亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物根際微生物調(diào)控根系構(gòu)型研究*

        2021-11-21 07:09:34李夢(mèng)潔李占彪周思含何湘?zhèn)?/span>朱昌雄
        中國(guó)農(nóng)業(yè)氣象 2021年11期
        關(guān)鍵詞:根毛固氮側(cè)根

        李夢(mèng)潔,李占彪,周思含,國(guó) 輝,2,3,4**,何湘?zhèn)?,?兵,朱昌雄

        植物根際微生物調(diào)控根系構(gòu)型研究*

        李夢(mèng)潔1,李占彪1,周思含1,國(guó) 輝1,2,3,4**,何湘?zhèn)?,耿 兵5**,朱昌雄5

        (1. 北京林業(yè)大學(xué)生物科學(xué)與技術(shù)學(xué)院,北京 100083;2. 林木育種國(guó)家工程實(shí)驗(yàn)室, 北京 100083;3. 林木花卉遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室, 北京 100083;4. 樹(shù)木花卉育種生物工程國(guó)家林業(yè)和草原局重點(diǎn)實(shí)驗(yàn)室, 北京 100083;5. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)

        植物根系構(gòu)型即根系在其生長(zhǎng)介質(zhì)中的生長(zhǎng)與分布,包括根系長(zhǎng)度、根系分支和根系生物量等,能夠?qū)⒅参锕潭ㄔ谕寥乐胁⒂行账趾偷V質(zhì)養(yǎng)分,直接影響植物的生長(zhǎng)和發(fā)育。根系構(gòu)型受多種因素的影響,包括土壤水分、養(yǎng)分和根際微生物,傳統(tǒng)方式主要依靠化學(xué)肥料增加土壤養(yǎng)分進(jìn)而改善根系生長(zhǎng),但是化學(xué)肥料會(huì)對(duì)環(huán)境造成危害,根際微生物作為植物的“第二基因組”,能夠改善初生根、側(cè)根和根毛的發(fā)育,促進(jìn)植物的生長(zhǎng)和根際養(yǎng)分吸收,近年來(lái)基因組學(xué)?代謝組學(xué)、基因組學(xué)?轉(zhuǎn)錄組學(xué)等多組學(xué)關(guān)聯(lián)技術(shù)的應(yīng)用揭示了微生物的促生機(jī)制,為微生物菌劑的開(kāi)發(fā)提供了新思路?;谠擃I(lǐng)域的研究現(xiàn)狀,本文闡述了根際微生物(AMF、PGPR、根瘤菌)對(duì)根構(gòu)型的調(diào)控機(jī)制包括激素調(diào)控、固氮、溶磷、釋放揮發(fā)性有機(jī)化合物四個(gè)方面,并描述它們通過(guò)這四種機(jī)制增加植物根系長(zhǎng)度、根系分支,促進(jìn)根毛發(fā)育的調(diào)控效應(yīng),基于上述結(jié)論,植物根際微生物可以有效改善根系生長(zhǎng),但實(shí)際應(yīng)用效果還有待研究,量化不同機(jī)制的相對(duì)貢獻(xiàn)率以及提高微生物菌劑在實(shí)際應(yīng)用中的穩(wěn)定性是后續(xù)研究的重點(diǎn)。

        根系構(gòu)型;叢枝菌根真菌;根瘤菌;植物根際促生菌;微生物菌劑

        根系是連接植物和土壤的重要樞紐,植物通過(guò)根系獲取土壤資源,由于根系構(gòu)型(總根長(zhǎng)、根系生物量與根系分支等)與土壤中資源利用效率間具有顯著相關(guān)性,因此,根系的生長(zhǎng)和分布狀況將影響到植株的生長(zhǎng),傳統(tǒng)促進(jìn)植物根系生長(zhǎng)的方式主要是施加化學(xué)肥料,但這種方式會(huì)造成土壤退化、環(huán)境污染以及溫室氣體的排放[1]。因此,尋求更具環(huán)境可持續(xù)性發(fā)展的肥料至關(guān)重要。

        根際微生物能夠影響根系的生長(zhǎng)和分布,微生物聚集在根系周圍,幫助植物增強(qiáng)難溶性礦物質(zhì)的生物利用度,從而增加根對(duì)礦物質(zhì)的吸收,為植物提供有效的養(yǎng)分[2]。據(jù)報(bào)道,秈稻富集了更高比例的氮循環(huán)相關(guān)細(xì)菌,從而導(dǎo)致秈稻根系環(huán)境中的氮轉(zhuǎn)化過(guò)程比粳稻品種更有效,更能明顯促進(jìn)植物的生長(zhǎng)[3]。在環(huán)境中磷含量較低時(shí),叢枝菌根真菌(Fungi,AMF)能夠增加磷的利用效率進(jìn)而促進(jìn)根系生長(zhǎng)[4],植物根際促生菌(plant growth promoting rhizobacteria,PGPR)和根瘤菌通過(guò)溶解、礦化等方式能夠?qū)o(wú)機(jī)磷等植物不易獲得的營(yíng)養(yǎng)物質(zhì)進(jìn)行轉(zhuǎn)化,來(lái)滿足其必需的營(yíng)養(yǎng)吸收[5]。同時(shí),微生物還能產(chǎn)生植物激素、揮發(fā)性化合物等物質(zhì)促進(jìn)植物生長(zhǎng),PGPR產(chǎn)生的揮發(fā)性化合物可以促進(jìn)根毛發(fā)育并提高根際中磷酸鹽的利用率[6],在植物生長(zhǎng)過(guò)程中,微生物通過(guò)代謝植物分泌物中的色氨酸和其它小分子產(chǎn)生植物激素(包括生長(zhǎng)素、赤霉素和細(xì)胞分裂素等)來(lái)調(diào)控植物初生根和側(cè)根的生長(zhǎng)[2,7]。因此,根際生物學(xué)過(guò)程不僅決定了植物的養(yǎng)分利用效率,也調(diào)控根際微生物活性,在植物根際生長(zhǎng)的微生物群落(叢枝菌根真菌AMF、植物根際促生菌PGPR、根瘤菌)通過(guò)激素調(diào)控、固氮、溶磷以及釋放揮發(fā)性化合物等機(jī)制來(lái)調(diào)控根系構(gòu)型,根際微生物的這些特性具備作為生物肥料微生物菌劑的潛力,但微生物菌劑研發(fā)過(guò)程中面臨的最大挑戰(zhàn)是在復(fù)雜的環(huán)境條件下開(kāi)發(fā)穩(wěn)定的配方,因此,有必要探究微生物發(fā)揮的生態(tài)作用,并進(jìn)一步了解微生物改善植物根系生長(zhǎng)的機(jī)制。本文從根際微生物入手,主要分析了AMF、PGPR、根瘤菌對(duì)根系構(gòu)型的調(diào)控作用及機(jī)制,以期為微生物菌劑的開(kāi)發(fā)提供新的思路。

        1 植物根系構(gòu)型

        1.1 根系結(jié)構(gòu)和功能

        根系的特征主要表現(xiàn)為根系結(jié)構(gòu)(root system architecture,RSA),即根系的空間構(gòu)型,如主根和側(cè)根的空間分布以及各種類型的根的數(shù)量、長(zhǎng)度、根間夾角、根分枝、根直徑等,在RSA的所有成分中,側(cè)根(lateral root,LR)對(duì)植物的生長(zhǎng)和發(fā)育至關(guān)重要,比主根對(duì)環(huán)境信號(hào)的變化更敏感,它可以錨定、吸收礦物質(zhì)養(yǎng)分和水分,產(chǎn)生具有生長(zhǎng)調(diào)節(jié)特性的分泌物,是植物養(yǎng)分水分吸收和儲(chǔ)存以及植物與土壤之間的主要界面[8]。

        1.2 根構(gòu)型的影響因素

        植物能夠檢測(cè)并響應(yīng)土壤環(huán)境中水分和養(yǎng)分可獲得性和分布的變化,植物根尖能夠向著水勢(shì)較高區(qū)域生長(zhǎng),同樣植物也能夠通過(guò)改變根系構(gòu)型來(lái)有效探索含有養(yǎng)分的土壤區(qū)域,當(dāng)遇到營(yíng)養(yǎng)豐富的區(qū)域時(shí),植物為了汲取土壤養(yǎng)分會(huì)將資源投入到根的增殖上[9]。對(duì)根系發(fā)育影響最大的兩種營(yíng)養(yǎng)元素是磷和氮。在磷肥濃度為1000mg×kg?1處理下,橡膠樹(shù)根毛數(shù)量和體積分別為對(duì)照的207%和151.1%,促進(jìn)效應(yīng)最大,磷肥濃度為200mg×kg?1處理對(duì)根毛重量的增加作用最大,但過(guò)高的磷肥濃度則會(huì)表現(xiàn)出抑制效應(yīng),在濃度25000mg×kg?1處理時(shí)根毛生長(zhǎng)表現(xiàn)出負(fù)效應(yīng)[10]。濃度為20mmol×L?1硝酸鹽誘導(dǎo)了AGAMOUSE-LIKE21(AGL21)轉(zhuǎn)錄因子的表達(dá),調(diào)節(jié)了植物生長(zhǎng)素生物合成基因的下游表達(dá),從而刺激了側(cè)根發(fā)育,但對(duì)初生根沒(méi)有影響[11]。

        土壤微生物也能夠影響根系構(gòu)型,根際是土壤微生物群落聚集棲息和繁衍的區(qū)域,其中有能夠促進(jìn)植物根系生長(zhǎng)的微生物。它們相互作用,互惠共生。植物-微生物互作可以分為兩種類型,一種是互作共生型(例如根瘤、叢枝菌根),另一種是聯(lián)合共生型,它們能夠在根系表面(有時(shí)也包括根內(nèi)層)定殖,增強(qiáng)宿主植物在環(huán)境中的適應(yīng)能力,促進(jìn)植物健康生長(zhǎng),被稱為促進(jìn)植物生長(zhǎng)的根際細(xì)菌(plant growth-promoting rhizobacteria,PGPR)[12]。

        2 根際微生物調(diào)控根系構(gòu)型的研究方法

        在植物生長(zhǎng)發(fā)育過(guò)程中,根際微生物可以通過(guò)多種方式調(diào)節(jié)根系構(gòu)型進(jìn)而改善植物的生長(zhǎng),在此過(guò)程中,細(xì)胞在轉(zhuǎn)錄、翻譯和代謝水平上的變化能夠通過(guò)組學(xué)技術(shù)定性和定量檢測(cè),全基因組、轉(zhuǎn)錄組學(xué)技術(shù)、擴(kuò)增子測(cè)序、代謝組學(xué)結(jié)合傳統(tǒng)的培養(yǎng)組學(xué)等多組學(xué)聯(lián)合分析可以研究植物從細(xì)胞到個(gè)體水平生長(zhǎng)發(fā)育的動(dòng)態(tài)變化,闡明微生物促進(jìn)植物根系生長(zhǎng)發(fā)育的復(fù)雜機(jī)制[13?14]。據(jù)報(bào)道,對(duì)玉米冠根發(fā)育不同區(qū)域進(jìn)行高通量轉(zhuǎn)錄組測(cè)序及根際土壤微生物擴(kuò)增子測(cè)序(16S和ITS)后,發(fā)現(xiàn)玉米根系縱向發(fā)育區(qū)域(根毛,側(cè)根)功能特性與特定的微生物群落相關(guān)聯(lián),進(jìn)一步對(duì)玉米進(jìn)行宏基因組深度測(cè)序分析、根際移植試驗(yàn)、不同土壤分離菌接種試驗(yàn),發(fā)現(xiàn)特定的根際微生物群落(草酸桿菌科)與玉米生長(zhǎng)及氮素吸收密切相關(guān),對(duì)玉米根系提取物和分泌物進(jìn)行靶向代謝物分析,結(jié)合穩(wěn)定14C標(biāo)記根際碳示蹤技術(shù)及玉米查爾酮合成突變體結(jié)合外源黃酮類化合物互補(bǔ)研究,揭示了玉米根系分泌黃酮類衍生物介導(dǎo)的草酸桿菌在維持寄主與微生物良性互作,并促進(jìn)玉米側(cè)根發(fā)育和氮素吸收過(guò)程中的關(guān)鍵作用[15]。在高粱盆栽中接種PGPR菌株,宏基因組分析表明菌株成功定殖根際,通過(guò)基因組學(xué)分析發(fā)現(xiàn)定殖后菌株表達(dá)了生長(zhǎng)素合成,固氮,磷酸鹽增溶相關(guān)基因,這些基因的表達(dá)增加了植物養(yǎng)分吸收和生長(zhǎng)素信號(hào)傳導(dǎo)能力,進(jìn)而增加了高粱的根和莖生物量[16]。SPME-GC-MS非靶向代謝組學(xué)結(jié)合轉(zhuǎn)錄組學(xué)的研究方法,揭示了根際細(xì)菌產(chǎn)生的揮發(fā)性化合物通過(guò)介導(dǎo)植物生長(zhǎng)素信號(hào)傳導(dǎo)途徑調(diào)節(jié)植物側(cè)根生長(zhǎng)發(fā)育的機(jī)制,并初步篩選其關(guān)鍵物質(zhì)[14]。根際微生物對(duì)根系構(gòu)型的調(diào)控結(jié)合多學(xué)科交叉互補(bǔ)合作,利用根系及根際研究前沿技術(shù),立足于植物營(yíng)養(yǎng)調(diào)控與植物根系發(fā)育方面,充分理解植物根系與微生物的互作效應(yīng),提高微生物菌劑研發(fā)的準(zhǔn)確性。

        3 互作共生根際微生物調(diào)控根系構(gòu)型的效應(yīng)

        3.1 AMF

        叢枝菌根真菌(AMF) 可以與植物根系形成菌根共生體,不僅可以為植物直接輸送養(yǎng)分,還能調(diào)控根系生長(zhǎng)間接促進(jìn)植株生長(zhǎng)。當(dāng)小麥接種(AMF)后,其根長(zhǎng)、根表面積分別增加了27%和28%[17]。玉米突變體不能形成側(cè)根,與AMF共生后可彌補(bǔ)玉米突變體的生長(zhǎng)缺陷,這表明AMF影響了植物的發(fā)育途徑[18]。由表1可見(jiàn),柑橘砧木枳根接種AMF后,根系長(zhǎng)度、表面積、平均直徑和體積均明顯增加[19]。這是因?yàn)楦涕僬枘捐赘蹈倩虿簧?一般情況下無(wú)根毛),主要依靠土壤中AMF的協(xié)作吸收土壤中各種礦物質(zhì)營(yíng)養(yǎng),以促進(jìn)自身生長(zhǎng),AMF與柑橘砧木枳形成菌根后,根細(xì)胞基因的表達(dá)發(fā)生變化導(dǎo)致側(cè)根數(shù)量增加,但AMF只在大的側(cè)根上定殖,在細(xì)的側(cè)根上不定殖。利用RNA-Seq技術(shù)發(fā)現(xiàn),與大的側(cè)根相比,細(xì)的側(cè)根中參與AMF共生的基因表達(dá)水平下調(diào)[4]。表1還顯示,番茄和水稻幼苗接種AMF后,番茄的根長(zhǎng)、總根表面積、總根體積、平均根直徑和根尖數(shù)都顯著增加,并且激活了水稻的側(cè)根發(fā)育[20?21]。目前主要研究根系和AMF共生后根細(xì)胞基因表達(dá)的變化,實(shí)際上在未發(fā)生接觸時(shí),AMF就能夠?qū)е滦←湼蛋l(fā)生轉(zhuǎn)錄重編程,AMF的分子信號(hào)改變了小麥根系中2000多個(gè)基因的表達(dá)[22]??偟膩?lái)說(shuō),AMF不僅能通過(guò)直接接觸來(lái)促進(jìn)側(cè)根的增殖,也可以傳達(dá)分子信號(hào)改善側(cè)根生長(zhǎng)。

        3.2 根瘤菌

        豆科植物可以形成根瘤供根瘤菌寄生,根瘤菌將氮素固定為植物可吸收利用的氨,從表1可知根瘤菌促進(jìn)了豆科植物大豆和蒺藜苜蓿側(cè)根的發(fā)育[23?25],除了與豆科植物形成固氮共生外,研究發(fā)現(xiàn)根瘤菌的基因能夠在水稻和甘蔗中表達(dá),這表明根瘤菌的固氮作用也能夠發(fā)生在非豆科植物中[26]。表1顯示接種根瘤菌能夠增加水稻的根長(zhǎng)及幼苗活力指數(shù),在白三葉和水稻植株上的接種試驗(yàn)結(jié)果表明,sp. POA3菌株能夠增加這兩種植物根的干重[27]。sp. TPV08和PETP01能夠促進(jìn)番茄和辣椒的生長(zhǎng),根的干重是對(duì)照組的兩倍以上[28],除了生物量,根瘤菌也能夠調(diào)控植物根系長(zhǎng)度,sp. IRBG74促進(jìn)了擬南芥?zhèn)雀l(fā)生,但是抑制了初生根的生長(zhǎng)[29]。接種sp. PEPV40后菠菜幼苗的根長(zhǎng)在5d內(nèi)增加了90%,從而給細(xì)菌定殖提供了更大的空間[30]。

        4 聯(lián)合共生根際微生物調(diào)控根系構(gòu)型的效應(yīng)

        PGPR(plant growth promoting rhizobacteria)是用來(lái)描述一組能夠在根際定居的有益細(xì)菌,通過(guò)不同的機(jī)制促進(jìn)植物生長(zhǎng),包括磷酸鹽增溶、固氮、產(chǎn)生植物激素,揮發(fā)性化合物VOC等[31],PGPR對(duì)根系構(gòu)型的調(diào)控非常全面,包括對(duì)根系密度、生物量、根長(zhǎng)、分支數(shù)、側(cè)根發(fā)育等指標(biāo)的調(diào)控。表1顯示接種PGPR后水稻和番茄根系的長(zhǎng)度、直徑和分支都有所增加[32?34]。常見(jiàn)的PGPR包括芽孢桿菌屬和假單孢菌屬等,甲基營(yíng)養(yǎng)型芽孢桿菌能夠增加擬南芥的根系密度及分枝的程度[35],紫花苜蓿接種芽孢桿菌后初生根的長(zhǎng)度、側(cè)根數(shù)量以及根生物量增加[36]。從玉米根際分離的假單胞菌PS01抑制了初生根的生長(zhǎng),但能促進(jìn)側(cè)根和根毛形成[37],在擬南芥中接種假單胞菌屬后也觀察到同樣的表型變化[38],這種反應(yīng)不同于巴西固氮螺菌引發(fā)的反應(yīng),后者側(cè)重于刺激側(cè)根的增殖而不是側(cè)根生長(zhǎng)[39]。這些研究證明根際微生物可以調(diào)控植物根系的發(fā)育和結(jié)構(gòu)。

        表1 根際微生物的促生效應(yīng)

        注:AMF是叢枝菌根真菌,Rhiz.是根瘤菌,PGPR是植物根際促生菌。下同。

        Note: AMF isFungi, Rhiz.is Rhizobium,PGPR isplant growth promoting rhizobacteria. The same as below.

        5 根際微生物調(diào)控根系構(gòu)型的機(jī)制

        5.1 微生物產(chǎn)生激素對(duì)根系的調(diào)控

        植物激素是關(guān)鍵的信號(hào)調(diào)節(jié)劑,可以調(diào)控植物的生長(zhǎng)和發(fā)育。研究發(fā)現(xiàn)微生物也可以合成并分泌激素來(lái)平衡植物激素的水平,從而促進(jìn)植物的生長(zhǎng)(圖1)。在植物促生過(guò)程中,生長(zhǎng)素是一種對(duì)植物根系發(fā)育至關(guān)重要的植物激素,是植物生長(zhǎng)和發(fā)育過(guò)程的主要調(diào)節(jié)劑,直接或間接調(diào)節(jié)大多數(shù)植物的生長(zhǎng)過(guò)程。參與生長(zhǎng)素生物合成的酶首先在細(xì)菌中發(fā)現(xiàn),假單胞菌和農(nóng)桿菌中的和基因分別編碼色氨酸?2?單加氧酶和水解酶,色氨酸?2?單加氧酶催化色氨酸轉(zhuǎn)化為吲哚?3?乙酰胺,水解酶則釋放生長(zhǎng)素[40?41]。巴西固氮螺菌()具有亞硝酸還原酶活性,在定殖過(guò)程中能夠產(chǎn)生NO,NO能夠參與生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑控制側(cè)根形成。低濃度的生長(zhǎng)素(1×10?12~1×10?9mol×L?1)可以刺激初級(jí)根的伸長(zhǎng),而高濃度的生長(zhǎng)素(3×10?6~10?3mol×L?1)會(huì)降低初生根的長(zhǎng)度,促進(jìn)根毛的形成,并刺激側(cè)根的產(chǎn)生,根毛和側(cè)根能夠更好地吸收養(yǎng)分進(jìn)而促進(jìn)微生物生長(zhǎng)[12]。微生物還可以產(chǎn)生細(xì)胞分裂素、赤霉素和乙烯,細(xì)胞分裂素刺激植物細(xì)胞分裂,控制根分生組織的分化,誘導(dǎo)根毛的增殖,但抑制側(cè)根形成和初生根的伸長(zhǎng)[7,42],在干旱脅迫條件下,枯草芽孢桿菌產(chǎn)生的細(xì)胞分裂素刺激側(cè)柏側(cè)根的生物量增加了13.9%[43]。解淀粉芽孢桿菌產(chǎn)生的赤霉素可以增加根和芽的發(fā)生,進(jìn)而促進(jìn)水稻植株的生長(zhǎng)[44]。乙烯可以調(diào)控植物的生長(zhǎng)和發(fā)育,包括刺激種子發(fā)芽,促進(jìn)不定根的形成等,但當(dāng)生長(zhǎng)素在植物中積累時(shí)會(huì)誘導(dǎo)1?氨基環(huán)丙烷?1?甲酸(ACC)合成酶基因的轉(zhuǎn)錄,導(dǎo)致乙烯水平升高,從而抑制豆科植物根系生長(zhǎng)、根瘤形成以及固氮過(guò)程,并加速衰老和脫落,PGPR產(chǎn)生的生物堿及ACC脫氨酶能夠降低ACC在植物組織中的水平,在維持乙烯穩(wěn)態(tài)中起重要作用[45]。其它對(duì)根系產(chǎn)生影響的激素還有脫落酸等植物激素,它們之間復(fù)雜的互作在根系發(fā)生和發(fā)育過(guò)程中起著至關(guān)重要的作用[46]。

        5.2 微生物固氮對(duì)根系的調(diào)控

        氮是植物生長(zhǎng)發(fā)育所必需的主要營(yíng)養(yǎng)元素之一,主要以銨態(tài)氮或硝態(tài)氮的形式被根系吸收。微生物可以將其它形式的氮通過(guò)礦化、硝化和固定作用轉(zhuǎn)化可利用氮源(圖1)。礦化作用涉及一系列的微生物和酶,最終將土壤中的有機(jī)氮轉(zhuǎn)化為無(wú)機(jī)形式,產(chǎn)生的NH4+很容易被植物吸收利用[47]。硝化作用一般由氨氧化菌和亞硝酸鹽氧化菌共同完成,首先在氨氧化細(xì)菌作用下,氨 (NH3)氧化成亞硝酸鹽(NO2?),隨后亞硝酸鹽氧化菌催化發(fā)生的亞硝化反應(yīng)將NO2?氧化為硝酸鹽(NO3?)[48]。在自然界氮素還原中,生物固氮(BNF)占據(jù)主導(dǎo)地位,對(duì)植物氮吸收總量的貢獻(xiàn)率高達(dá)12%~70%,可分為共生和非共生固氮[49]。根瘤菌通過(guò)共生固氮為豆科植物提供氮素,改善豆科植物在氮缺乏條件下的生長(zhǎng)。幾種PGPR包括芽孢桿菌、固氮螺菌等通過(guò)非共生固氮幫助植物固定大氣中的氮,進(jìn)而促進(jìn)植物的生長(zhǎng)并提高產(chǎn)量。芽孢桿菌屬能夠促進(jìn)玉米對(duì)氮的吸收,使根系具有高濃度的氮素,同時(shí)增加玉米的根系體積[50],嗜麥芽窄食單胞菌()也有固定氮的能力,相比對(duì)照組,接種后的小麥幼苗的根長(zhǎng)及生物量顯著增加[51]。固氮螺菌是除根瘤菌外用于生產(chǎn)實(shí)踐最多的微生物接種劑,不僅能增加非豆科植物的根系表面積[52],還能促使豆科植物形成高度分枝根系系統(tǒng),增加根系表面積和根毛密度,幫助豆科植物應(yīng)對(duì)脅迫環(huán)境[53]。此外,PGPR和根瘤菌聯(lián)合接種比單一接種更有利于植物生長(zhǎng)和養(yǎng)分吸收,假單胞菌與根瘤菌的互作可以提高大豆的根瘤比例,增強(qiáng)生物的固氮能力。在某些情況下,根瘤菌還可以將結(jié)瘤和固氮基因轉(zhuǎn)移到假單胞菌上,使它們?cè)诖袒备啃纬筛觯M(jìn)而改善植物的生長(zhǎng)發(fā)育[54]。

        5.3 微生物促進(jìn)植物溶磷對(duì)根系的調(diào)控

        磷酸鹽是根的唯一磷源,磷是幾種重要細(xì)胞成分(例如核酸、磷脂和ATP)中的主要元素,顯著影響根的生長(zhǎng),對(duì)植物的生長(zhǎng)和發(fā)育至關(guān)重要。磷缺乏會(huì)抑制擬南芥初生根的生長(zhǎng),但促進(jìn)其側(cè)根形成[55],水稻對(duì)低磷的響應(yīng)恰好與之相反[56]。在玉米中,磷缺乏會(huì)導(dǎo)致某些基因型側(cè)根的數(shù)量和長(zhǎng)度減少[57],因此,提高磷的吸收效率是改善植物生長(zhǎng)性能的關(guān)鍵。

        AMF能夠顯著促進(jìn)低磷條件下根系對(duì)土壤中磷的吸收,通過(guò)與AMF共生,柑橘對(duì)磷的吸收顯著增加,而磷利用效率的增加促進(jìn)了根部的生長(zhǎng)[4](圖1)。其它有益菌包括一部分PGPR通過(guò)溶解和礦化磷元素影響植物的發(fā)育[5],假單胞菌產(chǎn)生的有機(jī)酸通過(guò)降低根際pH值將難溶的有機(jī)磷化合物(例如磷酸鈣和磷酸鋅等)溶解成植物可吸收的形式,增加了土壤中磷酸鹽離子的有效性,從而促進(jìn)了普通小麥的磷吸收和生物量[58]。礦化是由微生物分泌的磷酸酶和植酸酶催化發(fā)生,磷酸酶將有機(jī)磷轉(zhuǎn)化為無(wú)機(jī)磷,植酸酶在植酸釋放磷的過(guò)程中發(fā)揮重要作用,因此磷元素很容易被植物吸收利用[54],并且PGPR不僅自身能夠影響植物發(fā)育,還可以通過(guò)修飾其它植物與微生物的相互作用而影響植物生長(zhǎng),PGPR有利于AMF孢子萌發(fā)和菌絲生長(zhǎng),增強(qiáng)根的感受性及其與AMF間的相互識(shí)別,AMF的外源菌絲也能將PGPR轉(zhuǎn)運(yùn)到有機(jī)磷斑塊上,促進(jìn)有機(jī)磷礦化[59?60]。研究發(fā)現(xiàn),熒光假單胞菌和AMF共同處理后植株的地上部和根系干重均高于單獨(dú)AMF處理[61],因此,在制備微生物菌劑時(shí)可以考慮多種菌株的聯(lián)合培養(yǎng)。

        5.4 微生物釋放揮發(fā)性有機(jī)物對(duì)根系的調(diào)控

        生物個(gè)體間通過(guò)揮發(fā)性有機(jī)物(volatile organic compounds, VOC)傳遞信息,植物釋放VOC在根際富集有益菌促進(jìn)自身生長(zhǎng)[62],同時(shí)細(xì)菌也會(huì)分泌VOC作為信號(hào)分子來(lái)介導(dǎo)植物與微生物的相互作用,除了在植物免疫中發(fā)揮作用外(抑制病原菌的生長(zhǎng))[63],還對(duì)植物根構(gòu)型有明顯的改善,包括增加根長(zhǎng)和分枝等,在雙子葉和單子葉植物中都觀察到了這種變化(圖1)。研究發(fā)現(xiàn),植物生長(zhǎng)促生菌PGPR產(chǎn)生的VOC在促進(jìn)植物根系生長(zhǎng)中有關(guān)鍵作用,來(lái)自不同屬的幾種細(xì)菌,包括芽孢桿菌、假單胞菌、沙雷氏菌、節(jié)桿菌和單胞菌都能產(chǎn)生影響植物生長(zhǎng)的揮發(fā)性有機(jī)物,其中由芽孢桿菌合成的乙酸乙酯和2,3?丁二醇是VOC中最常見(jiàn)的化合物,它們對(duì)植物生長(zhǎng)有顯著的促進(jìn)作用[64]。

        研究VOC的模式植物是擬南芥[65],擬南芥根系能夠快速感知芽孢桿菌釋放出的苯乙酮、十三醛、十四醛等VOC,根毛、側(cè)根數(shù)量和長(zhǎng)度以及初生根的直徑增加[66]。假單胞菌WCS417r產(chǎn)生的VOC刺激了擬南芥基因的表達(dá),這可能與側(cè)根的增加相關(guān)[67]。除了擬南芥之外,在其它單子葉和雙子葉植物中也發(fā)現(xiàn)了類似的現(xiàn)象,芽孢桿菌屬和不動(dòng)桿菌屬產(chǎn)生了大量的3?甲基丁醇和(Z) ?N?羥基苯亞胺甲酯,刺激了辣椒根毛發(fā)育和側(cè)根生長(zhǎng)[63],GB03釋放的VOC導(dǎo)致二穗短柄草總生物量增加81%,并使總根長(zhǎng)、總側(cè)根長(zhǎng)和不定根總長(zhǎng)分別增加88.5%、201.5%和474.5%[68]。在紫花苜蓿中,芽孢桿菌產(chǎn)生的3?羥基?2?丁酮改善了根系活性和根區(qū)土壤微生態(tài)環(huán)境,為植物生長(zhǎng)提供了良好的環(huán)境,對(duì)側(cè)根數(shù)量、干重和根系生長(zhǎng)均有促進(jìn)作用[36]。芽孢桿菌屬SQR9菌種釋放的VOC通過(guò)調(diào)節(jié)生長(zhǎng)素合成相關(guān)基因YUCs促進(jìn)LR分支,它增加了分支前部位形成的頻率,并進(jìn)一步加速了初級(jí)根中側(cè)根原基的出現(xiàn),進(jìn)而在初級(jí)根上產(chǎn)生更密集的側(cè)根原基和側(cè)根,代謝組學(xué)分析表明,3?羥基?2?丁酮是芽孢桿菌屬SQR9主要活性化合物,但在促進(jìn)側(cè)根發(fā)育方面活性較低,在較低濃度(10mmol×L?1和30mmol×L?1)下僅略微促進(jìn)LR形成,而在較高濃度(100、300和1000mmol×L?1)下,3?羥基?2?丁酮對(duì)此沒(méi)有影響,因此,需要進(jìn)一步研究以鑒定根系揮發(fā)物的有效成分并確定其最佳作用濃度[14]。

        6 總結(jié)與展望

        PGPR、AMF和根瘤菌的生物學(xué)特性和相關(guān)功能是多種多樣的,包括激素調(diào)控、氮磷元素的吸收和固定、釋放揮發(fā)性有機(jī)化合物,這些機(jī)制還能夠協(xié)同作用調(diào)控根系構(gòu)型,促進(jìn)植物生長(zhǎng),但是對(duì)幾種促生機(jī)制對(duì)植物根系生長(zhǎng)的解析大多分開(kāi)進(jìn)行,從而導(dǎo)致關(guān)于協(xié)同調(diào)控植物發(fā)育機(jī)制的理解不夠全面,不同路徑的相對(duì)貢獻(xiàn)仍有待闡明,因此,將傳統(tǒng)微生物培養(yǎng)實(shí)驗(yàn)與現(xiàn)代基因組學(xué)、宏基因組學(xué)和代謝組學(xué)等多種組學(xué)充分結(jié)合,深入探究不同路徑協(xié)同調(diào)控植物生長(zhǎng)的分子機(jī)制,并進(jìn)一步挖掘其中的核心作用路徑,為微生物菌劑的研發(fā)提供一定思路。

        有些微生物已經(jīng)應(yīng)用于生產(chǎn)實(shí)踐,但大部分有益微生物仍處于研究階段,主要是由于環(huán)境復(fù)雜多變,據(jù)報(bào)道,巴西固氮螺菌Ab-V5在溫室條件下接種顯著增加了玉米和小麥的根系干重、體積和生物量,但在田間條件下,菌株對(duì)植物生長(zhǎng)無(wú)顯著影響[69],因此,制備菌劑時(shí)應(yīng)增加在自然環(huán)境下的試驗(yàn),提高微生物接種劑在不同環(huán)境中的穩(wěn)定性,PGPR、AMF和根瘤菌可以協(xié)同發(fā)揮促生作用,在制備微生物菌劑時(shí)可以突破單株或單類菌的局限性,盡可能實(shí)現(xiàn)微生物組綜合體系的運(yùn)用??傊?,根際微生物對(duì)植物根系構(gòu)型的調(diào)控在生產(chǎn)實(shí)踐中具有廣闊應(yīng)用前景,多組學(xué)關(guān)聯(lián)的研究方法可以充分了解微生物發(fā)揮作用的機(jī)制,為菌種的篩選提供研究方向。

        [1] Meier M,Liu Y,Lay-Pruitt K S,et al.Auxin-mediated root branching is determined by the form of available nitrogen[J].Nat Plants,2020(6):1136-1145.

        [2] Trivedi P,Leach J E,Tringe S G,et al.Plant-microbiome interactions:from community assembly to plant health[J]. Nat Rev Microbiol,2020(18):607-621.

        [3] Zhang J Y,Liu Y X,Zhang N,et al.is associated with root microbiota composition and nitrogen use in field-grown rice[J].Nat Biotechnol,2019,37:676-684.

        [4] Chen W L,Li J,Zhu H H,et al.Arbuscular mycorrhizal fungus enhances lateral root formation in(L.) as revealed by RNA-Seq analysis[J].Frontiers in Plant Science,2017(8):2039.

        [5] Goswami D,Patel K,Parmar S,et al.Elucidating multifaceted urease producing marineBG as a cogent PGPR and bio-control agent[J].Plant Growth Regulation,2015,75(1):253-263.

        [6] Rijavec T,Lapanje A.Hydrogen cyanide in the rhizosphere:not suppressing plant pathogens,but rather regulating availability of phosphate[J].Front Microbiol, 2016(7):1785.

        [7] Vejan P,Abdullah R,Khadiran T,et al.Role of plant growth promoting rhizobacteria in agricultural sustainability:a review[J].Molecules,2016(21):573.

        [8] Chen W,Li J,Zhu H,et al.The differential and interactive effects of arbuscular mycorrhizal fungus and phosphorus on the lateral root formation in(L.) [J].Scientia Horticulturae,2017,217:258-265.

        [9] 李秉鈞,顏耀,吳文景,等.環(huán)境因子對(duì)植物根系及其構(gòu)型的影響研究進(jìn)展[J].亞熱帶水土保持,2019,31(3):41-45.

        Li B J,Yan Y,Wu W J,et al.Study Progress on the impact of environment factor to the plant root system and configuration[J].Subtropical Soil and Water Conservation, 2019,31(3):41-45.(in Chinese)

        [10] 劉俊良,林清火,華元?jiǎng)?等.不同濃度磷肥對(duì)橡膠樹(shù)根系生長(zhǎng)影響[J].熱帶農(nóng)業(yè)科學(xué),2020,40(10):1-6.

        Liu J L,Lin Q H,Hua Y G,et al.Effects of different concentrations of phosphate fertilizer on root growth of rubber tree[J].Chinese Journal of Tropical Agriculture,2020, 40(10):1-6.(in Chinese)

        [11] Yu L H,Miao Z Q,Qi G F,et al.MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals[J]. Mol Plant,2014(7):1653-1669.

        [12] Vacheron J,Desbrosses G,Bouffaud M L,et al.Plant growth- promoting rhizobacteria and root system functioning[J]. Front Plant Sci,2013(4):356.

        [13] Garrido-Oter R,Nakano R T,Dombrowski N,et al.Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia[J].Cell Host Microbe,2018,24:155-167.

        [14] Li Y C,Shao J H,Xie Y M,et al.Volatile compounds from beneficial rhizobacteriaspp.promote periodic lateral root development in[J].Plant Cell Environ,2021,44:1663-1678.

        [15] Yu P,He X M,Baer M,et al.Plant flavones enrich rhizosphereto improve maize performance under nitrogen deprivation[J].Nat Plants,2021 (7):481-499.

        [16] Kuramae E E,Derksen S,Schlemper T R,et al.Sorghum growth promotion byand:putative mechanisms revealed by genomics and metagenomics[J].Microorganisms, 2020 (8):725.

        [17] de Souza Campos P M,Borie F,Cornejo P,et al.Wheat root trait plasticity,nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions[J].J Plant Physiol,2020,256: 153297.

        [18] Boller P T.The growth defect of lrt1,a maize mutant lacking lateral roots,can be complemented by symbiotic fungi or high phosphate nutrition[J].Planta,2002,214(4):584-590.

        [19] Zou Y N,Wang P,Liu C Y,et al.Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress[J].Sci Rep, 2017(7):41134.

        [20] Wang Y,Zhang W Z,Liu W K,et al.Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth andexpression in continuous cropping substrates[J].BMC Plant Biol,2021,21(1):48.

        [21] Chiu C H,Choi J,Paszkowski U.Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice[J].New Phytol,2018,217:552-557.

        [22] Tian H,Wang R Z,Li M J,et al.Molecular signal communication during arbuscular mycorrhizal formation induces significant transcriptional reprogramming of wheat (L.) roots[J].Annals of Botany, 2019,124:1109-1119.

        [23] Kallala N,M'sehli W,Jelali K,et al.Inoculation with efficient nitrogen fixing and indoleacetic acid producing bacterial microsymbiont enhance tolerance of the model legumeto iron deficiency[J].Biomed Res Int,2018:9134716.

        [24] Wang X,Qiang P,Chen F,et al.Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P[J].Mycorrhiza,2011,21(3):173-181.

        [25] Cavite H J M,Mactal A G,Evangelista E V,et al.Biochemical characteristics and inoculation effects of multi-trait plant growth-promoting rhizobacteria on upland rice(L. cv) seedling growth[J].Arch Microbiol, 2021(1):1-8.

        [26] Fischer D,Pfitzner B,Schmid M,et al.Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (sp.)[J]. Plant & Soil,2012,356(1-2):83-99.

        [27] Granada C E,Letícia A,Lisboa B B,et al.Diversity of native rhizobia isolated in south Brazil and their growth promotion effect on white clover() and rice() plants[J].Biology & Fertility of Soils,2014,50(1): 123-132.

        [28] García-Fraile P,Carro L,Robledo M,et al.promotes non-legumes growth and quality in several production steps:towards a biofertilization of edible raw vegetables healthy for humans[J].PLoS One,2012,7(5): e38122.

        [29] Zhao C Z,Huang J,Gyaneshwar P,et al.sp. IRBG74 altersroot development by affecting auxin signaling[J].Front Microbiol,2017(8):2556.

        [30] Jiménez-Gómez A,Flores-Félix J D,García-Fraile P,et al.Probiotic activities ofon growth and quality of spinach[J].Sci Rep,2018,8 (1)295.

        [31] Velázquez-Becerra C,Macías-Rodríguez L I,López-Bucio J,et al.A volatile organic compound analysis fromidentifies dimethylhexadecylamine,an amino-containing lipid modulating bacterial growth andmorphogenesis in vitro[J].Plant & Soil, 2011,339(1-2):329-340.

        [32] Gomez-Ramirez L F,Uribe-Velez D.Phosphorus solubilizing and mineralizingspp. contribute to rice growth promotion using soil amended with rice straw[J].Curr Microbiol,2021,78(3):932-943.

        [33] Guerrieri M Chiara,Fiorini A,Fanfoni E,et al.Integrated genomic and greenhouse assessment of a novel plant growth-promoting rhizobacterium for tomato plant[J].Front Plant Sci,2021(12):660620.

        [34] Etesami H,Alikhani H A.Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant[J].Rhizosphere,2016(1):5-12.

        [35] Pérez-Flores P,Valencia-Cantero E,Altamirano-Hernández J,et al.M4-96 isolated from maize() rhizoplane increases growth and auxin content invia emission of volatiles[J]. Protoplasma,2017,254(6):2201-2213.

        [36] Fincheira P,Venthur H,Mutis A,et al.Growth promotion ofin response to volatile organic compounds emitted from diverse bacterial species[J].Microbiol Res,2016,193:39-47.

        [37] Chu T N,Bui L V,Hoang M T.PS01 isolated from maize rhizosphere alters root system architecture and promotes plant growth[J].2020,8(4):471.

        [38] Zamioudis C,Mastranesti P,Dhonukshe P,et al.Unraveling root developmental programs initiated by beneficialspp. bacteria[J].Plant Physiol,2013,162(1): 304-18.

        [39] Prasad A A,Babu S.Compatibility ofandin growth promotion of groundnut(L.)[J].An Acad Bras Cienc, 2017,89(2):1027-1040.

        [40] Cheng Y F,Dai X H,Zhao Y D.Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in[J].Genes Dev,2006,20(13):1790-1799.

        [41] Kosuge T,Heskett M G,Wilson E E.Microbial synthesis and degradation of indole-3-acetic acid(I):the conversion of L-tryptophan to indole-3-acetamide by an enzyme system from[J].J Biol Chem,1966, 241:3738-3744.

        [42] Singh S,Gupta G.Plant growth promoting rhizobacteria (PGPR):Current and future prospects for development of sustainable agriculture[J].Journal of Microbial & Biochemical Technology,2015,7(2):96-102.

        [43] Egamberdieva D,Wirth S J,Alqarawi A A,et al. Phytohormones and beneficial microbes:essential components for plants to balance stress and fitness[J].Front Microbiol, 2017(8):2104.

        [44] Eichmann R,Richards L,Sch?fer P.Hormones as go-betweens in plant microbiome assembly[J].Plant J,2021, 105:518- 541.

        [45] Oleńska E,Ma?ek W,Wójcik M,et al.Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions:a methodical review[J].Sci Total Environ,2020,743:140682.

        [46] Fonouni-Farde C,Miassod A,Laffont C,et al.Gibberellins negatively regulate the development ofroot system[J].Sci Rep,2019,9(1):2335.

        [47] Zhang X X,Zhang D,Sun W,et al.The Adaptive mechanism of plants to iron deficiency via iron uptake, transport,and homeostasis[J].Int J Mol Sci,2019,20(10):2424.

        [48] 趙光昕,張晴雯,劉杏認(rèn),等.農(nóng)田土壤硝化反硝化作用及其對(duì)生物炭添加響應(yīng)的研究進(jìn)展[J].中國(guó)農(nóng)業(yè)氣象,2018, 39(7):442-452.

        Zhao G X,Zhang Q W,Liu X R,et al.Nitrification and denitrification and its response to biochar addition in agricultural soil:a review[J].Chinese Journal of Agrometeorology, 2018,39(7):442-452.(in Chinese)

        [49] Kuan K B,Othman R,Abdul R K,et al.Plant growth- promoting rhizobacteria inoculation to enhance vegetative growth,nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions[J]. PLoS One,201611(3):e0152478.

        [50] Szilagyi-Zecchin V J,Ikeda A C,Hungria M,et al. Identification and characterization of endophytic bacteria from corn(L.) roots with biotechnological potential in agriculture[J].AMB Express,2014(4):26.

        [51] Majeed A,Abbasi M K,Hameed S,et al.Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion[J].Front Microbiol,2015(6):198.

        [52] Rozier C,Gerin F,Czarnes S,et al.Biopriming of maize germination by the plant growth-promoting rhizobacteriumCRT1[J].J Plant Physiol,2019,237: 111-119.

        [53] Silva E R,Zoz J,Oliveira C E S,et al.Can co-inoculation ofandalleviate adverse effects of drought stress on soybean(L. Merrill.) [J].Arch Microbiol,2019,201(3):325-335.

        [54] Khatoon Z,Huang S L,Rafique M,et al.Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems[J].J Environ Manage,2020,273:111-118.

        [55] Gutiérrez-Alanís D,Ojeda-Rivera J,Yong-Villalobos L,et al.Adaptation to phosphate scarcity:tips fromroots[J].Trends Plant Sci,2018,23(8):721-730.

        [56] Sun H W,Guo X L,Xu F G,et al.Overexpression ofregulates root growth and formation in response to phosphate deficiency in rice[J].Int J Mol Sci,2019, 20(20):5144.

        [57] Zhu J M,Lynch J P.The contribution of lateral rooting to phosphorus acquisition efficiency in maize() seedlings[J].Funct Plant Biol,2004,31(10):949-958.

        [58] Zheng B X,Zhang D P,Wang Y,et al.Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community[J].Sci Rep,2019,9(1):1135-1142.

        [59] Abdellatif L,Lokuruge P,Hamel C.Axenic growth of the arbuscular mycorrhizal fungusand growth stimulation by coculture with plant growth- promoting rhizobacteria[J].Mycorrhiza,2019,29(6):591-598.

        [60] Jiang F Y,Zhang L,Zhou J C,et al.Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J].New Phytol,2021,230(1):304-315.

        [61] Neeraj,Singh K.Organic amendments to soil inoculated arbuscular mycorrhizal fungi andtreatments reduce the development of root-rot disease and enhance the yield ofL[J].European Journal of Soil Biology,2011,47(5):288-295.

        [62] Liu H W,Brettell L E.Plant defense by VOC-induced microbial priming[J].Trends Plant Sci,2019,24(3):187-189.

        [63] Syed-Ab-Rahman S F,Carvalhais L C,Chua E T,et al.Soil bacterial diffusible and volatile organic compounds inhibitand promote plant growth[J].Sci Total Environ,2019,692:267-280.

        [64] Ryu C M,Farag M A,Hu C H,et al.Bacterial volatiles promote growth in[J].Proc Natl Acad Sci U S A,2003,100(8):4927-32.

        [65] Bailly A,Weisskopf L.The modulating effect of bacterial volatiles on plant growth:current knowledge and future challenges[J].Plant Signal Behav,20127(1):79-85.

        [66] Francisca M G,José L B,Josué A H,et al.Plant growth-promoting rhizobacteria modulate root-system architecture inthrough volatile organic compound emission[J].Symbiosis,2010,51(1):75-83.

        [67] Wintermans P C,Bakker P A,Pieterse C M.Natural genetic variation infor responsiveness to plant growth-promoting rhizobacteria[J].Plant Mol Biol,2016, 90(6):623-634.

        [68] Delaplace P,Delory B M,Baudson C,et al.Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass(L.)[J].BMC Plant Biol,2015(15):195.

        [69] Fukami J,Nogueira M A,Araujo R S,et al.Accessing inoculation methods of maize and wheat with[J].AMB Express,2016,6(1):3.

        Advances in the Root System Architecture Regulated by Plant Rhizosphere Microorganisms

        LI Meng-jie1, LI Zhan-biao1, ZHOU Si-han1, GUO Hui1,2,3,4, HE Xiang-wei1, GENG Bing5, ZHU Chang-xiong5

        (1. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; 2. National Engineering Laboratory for Tree Breeding, Beijing 100083; 3. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083; 4. The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing 100083; 5. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081)

        Plant root system architecture is the growth and distribution of the root system in its growth medium, include root length, number, branch and biomass, etc, which can fix plants in the soil and effectively absorb water and mineral nutrients, which directly affect the growth and development of plants. The root system architecture is affected by many factors, including soil moisture, nutrients and rhizosphere microorganisms. Conventional root ameliorated practices often rely on chemical fertilizers, which have immense and adverse effects on environments. Therefore, it is necessary to propose alternatives to chemical fertilizers. The rhizosphere of the plant is an essential niche with abundant microorganisms residing in it, those rhizospheric microbes link the interaction of plants and soil to promote nutrient solubilization and they possess the properties of the primary root, lateral root and root hair growth ameliorated as the second genome of the plant. The application in the techniques of multi-omic analysis (genomics-metabolomics, genomics-transcriptomics, etc) can explore deeply related mechanisms for beneficial microbes affect root development. These mechanisms are of great importance in improving soil fertility and plant growth, thus reducing the negative impact of chemical fertilizers on the environment. Therefore, the aim of this paper was to review the research methods, effects and mechanisms of root system architecture regulated by plant rhizosphere microorganisms. The results indicated that AMF, PGPR and rhizobium increased root length, root diameter, root branch and promoted root hair and lateral root development through four mechanisms (nitrogen fixation, phosphate solubilization, regulation of plant secretion of plant hormones, and release of volatile organic compounds). Above all, plant rhizosphere microorganisms can improve root system architecture, but the effect of plant rhizosphere microorganism’s application still needs to be further studied. Quantifying the relative contributions of different mechanisms and improving the stability of microbial inoculants in practical applications are the focus of follow-up research. These conclusions will provide a theoretical basis for the development of microbial inoculants.

        Root system architecture; Arbuscular mycorrhizal fungi; Rhizobium; Plant growth promoting rhizobacteria; Microbial inoculants

        10.3969/j.issn.1000-6362.2021.11.001

        李夢(mèng)潔,李占彪,周思含,等.植物根際微生物調(diào)控根系構(gòu)型研究[J].中國(guó)農(nóng)業(yè)氣象,2021,42(11):895-904

        收稿日期:2021?03?04

        中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金 ( 2018ZY34 );國(guó)家自然科學(xué)基金(31770110)

        通訊作者:國(guó)輝,博士,副教授,從事資源與環(huán)境微生物學(xué)研究,E-mail: guohuiya@126.com;耿兵,博士,研究員,從事環(huán)境微生物學(xué)研究,E-mail: gengbing2000@126.com

        李夢(mèng)潔,E-mail: 15011530410@163.com

        猜你喜歡
        根毛固氮側(cè)根
        植物根毛發(fā)育調(diào)控機(jī)制的研究進(jìn)展
        植物研究(2023年3期)2023-05-21 07:51:20
        土壤中的天然化肥廠
        NO 誘導(dǎo)IAA 和O2·-積累于側(cè)根尖端促進(jìn)水稻側(cè)根生長(zhǎng)
        擬南芥bHLH轉(zhuǎn)錄因子在根毛發(fā)育中的作用
        Ca2+通道抑制劑對(duì)小麥根毛形成與伸長(zhǎng)的影響
        生長(zhǎng)素和乙烯互作調(diào)控硝酸銨誘導(dǎo)的根毛分叉
        杉木與固氮樹(shù)種混交對(duì)土壤有機(jī)質(zhì)及氮含量的影響
        土壤中的天然化肥廠
        ——固氮微生物
        一株具有固氮功能的煙草根際微生物的鑒定及其初步效應(yīng)
        硝態(tài)氮供應(yīng)下植物側(cè)根生長(zhǎng)發(fā)育的響應(yīng)機(jī)制
        亚洲av香蕉一区区二区三区| 久久成人黄色免费网站| 久久婷婷夜色精品国产 | 亚洲AV无码久久久久调教| 国产精品一区二区夜色不卡| 日韩av高清在线观看| 亚洲欧洲精品成人久久曰影片| 中文字幕天天躁日日躁狠狠 | 曰韩人妻无码一区二区三区综合部 | 亚洲av无码之日韩精品| 波多野结衣一区二区三区免费视频| 亚洲综合一区二区三区久久| 免费人成在线观看视频高潮| 老熟女高潮一区二区三区| 亚洲乱码少妇中文字幕| 久久黄色精品内射胖女人| 大地资源高清在线视频播放 | 国产美熟女乱又伦av果冻传媒| 国产视频在线播放亚洲| 美女国产毛片a区内射| 中文无码乱人伦中文视频在线v| 四虎成人精品国产一区a| 中文字幕亚洲高清精品一区在线 | 中文字幕一区二区人妻性色av| 免费女人高潮流视频在线观看| 亚洲av无码一区二区乱子伦| 青青手机在线视频观看| 国产精品亚洲三级一区二区三区| 亚洲一卡2卡3卡4卡5卡精品| 狠狠躁夜夜躁AV网站中文字幕 | 天堂久久一区二区三区| 亚洲成av人在线播放无码| 亚洲Va欧美va国产综合| 色婷婷综合一区二区精品久久 | 国产一区二区不卡av| 亚洲av无码乱码在线观看富二代| 中文字幕亚洲无线码| 亚洲情精品中文字幕有码在线| 日韩亚洲一区二区三区四区| 女人被男人躁得好爽免费视频| 人妻无码AⅤ不卡中文字幕|