亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        掌握規(guī)律,得心應(yīng)手

        2021-12-06 08:45:49盧日榮
        江蘇廣播電視報(bào)·新教育 2021年29期
        關(guān)鍵詞:折疊折法策略

        盧日榮

        摘要:折疊題型就是把一個(gè)幾何圖形的一部分沿某一條直線或線段折疊,通過這部分圖形折疊變換前后相等的等量關(guān)系來命題。試題綜合考查了學(xué)生的觀察能力,空間想象能力和動(dòng)手能力。其形式多樣,變幻巧妙,立意新穎,綜合性強(qiáng)。因此這類題型是歷年各省市中數(shù)學(xué)考中的熱點(diǎn)題型,也是學(xué)生失分最嚴(yán)重的題型。為了使學(xué)生在這類題中不丟分,我們老師在數(shù)學(xué)中考備考中應(yīng)認(rèn)真專研這類考題特點(diǎn),弄清命題結(jié)構(gòu)和規(guī)律,在平時(shí)的訓(xùn)練中應(yīng)培養(yǎng)學(xué)生的識圖能力、觀察能力及解決問題的能力。

        關(guān)鍵詞:折疊;折法;策略

        在復(fù)習(xí)折疊問題時(shí),教師應(yīng)歸納出這類題型的特征、考察形式以及有關(guān)的解題規(guī)律,總結(jié)出相關(guān)對策、解法并找到與此相關(guān)的一類題。下面本人結(jié)合實(shí)際教學(xué),談?wù)勛约涸趶?fù)習(xí)折疊問題時(shí)的一些做法。

        一、緊扣課本,梳理考點(diǎn)

        通過學(xué)生的動(dòng)手操作,讓學(xué)生比較直觀認(rèn)識和理解幾何圖形的折疊變換的概念和特性。

        1.幾何圖形折疊的概念

        幾何圖形折疊就是把一個(gè)幾何圖形的一部分沿某一條線段或直線折疊,使它與原圖形的另一部分重疊或者不重疊。

        2.幾何圖形折疊的特性

        (1)幾何圖形的折疊部分前和后都是全等形。

        (2)幾何圖形的折疊部分所在折疊前和折疊后的位置,關(guān)于折痕成軸對稱。

        例1(石家莊市)如圖1,在矩形ABCD的紙片中,要在矩形ABCD的紙片里折出一個(gè)最大的正方形。有同學(xué)把矩形的一個(gè)∠B沿線段AE向上折疊,使AB與AD邊上的AF重合,則四邊形ABEF就是一個(gè)最大的正方形。這位同學(xué)說四邊形ABEF是一個(gè)最大正方形,根據(jù)什么來判定呢?

        分析:這位同學(xué)把矩形的一個(gè)∠B線段AE向上折疊,使AB和AD邊上的AF重合,根據(jù)折疊的性質(zhì),很容易得到: ,對角線平分內(nèi)角的矩形是正方形,因此四邊形ABEF在矩形ABCD里就是一個(gè)最大的正方形。

        二、回歸課本,掌握折法

        在各省市數(shù)學(xué)中考有關(guān)折疊題目中,有很多是源于課本的。命題者通過課本的例題、習(xí)題進(jìn)行“二次開發(fā)”,變成一道新的考試題目。對這類緊扣課本試題,我們在數(shù)學(xué)中考復(fù)習(xí)中一定要注意對課本有關(guān)折疊知識的研究與挖掘,得出解題規(guī)律,化繁為簡,達(dá)到靈活變通、觸類旁通的目

        的。下面以初中數(shù)學(xué)人教版教材中的兩道題目為例,弄清在折疊中對直角三角形和矩形是怎樣折的問題。

        例2(人教版八年級上冊第58頁第14題)如圖2,在直角三角形ABC中,若∠C=90°∠B=30°,要把這個(gè)直角三角形均勻分成三個(gè)面積相等的直角三角形,你有辦法嗎?請你試著在圖上畫出來,并說明原因。

        解:作∠A的平分線AD交BC于D,過D作DE⊥AB于E,得到3個(gè)全等三角形。

        ∵∠C=90°∠B=30°

        ∴∠CAB=60°

        ∵AD為∠BAC的角平分線

        ∴∠BAD=∠CAD= ∠CAB=30°

        ∴AC= ?CD,且S△ACD= AC·CD

        ∵∠DAE=30°且∠DEA=90°

        ∴AD=2DE

        ∴DE=CD可證△ACD≌△AED

        同理△ACD≌△BED

        S△ADE= AE·DE=S△BDE= BE·DE=S△ACD

        通過分析很容易得出此類題解題方法如圖3所示沿∠CAB的角平分線AD和邊AB的垂直平分線,DE劃分即可。此題看似與折疊問題無關(guān),但它實(shí)際包含了直角三角形的幾種常見的折疊類型,歸納如下:

        1、沿一個(gè)銳角的角平分線折疊,如圖4;

        2、沿斜邊的垂直平分線折疊,如圖5;

        3、沿一條直角邊的垂直平分線折疊,如圖6;

        變式訓(xùn)練:

        1、圖2中,若AC=3,BC=4求線段CD的長

        2、圖3中,若AC=3,BC=4求線段CD的長

        3、圖4中,若AC=3,BC=4求線段CE的長

        規(guī)律總結(jié):利用折疊的性質(zhì)得到的直角和相等的邊或角,選擇適當(dāng)?shù)闹苯侨切危\(yùn)用勾股定理列方程或利用直角三角函數(shù),是解決這類問題的關(guān)鍵。

        例3(人教版八年級上冊第53頁練習(xí)2)四邊形ABCD是矩形,△BCD沿矩形對角線BD向上折疊,如圖7重疊部分△BFD是一個(gè)等腰三角形嗎?為什么?

        此題是矩形折疊后的有關(guān)三角形證明,解決矩形的折疊問題,實(shí)際上是把它轉(zhuǎn)化為三角形的問題去解決。矩形折疊與三角形折疊相比較,矩形折疊中的條件更豐富,融入了矩形的性質(zhì)的運(yùn)用,因而它比三角形的折疊更復(fù)雜,常以此題基礎(chǔ)變式出了許多的中考題型。如2018年廣東中考題數(shù)學(xué)第22題。

        規(guī)律總結(jié):矩形常見的折疊規(guī)律

        (1)如圖8,沿矩形ABCD的對角線BD折疊。

        (2)如圖9,沿矩形ABCD的對角線BD折疊。

        (3)如圖10,△BCE沿直線CE向上折疊,點(diǎn)B落在線段AD點(diǎn)F上。

        變式訓(xùn)練:

        (1)圖8中,若AB=3,BC=4求線段AF的長

        (2)圖9中,若AB=3,BC=4求線段AF的長

        (3)圖10中,若AC=3,BC=5求線段AF的長

        規(guī)律總結(jié):首先要抓住矩形折疊的本質(zhì)特點(diǎn),找出折疊前后相等的邊和角,再把矩形折疊問題轉(zhuǎn)化為直角三角形問題,找出關(guān)鍵的直角三角形,運(yùn)用勾股定理列方程或解直角三角形來解決這類問題。

        三、研究中考,剖析題型

        在掌握幾何圖形折疊的性質(zhì)及折疊問題中常見的折疊法后,我們就要剖析各省市的中考中關(guān)于幾何圖形折疊問題的常見類型題,引導(dǎo)學(xué)生觸類旁通,懂一題會一片。培養(yǎng)學(xué)生解決幾何圖形折疊問題的能力,真正做到胸有成竹。

        1.幾何圖形折疊后求角度

        例4(2016.長沙市)在一般△ABC中。

        (1)如圖②所示,點(diǎn)A向下沿DE折疊,使點(diǎn)A落在四邊形BCED的內(nèi)部點(diǎn)A′的位置,∠1、∠2與∠A之間存在怎樣的數(shù)量關(guān)系?為什么?

        (2)如圖①,點(diǎn)A向下沿DE折疊,點(diǎn)A剛好落在邊AC上的點(diǎn)A′的位置,∠A與∠1存在怎樣的數(shù)量關(guān)系?為什么?

        (3)如圖③,點(diǎn)A向下沿DE折疊,使點(diǎn)A落在四邊形BCED的外部點(diǎn)A′的位置,∠A、∠1與∠2之間存在怎樣的數(shù)量關(guān)系?為什么?

        解:(1)∵如圖②點(diǎn)A折疊后落在點(diǎn)A′的位置,點(diǎn)A′在四邊形BCED內(nèi)

        ∴∠ADE=∠A′DE∠AED=∠A′ED

        ∴∠ADE=12(180°-∠1)∠AED=12(180°-∠2)

        在△ADE中,∠A+∠ADE+∠AED=180°

        ∴∠A+12(180°-∠1)+12(180°-∠2)=180°

        整理得,2∠A=∠1+∠2

        (2)如圖①∵點(diǎn)A折疊后落在點(diǎn)A′的位置,點(diǎn)A′在線段上,

        ∴∠A=∠DA′E

        由三角形外角性質(zhì)得:∠1=∠A+∠DA′E=2∠DA′E=2∠A

        (3)如圖③,∵點(diǎn)A折疊后落在點(diǎn)A′的位置,點(diǎn)A′在四邊形BCED外

        ∴∠A=∠A′由三角形的外角性質(zhì)得:∠3=∠2+∠A′∠1=∠A+∠3

        ∴∠1=∠A+∠2+∠A′=∠2+2∠A

        即∠1=∠2+2∠A.

        經(jīng)驗(yàn)總結(jié):如果幾何圖形只有一次折疊,我們只要抓住幾何圖形折疊的性質(zhì),利用折疊前后兩個(gè)三角形是全等型這一本質(zhì)特征,就可以解決問題。對于幾次折疊的問題可通過操作相結(jié)合的方法解決。

        2.幾何圖形折疊后求線段長度

        例5(濟(jì)南市2000年中考試題)

        如圖11,四邊形ABCD是矩形,先沿對角線BD折出一條

        折痕,再AD向BD折疊,使落AD在對角線BD上,DG是折線,

        若AD =1,AB =2,求AG。

        分析:(如圖12)A1是A點(diǎn)落在BD上的位置,

        連結(jié) A1G,根據(jù)折疊的性質(zhì)得:

        △ADG ≌△A1DG,AG = A1G,AD = A1D。

        ∵矩形ABCD,AB =2,AD =1,在Rt△BAD中,

        根據(jù)勾股定理得

        ∴BD = =

        BA1= –1∵∠ BA1G =∠ A =90°

        設(shè)AG = A1G= X,在Rt△BA1G中

        利用勾股定理列出方程:x2+( –1)2=(2– x )2

        ∴ x = ,即:AG =

        經(jīng)驗(yàn)總結(jié):此題按折疊法可歸類為矩形沿某條直線折疊。此類題能得出幾個(gè)直角三角形是關(guān)鍵,然后反復(fù)利用直角三角形的勾股定理,得到要求的線段長度。所以遇到這種題型一定要抓住折疊前后的線段和角度不變這一特點(diǎn),弄清線段之間的等量關(guān)系,利用相關(guān)的定理得出結(jié)論。

        3.幾何圖形折疊后證明

        例6(2018廣東)如圖13,四邊形ABCD是矩形,且AB?AD,ΔABC沿矩形沿對角線AC向上折疊,使點(diǎn)B落在矩形ABCD外面點(diǎn)E處,AE交CD于F,連接DE。

        求證:ΔCED ≌ΔADE

        求證:ΔEDF是等腰三角形。

        證明:∵四邊形ABCD是矩形, AD=BC,AB=CD

        根據(jù)折疊性質(zhì)得:BC=CE,B=AE

        ∴AD=CE,AE=CD

        在ΔADE和ΔCED中

        ∴ΔADE ≌ΔCED

        (2)由(1)得ΔADE ≌ΔCED

        ∴∠DEA=∠EDC 即∠DEF=∠EDF

        ∴EF=DF

        ∴ΔDEF是等腰三角形。

        例7(??谑校┤鐖D14,四邊形ABCD是矩形,將ΔBCD沿矩形對角線BD折疊,點(diǎn)C落在矩形ABCD外點(diǎn)E處,BE交AD于F,連結(jié)AE。

        求證:(1)BF=DF;(2)AE∥BD。

        證明:(1)能正確說明∠ADB=∠EBD(或△ABF≌△EDF)

        ∴BF=DF。

        (2)能得出∠AEB=∠DBE(或∠EAD=∠BDA)

        ∴AE∥BD

        經(jīng)驗(yàn)總結(jié):對于此類折疊后證明的題型,我們要先折疊的性質(zhì)出發(fā),得到相等的角和線段,發(fā)掘出其中的角和線段的數(shù)量關(guān)系,利用三角形全等或線段的數(shù)量關(guān)系用方程表示出來,達(dá)到求解的目的。

        4.幾何圖形折疊后求函數(shù)問題

        例8(上海市)如圖15,△ABC是銳角三角形,AH⊥BC于點(diǎn)H,BC=9,AH=6,AB邊上的任意一點(diǎn)D,過點(diǎn)D作DE∥BC,交AC于E。設(shè)△ADE的高AF=x(0

        (1)①求出當(dāng)0

        (2)當(dāng)x取什么值時(shí),y的值最大或最小值?是多少?

        解:(1)①當(dāng)0

        ∵DE∥BC

        ∴∠ADE=∠B,∠AED=∠C

        ∴△ADE∽△ABC

        ∴ .∴ ,即

        又∵FA'=FA=x

        ∴y= DE·A'F= · x·x

        ∴ (0

        ②當(dāng)3

        ∵FH=6-AF=6-x

        A'H=A'F-FH=x-(6-x)=2x-6

        又∵DE∥PQ

        ∴△A'PQ∽△A'DE

        (2)當(dāng)0

        當(dāng)3

        ∵y1

        經(jīng)驗(yàn)總結(jié):此題考察了幾何折疊問題與動(dòng)點(diǎn)函數(shù)問題。利用幾何圖形折疊的性質(zhì)、相似三角形的性質(zhì)和二次函數(shù)的性質(zhì)。求出函數(shù)的最大值最小值。解決此類題的關(guān)鍵是熟練掌握相似三角形的性質(zhì),找出線段的等量關(guān)系,也就是函數(shù)關(guān)系,從而快速求解。

        幾何圖形的折疊問題是數(shù)學(xué)中考的熱點(diǎn)、難點(diǎn)題型。此類題型綜合考察學(xué)生的空間想能力和知識的綜合運(yùn)用能力。在平時(shí)的復(fù)習(xí)訓(xùn)練中,要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想與綜合運(yùn)用能力。雖然此類題型變化之多,考察范圍之廣,但是經(jīng)過深入研究之后,我們不難發(fā)現(xiàn)其中的命題規(guī)律,在解決此類題型,我們要教會學(xué)生細(xì)心觀察,利用幾何圖形折疊的性質(zhì),發(fā)現(xiàn)問題所在,化繁為簡,才能輕車熟路,得心應(yīng)手。

        參考文獻(xiàn):

        [1]甘曉云.圖形折疊與變換[J].學(xué)苑創(chuàng)造:C版,2018(4):4-4.

        [2]朱曉勤.矩形折疊問題的深度探析[J].文理導(dǎo)航,2018(20):1-1.

        [3]肖學(xué)仕.巧解初中幾何折疊問題[J].數(shù)理化解題研究:初中版,2014(9):1-1.

        [4]李殿起.折疊圖形問題的解法[J].初中生之友,2003(Z5):37-39.

        猜你喜歡
        折疊折法策略
        小鳥的簡單折法
        例談未知角三角函數(shù)值的求解策略
        人和動(dòng)物的基本折法(二)
        人和動(dòng)物的基本折法(一)
        我說你做講策略
        高中數(shù)學(xué)復(fù)習(xí)的具體策略
        云計(jì)算十年OpenStack企業(yè)“折疊”效應(yīng)凸顯
        透析初中數(shù)學(xué)折疊問題的特點(diǎn)和方法
        如何開展數(shù)學(xué)課堂的變式教學(xué)
        考試周刊(2016年42期)2016-06-18 19:57:38
        可愛的小魚
        欧美中日韩免费观看网站| 久久蜜桃一区二区三区| 69精品国产乱码久久久| 亚洲人成电影网站色| 色妞www精品视频| 亚欧乱色束缚一区二区三区| 视频国产一区二区在线| 日韩夜夜高潮夜夜爽无码 | 黄片视频免费在线观看国产| 国产精品久久久久久久久岛| 亚洲AV综合久久九九| 亚洲av毛片一区二区久久| 国产极品少妇一区二区| 夜夜未满十八勿进的爽爽影院| 国产一级三级三级在线视| 国产精品第一区亚洲精品| 人妻中文字幕乱人伦在线| 野外性史欧美k8播放| 亚洲黄片久久| 亚洲日本一区二区三区四区| 又大又紧又粉嫩18p少妇| 国产成人精选在线不卡| 亚洲中文字幕在线精品2021| 国产一区二区三区日韩精品| 毛片24种姿势无遮无拦| 久久久久一| 久久久熟女一区二区三区 | 国产午夜精品久久久久免费视 | 国产精品一区二区三区卡| 亚洲aⅴ在线无码播放毛片一线天| 91短视频在线观看免费| 久久久精品少妇—二区| 亚洲国产aⅴ成人精品无吗 | 亚洲欧美日韩高清一区二区三区| 国产精品综合女同人妖| 亚洲日韩国产欧美一区二区三区| 亚洲AV无码不卡无码国产| 亚洲一区二区三区一站| 久久国产劲爆∧v内射| 欧美丰满大乳高跟鞋| 日韩精品一区二区三区中文9|