of acute physical exercise on cognition.(3), Article 175.https://doi.org/10.3390/brainsci10030175
Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults.(2), 587–594.
Hopkins, M. E., Davis, F. C., VanTieghem, M. R., Whalen, P. J., & Bucci, D. J. (2012). Differential effects of acute and regular physical exercise on cognition and affect., 59–68.
Hyuk, L. H. (2009). Effects of treadmill exercise on memory, hippocampal cell proliferation, BDNF, TrkB, and forebrain cholinergic cells in adolescent rats.(3), 403–410.
Ishihara, T., Miyazaki, A., Tanaka, H., & Matsuda, T. (2020). Identification of the brain networks that contribute to the interaction between physical function and working memory: An fMRI investigation with over 1, 000 healthy adults., Article 117152.https://doi.org/ 10.1016/j.neuroimage.2020.117152
Jentsch, V. L., & Wolf, O. T. (2020). Acute physical exercise promotes the consolidation of emotional material., Article 107252.https://doi.org/10.1016/j.nlm.2020.107252
Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents.(1), Article 27.https://doi.org/10.1186/ s12199-017-0643-6
Jo, J. S., Chen, J., Riechman, S., Roig, M., & Wright, D. L. (2019). The protective effects of acute cardiovascular exercise on the interference of procedural memory.(7), 1543–1555.
Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring.(1), 3–28.
Jongbloed-Pereboom, M., Janssen, A. J., Steiner, K., Steenbergen, B., & Nijhuis-van der Sanden, M. W. (2017). Implicit and explicit motor sequence learning in children born very preterm., 145–152.
Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning – evidence for competition between implicit and explicit human motor memory systems.(5), 2710–2715.
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function.(4), 155–164.
Keyan, D., & Bryant, R. A. (2017). Acute physical exercise in humans enhances reconsolidation of emotional memories., 144–151.
Keyan, D., & Bryant, R. A. (2019). The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms., 438–449.
Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity — exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects.(9), 765–801.
Ledreux, A., Hakansson, K., Carlsson, R., Kidane, M., Columbo, L., Terjestam, Y., ... Mohammed, A. K. H. (2019). Differential effects of physical exercise, cognitive training, and mindfulness practice on serum BDNF levels in healthy older adults: A randomized controlled intervention study.(4), 1245–1261.
Lehmann, N., Villringer, A., & Taubert, M. (2020). Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning.(12), 2416–2429.
Li, C., Liu, T., Li, R., & Zhou, C. (2020). Effects of exercise on proactive interference in memory: Potential neuroplasticity and neurochemical mechanisms.(7), 1917–1929.
Lopez-Vicente, M., Garcia-Aymerich, J., Torrent-Pallicer, J., Forns, J., Ibarluzea, J., Lertxundi, N., ... Sunyer, J. (2017). Are early physical activity and sedentary behaviors related to working memory at 7 and 14 years of age?, 35–41.
Loprinzi, P. D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory.(4), 255–262.
Loprinzi, P. D. (2019). Does brain-derived neurotrophic factor mediate the effects of exercise on memory?(4), 395–405.
Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., & Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis.(4), Article 87.https://doi. org/10.3390/brainsci9040087
Loprinzi, P. D., Chism, M., & Marable, S. (2019). Does engaging in acute exercise prior to memory encoding and during memory consolidation have an additive effect on long-term memory function?(1), 77–81.
Loprinzi, P. D., Day, S., & Deming, R. (2019). Acute exercise intensity and memory function: Evaluation of the transient hypofrontality hypothesis.(8), Article 445.https://doi.org/10.3390/ medicina55080445
Loprinzi, P. D., & Edwards, M. K. (2018). Exercise and implicit memory: A brief systematic review.(6), 1072–1085.
Loprinzi, P. D., & Frith, E. (2018). The role of sex in memory function: Considerations and recommendations in the context of exercise.(6), Article 132.https://doi.org/10.3390/jcm7060132
Loprinzi, P. D., & Frith, E. (2019a). A brief primer on the mediational role of BDNF in the exercise-memory link.(1), 9–14.
Loprinzi, P. D., & Frith, E. (2019b). Protective and therapeutic effects of exercise on stress-induced memory impairment.(1), 1–12.
Loprinzi, P. D., Lovorn, A., Hamilton, E., & Mincarelli, N. (2019). Acute exercise on memory reconsolidation.(8), Article 1200.https://doi.org/10.3390/jcm8081200
Loprinzi, P. D., Ponce, P., Zou, L., & Li, H. (2019). The counteracting effects of exercise on high-fat diet-induced memory impairment: A systematic review.(6), Article 145.https://doi.org/10.3390/brainsci9060145
Loprinzi, P. D., Zou, L., & Li, H. (2019). The endocannabinoid system as a potential mechanism through which exercise influences episodic memory function.(5), Article 112.https://doi.org/10.3390/ brainsci9050112
Lourenco, M. V., Frozza, R. L., de Freitas, G. B., Zhang, H., Kincheski, G. C., Ribeiro, F. C., ... de Felice, F. G. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models.(1), 165–175.
Lundbye-Jensen, J., Skriver, K., Nielsen, J. B., & Roig, M. (2017). Acute exercise improves motor memory consolidation in preadolescent children., Article 182.https://doi.org/ 10.3389/fnhum.2017.00182
Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., ... Düzel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise- related changes in memory, hippocampal perfusion and volumes in older adults., 142–154.
Mang, C. S., Snow, N. J., Campbell, K. L., Ross, C. J., & Boyd, L. A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning.(11), 1325– 1336.
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects.(3–4), 421–428.
Mello, P. B., Benetti, F., Cammarota, M., & Izquierdo, I. (2008). Effects of acute and chronic physical exercise and stress on different types of memory in rats.(2), 301–309.
Molteni, R., Ying, Z., & Gómez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray.(6), 1107–1116.
Moore, D., & Loprinzi, P. D. (2020). Exercise influences episodic memory via changes in hippocampal neurocircuitry and long-term potentiation..https://doi.org/10.1111/ejn.14728
Moore, D., & Loprinzi, P. D. (2021). The association of self-reported physical activity on human sensory long- term potentiation.(3), 435–447.
Moore, D. C., Ryu, S., & Loprinzi, P. D. (2020). Experimental effects of acute exercise on forgetting.(3), 359–375.
Nauer, R. K., Dunne, M. F., Stern, C. E., Storer, T. W., & Schon, K. (2020). Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults.(5), 488–504.
Ngo, C., & Newcombe, N. (2020). Relational binding and holistic retrieval in aging..https://doi.org/ 10.31219/osf.io/y35ku
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., ... Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus.(13), 5638–5643.
Perez, L., Padilla, C., Parmentier, F. B., & Andres, P. (2014). The effects of chronic exercise on attentional networks.(7), Article e101478.https://doi.org/10.1371/ journal.pone.0101478
Piepmeier, A. T., Etnier, J. L., Wideman, L., Berry, N. T., Kincaid, Z., & Weaver, M. A. (2020). A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations.(6), 819–830.
Pyke, W., Ifram, F., Coventry, L., Sung, Y., Champion, I., & Javadi, A.-H. (2020). The effects of different protocols of physical exercise and rest on long-term memory., Article 107128.https://doi.org/10.1016/j.nlm.2019.107128
Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke.(9), 879–885.
Rathore, A., & Lom, B. (2017). The effects of chronic and acute physical activity on working memory performance in healthy participants: A systematic review with meta-analysis of randomized controlled trials., Article 124.https://doi.org/10.1186/s13643- 017-0514-7
Ricker, T. J., Nieuwenstein, M. R., Bayliss, D. M., & Barrouillet, P. (2018). Working memory consolidation: Insights from studies on attention and working memory.(1), 8–18.
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis.(8), 1645–1666.
Schacter, D. L. (1987). Implicit memory: History and current status.(3), 501–518.
Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers., 46–58.
Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes.(1), 75–82.
Soga, K., Kamijo, K., & Masaki, H. (2017). Aerobic exercise during encoding impairs hippocampus-dependent memory.(4), 249–260.
Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states.(7), 533–543.
Stillman, C. M., Watt, J. C., Grove, G. A., Jr., Wollam, M. E., Uyar, F., Mataro, M., ... Erickson, K. I. (2016). Physical activity is associated with reduced implicit learning but enhanced relational memory and executive functioning in young adults.(9), Article e0162100.https:// doi.org/10.1371/journal.pone.0162100
Suwabe, K., Byun, K., Hyodo, K., Reagh, Z. M., Roberts, J. M., Matsushita, A., ... Soya, H. (2018). Rapid stimulation of human dentate gyrus function with acute mild exercise.(41), 10487–10492.
Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals.(7), Article e22734.https://doi.org/10.1371/journal.pone.0022734
Tulving, E. (1972). Episodic and semantic memory. In E. Tulving, W. Donaldson (Eds.),. New York: Academic Press
Tulving, E. (1985). How many memory systems are there?(4), 385–398.
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory.(5), 352–373.
Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking implicit and explicit memory: Common encoding factors and shared representations.(6), 917–927.
van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice.(38), 8680– 8685.
Voss, M. W., Weng, T. B., Narayana-Kumanan, K., Cole, R. C., Wharff, C., Reist, L., ... Pierce, G. L. (2020). Acute exercise effects predict training change in cognition and connectivity.(1), 131–140.
Wagner, G., Herbsleb, M., de la Cruz, F., Schumann, A., K?hler, S., Puta, C., ... B?r, K.-J. (2017). Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention., 65–78.
Wang, B. (2021). Effect of post-encoding emotion on long-term memory: Modulation of emotion category and memory strength.(2), 192–218.
Wanner, P., Cheng, F.-H., & Steib, S. (2020). Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis., 365–381.
Wanner, P., Müller, T., Cristini, J., Pfeifer, K., & Steib, S. (2020). Exercise intensity does not modulate the effect of acute exercise on learning a complex whole-body task., 115–128.
Wheeler, M. J., Green, D. J., Ellis, K. A., Cerin, E., Heinonen, I., Naylor, L. H., ... Dunstan, D. W. (2020). Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition.(13), 776–781.
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., ... Knecht, S. (2007). High impact running improves learning.(4), 597–609.
Yamazaki, Y., Sato, D., Yamashiro, K., Tsubaki, A., Yamaguchi, Y., Takehara, N., & Maruyama, A. (2017). Inter-individual differences in exercise-induced spatial working memory improvement: A near-infrared spectroscopy study. In H. J. Halpern, J. C. LaManna, D. K. Harrison, B. Epel (Eds.),(Vol. 977, pp. 81–88). New York: Springer International Publishing.https://doi.org/10.1007/978-3- 319-55231-6_12
Yanes, D., Frith, E., & Loprinzi, P. D. (2019). Memory- related encoding-specificity paradigm: Experimental application to the exercise domain.(3), 447–458.
Zach, S., & Shalom, E. (2016). The influence of acute physical activity on working memory.(2), 365–374.
Zou, L., Yu, Q., Liu, S., & Loprinzi, P. D. (2020). Exercise on visuo-spatial memory: Direct effects and underlying mechanisms.(2), 169–179.
Effects of aerobic exercise on memory and its neurobiological mechanism
KE Jinhong, WANG Bo
(School of Sociology and Psychology, Central University of Finance and Economics, Beijing 100081, China)
Aerobic exercise is the rhythmic and continuous use of large muscle groups with sufficient oxygen supply. The aim of this review is to summarize previous research regarding the effects of aerobic exercise on working memory, episodic memory and implicit memory, and moderators among the relationships. The following databases were used for the computerized searches: CNKI, Web of Science and PubMed. Aerobic exercise can improve processing speed in working memory tasks. Moderate to vigorous intensity aerobic exercise before memory encoding or during consolidation can enhance episodic memory. Vigorous intensity aerobic exercise can promote implicit memory. Acute aerobic exercise can increase brain-derived neurotrophic factor (BDNF), induce long-term potentiation, activate hippocampus and other memory related brain areas, while chronic aerobic exercise can improve neurogenesis. Future research should focus on aerobic exercise timing, aerobic exercise duration, aerobic exercise intensity, and other moderating roles, such as cognitive engagement during aerobic exercise, gender and age, and to further elucidate the neurobiological mechanisms underlying the effects of aerobic exercise on different types of memory.
aerobic exercise, memory, neurobiological mechanism
B849: G804.8
2020-11-16
* 中央財(cái)經(jīng)大學(xué)2019年度國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(NMOE2019110019)資助。
汪波, E-mail: wangbo@cufe.edu.cn