李雅倩,王林,宋婧含,牛紅莉,朱光,高春保,方正武,劉易科
摘要:【目的】對小麥NPR1基因家族成員進行鑒定及表達分析,為探究該家族基因的作用機制及小麥遺傳改良提供理論參考?!痉椒ā恳詳M南芥NPR1家族蛋白序列為參考序列,從小麥基因組中鑒定出小麥NPR1基因家族成員,利用生物信息學(xué)軟件對其序列特征進行分析,并分別利用RNA-Seq原始數(shù)據(jù)和實時熒光定量PCR(qRT-PCR)分析小麥NPR1家族基因在不同組織及不同脅迫下的表達水平。通過STRING在線網(wǎng)站構(gòu)建TaNPR1s蛋白的互作網(wǎng)絡(luò)?!窘Y(jié)果】共鑒定獲得20個小麥NPR1基因家族成員,其編碼蛋白的不穩(wěn)定指數(shù)均大于40,為不穩(wěn)定蛋白;平均總親水性值(GRAVY)均為負值(除TaNPR5-D為正值外),為親水蛋白;主要分布于細胞核內(nèi),在葉綠體、線粒體、內(nèi)質(zhì)網(wǎng)和細胞質(zhì)等部位也有分布;二級結(jié)構(gòu)均由α-螺旋、延伸鏈、β-轉(zhuǎn)角和無規(guī)卷曲組成,以α-螺旋和無規(guī)則卷曲為主;對應(yīng)的三級結(jié)構(gòu)模型有10種。20個TaNPR1s蛋白均可與轉(zhuǎn)錄因子HBP-1b及未知蛋白A、B、C、D發(fā)生相互作用,這5種蛋白均含有bZIP結(jié)構(gòu)域(含TGACG基序)和種子休眠特異基因結(jié)構(gòu)域(DOG1)。TaNPR1s基因在不同組織中的表達模式不同,可分為在多個組織中表達、在特定的組織或發(fā)育階段表達和在不同組織發(fā)育階段均低表達或不表達,共三大類。隨機挑選的8個TaNPR1s基因中,有3個基因在禾谷鐮刀菌脅迫下表達量降低,但在白粉病菌脅迫下表達量升高;有2個基因在這兩種菌脅迫下表達量均升高,有2個基因在兩種菌脅迫下表達量均下降。TaNPR1s基因?qū)?種非生物脅迫處理均有響應(yīng),但表達模式存在差異?!窘Y(jié)論】小麥NPR1基因家族成員在不同組織生長發(fā)育過程和生物和非生物脅迫響應(yīng)中發(fā)揮重要調(diào)控作用,且基因的可變剪接體也表現(xiàn)出不同組織表達特性,豐富了NPR1s蛋白功能。TaNPR1s蛋白可能通過與bZIP和DOG1結(jié)構(gòu)域結(jié)合發(fā)揮其生物學(xué)功能。
關(guān)鍵詞: 小麥;NPR1基因家族;鑒定;生物信息學(xué)分析;表達分析
中圖分類號: S512.103.53? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼: A 文章編號:2095-1191(2021)09-2339-11
Genome-wide identification and expression analysis of
wheat NPR1 gene family
LI Ya-qian1,2, WANG Lin1,2, SONG Jing-han1,2, NIU Hong-li1, ZHU Guang2,
GAO Chun-bao1,2, FANG Zheng-wu1*, LIU Yi-ke2*
(1College of Agronomy, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei? 434025, China; 2Food Crops Institute,Hubei Academy of Agricultural Sciences/Wheat Disease Biology
Research Station on Central China,Ministry of Agriculture and Rural Affairs/Hubei Engineering and
Technology Research Center of Wheat, Wuhan? 430064, China)
Abstract:【Objective】The identification and expression analysis of NPR1 gene family members in wheat provided theoretical reference for exploring the mechanism of this family gene and wheat genetic improvement. 【Method】Wheat NPR1 gene family members from wheat genome were identified? based on NPR1 family protein sequence from arabidopsis. The sequence characteristics were analyzed by bioinformatics software, and the expression levels of wheat NPR1 family genes under different tissues and different stresses were analyzed by RNA-Seq data and real-time fluorescence quantitative PCR(qRT-PCR). The online website STRING was used to predict and analyze the interaction relationship between related proteins of TaNPR1 family members. 【Result】A total of 20 members of wheat NPR1 gene family were identified, and the TaNPR1s encoded by them were unstable proteins with instability index greater than 40. The average total hydrophilic va-lue (GRAVY) was negative (except TaNPR5-D was positive), which was hydrophilic protein. It was mainly distributed in the nucleus, chloroplast, mitochondria, endoplasmic reticulum and cytoplasm. The secondary structure was composed of α-helix, extended strand, β-turn and random coil, and α-helix and random coil were the main components. There were 10 kinds of tertiary structure models. All 20 TaNPR1s proteins could interact with the transcription factor HBP-1b and unknown proteins A, B, C and D, the five proteins all contained bZIP domain(containing TGACG motif) and seed dormancy specific gene domain(DOG1). The expression pattern of TaNPR1s gene in different tissues was different, which could be divided into three categories:expressed in multiple tissues, expressed in specific tissues or developmental stages, and all low expression or no expression in different tissue development stages. Among the 8 randomly selected TaNPR1s genes, the expression levels of 3 genes decreased under Fusarium graminearum stress, but increased under powdery mildew stress. The expression levels of two genes increased under both strains, and the expression levels of two genes decreased under both strains. TaNPR1s gene responded to all six abiotic stress treatments, but their expression patterns were different. 【Conclusion】Members of wheat NPR1 gene family play an important role in regulating the growth and development of different tissues and the response to biological and abiotic stresses, and the variable spliceosomes of genes also show different tissue expression characteristics, enriching the function of NPR1s protein. TaNPR1s protein may play its bio-logical function by binding to bZIP and DOG1 domains.
Key words: wheat; NPR1 gene family; identification; bioinformatics analysis; expression analysis
Foundation item: Hubei Provincial Special Project of Central Government Guides Local Science and Technology Development(2020ZYYD011);National Wheat Industry Technology System Construction Project(CARS-03)
0 引言
【研究意義】小麥?zhǔn)鞘澜鐝V泛種植的主要農(nóng)作物之一,也是人類的主要口糧來源,其生長發(fā)育過程中易遭到各種病原微生物的侵?jǐn)_,從而影響其產(chǎn)量和品質(zhì)(Wang et al.,2018;陳文燁等,2020)。植物在生物體進化過程中為了抵抗各種生物和非生物脅迫形成了各種免疫防御機制(Jones and Dangl,2006;陳文燁等,2020),其中,植物的系統(tǒng)性抗病機理存在兩種發(fā)生類型:一種是致病菌所誘導(dǎo)的系統(tǒng)獲得性抗性(Systemic acquired resistance,SAR);另一種為非致病性微生物所誘導(dǎo)的系統(tǒng)誘導(dǎo)性抗性(Induced systemic resistance,ISR)(Kogel and Langen,2005;鄭世仲等,2020)。非表達病程相關(guān)蛋白(Non-expresser of pathogenesis related genes 1,NPR1)是植物防御信號中的一個重要調(diào)節(jié)因子,廣泛參與植物體內(nèi)的免疫防御反應(yīng)(Mhamdi,2019),其在SAR反應(yīng)過程中是水楊酸(Salicylic acid,SA)信號通路的重要組成部分,也是植物病程相關(guān)蛋白(Pathogenesis-rela-ted proteins,PRs)基因表達和SAR的激活子(Cao et al.,1997;Zhou et al.,2000;Backer et al.,2019);其在茉莉酸(Jasmonic acid,JA)介導(dǎo)的ISR反應(yīng)過程中是JA信號途徑的負調(diào)控因子(Pieterse et al.,1998;Spoel et al.,2003)。此外,NPR1是植物響應(yīng)病原菌侵染的核心基因,參與調(diào)控植物體內(nèi)SA與JA的平衡(韓永光等,2018)。在植物對冷環(huán)境適應(yīng)過程中NPR1基因參與調(diào)節(jié)冷誘導(dǎo)基因表達(Olate et al.,2018)。因此,對小麥基因組中的NPR1基因家族成員進行鑒定及分析,對探究NPR1基因在小麥抗逆過程中的作用機制及培育小麥抗性品種具有重要意義?!厩叭搜芯窟M展】NPR1基因首次從擬南芥中被克隆,該基因啟動子區(qū)域的W-box元件和WRKY轉(zhuǎn)錄因子結(jié)合進而調(diào)控NPR1基因的轉(zhuǎn)錄,其編碼蛋白的C端含有錨蛋白重復(fù)序列(Ank)和NPR1-like C-terminal結(jié)構(gòu)域,N端有一個BTB/POZ(Broad complex Tramtrack and Bric-a-brac/Pox virus and zinc finger)結(jié)構(gòu)域(Cao et al.,1994;Cao et al.,1997;Aravind and Koonin,1999)。目前擬南芥基因組測序已完成,共鑒定出6個AtNPR1s基因(Initiative,2000),其中AtNPR1和AtNPR2是SA受體,在植物免疫中起轉(zhuǎn)錄共激活因子的作用(Castelló et al.,2018);AtNPR3和AtNPR4也是SA受體,在植物防御中起轉(zhuǎn)錄輔抑制因子的作用(Zhang et al.,2006);AtNPR5和AtNPR6基因又被稱為AtBOP1和AtBOP2基因,因缺乏NPR1-like C-terminal結(jié)構(gòu)域,在系統(tǒng)發(fā)育進化樹中分支差異較大,二者主要在擬南芥生長發(fā)育過程和形態(tài)建成中發(fā)揮重要作用(Hepworth et al.,2005;Mikael et al.,2005)。目前大量研究證實,NPR1基因?qū)χ参锏目共⌒灾邪l(fā)揮重要作用,如在蘋果中過量表達MpNPR1基因能加強植株對火疫病、黑星病菌及膠銹菌的抗病性(Malnoy et al.,2007);將擬南芥AtNPR1基因轉(zhuǎn)入草莓中可增強草莓對炭疽病、白粉病及葉斑病等的抗性(Silva et al.,2015);水稻中過表達OsNPR1基因能增強植株對葉枯病菌的抗性(Yuan et al.,2007)。抑制煙草NPR1基因表達可導(dǎo)致植株喪失煙草花葉病毒(TMV)抗性(Liu et al.,2002)。保守的條銹菌蛋白可與小麥NPR1蛋白發(fā)生相互作用,并降低病原體對致病相關(guān)基因(Pathogenesis-related genes,PR)的誘導(dǎo)(Wang et al.,2016)。NPR1基因在受到病原物侵染的條件下,才能激活下游防御基因表達,在未被誘導(dǎo)物或病原體激活時,PR基因的表達并未顯著提高(蔡韡韡等,2019;Tripathi et al.,2019)。【本研究切入點】目前,NPR1基因家族已在番木瓜(Peraza-Echeverria et al.,2012)、蘋果(焦鵬,2016)、香蕉(任陪娣等,2019)、小麥(Liu et al.,2019) 和油菜(Wang et al.,2020)等多種植物中鑒定分析。但針對小麥NPR1基因在生物和非生物脅迫下的表達模式分析較少且缺乏驗證,同時對該家族基因的蛋白特性還缺乏系統(tǒng)研究?!緮M解決的關(guān)鍵問題】以擬南芥NPR1家族蛋白序列為參考序列,從小麥基因組中鑒定出小麥NPR1基因家族成員,利用生物信息學(xué)軟件對其序列特征進行分析,并分別利用RNA-Seq原始數(shù)據(jù)和實時熒光定量PCR(qRT-PCR)分析小麥NPR1家族基因在不同組織及不同脅迫下的表達水平;通過STRING在線網(wǎng)站構(gòu)建TaNPR1s蛋白的互作網(wǎng)絡(luò),為探究該家族基因的作用機制及小麥遺傳改良提供理論參考。
1 材料與方法
1. 1 試驗材料
供試的小麥品種為鄂麥170,由湖北省農(nóng)業(yè)科學(xué)院糧食作物研究所提供。RNA提取試劑TRIzol購自賽默飛世爾科技(中國)有限公司。反轉(zhuǎn)錄試劑盒(Prime ScriptTM RT reagent Kit with gDNA Eraser)和實時熒光定量PCR試劑盒(SYBR Premix Ex Taq)購自TaKaRa公司。主要設(shè)備儀器:人工氣候箱(PQX智能型,寧波萊福科技有限公司)、凝膠成像系統(tǒng)(Bio-Rad,美國)和CFX Connect Real-Time System(Bio-Rad,美國)。
1. 2 樣品處理及采集
參考Jiang等(2019)的方法對小麥種子消毒處理后進行無菌培養(yǎng),生長出來的小麥幼苗在人工氣候箱中培養(yǎng)至兩葉一心時期。對小麥幼苗分別進行生物脅迫[禾谷鐮刀菌(PH-1)、白粉病菌(Bgt strain E09)]和非生物脅迫[熱(42 ℃)、冷(4 ℃)、脫落酸(ABA,100 μmol/L)、水楊酸(SA,100 μmol/L)、茉莉酸甲酯(MeJA,100 μmol/L)和氯化鈉(NaCl,150 μmol/L)]處理24 h,對照組(CK)不作脅迫處理。收集幼苗根和葉部位組織,每3株混作一個樣,液氮速凍處理后,-80 ℃保存?zhèn)溆?,用于分析不同逆境脅迫下TaNPR1基因的表達特性。
1. 3 小麥NPR1基因家族成員鑒定
以擬南芥AtNPR1(AT1G64280.1)、AtNPR2(AT4G26120.1)、AtNPR3(AT5G45110.1和AT5G451 10.2)、AtNPR4(AT4G19660.1和AT4G19660.2)、AtNPR5(AT2G41370.1)和AtNPR6(AT3G57130.1)的蛋白序列為查詢序列,在小麥基因組數(shù)據(jù)庫中進行BLASTp比對(E值<1×10-10)(Altschul et al.,1997)。將檢索到的序列提交到Pfam(http://pfam.xfam.org/)(Finn et al.,2006)和InterProScan(http://www.ebi.ac.uk/interpro/)(Mulder and Apweiler,2007)網(wǎng)站,篩選出同時含有BTB/POZ和Ankyrin結(jié)構(gòu)域的蛋白,即為小麥NPR1基因家族成員。
1. 4 生物信息學(xué)分析及互作預(yù)測
小麥NPR1蛋白的理化性質(zhì)通過ExPASy Ser-ver10(https://prosite.espasyp.org/)(Wilkins et al.,1999)進行預(yù)測。利用WoLF PSORT:Protein Subcellular Localization Prediction(https://www.genscript.com/wolf-psort.html)(Horton et al.,2007)在線預(yù)測亞細胞定位。利用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)預(yù)測蛋白二級結(jié)構(gòu)。使用SWISS-MODEL(https://swissmodel.expasy.org/interactive#alignment)(Schwede et al.,2003)對蛋白的三級結(jié)構(gòu)進行預(yù)測。通過功能蛋白關(guān)聯(lián)網(wǎng)絡(luò)在線網(wǎng)站STRING(https://stringdb.org)(Szklarczyk et al.,2018)預(yù)測小麥NPR1基因家族成員相關(guān)蛋白的互作關(guān)系,可信度分?jǐn)?shù)為0.70。
1. 5 轉(zhuǎn)錄組數(shù)據(jù)分析
從NCBI的Short Read Archive(SRA)數(shù)據(jù)庫中下載關(guān)于不同組織生長發(fā)育相關(guān)的RNA-Seq原始數(shù)據(jù)(SBA編號:PRJEB25639),以及不同逆境脅迫處理的RNA-Seq原始數(shù)據(jù)(SBA編號:條銹菌PRJEB12497、禾谷鐮刀菌PRJEB12358、干旱PRJNA306536和高溫─干旱共處理PRJNA257938),并通過HISAT2將其映射到小麥基因組中。轉(zhuǎn)錄組數(shù)據(jù)采用TPM值(Transcripts Per Million)來表示基因的表達量。TPM值低于1的看作基因不表達或表達量很低。利用R語言“pheatmap”包,基于TPM值繪制基因表達譜,以Log2(TPM+1)值繪制NPR1基因差異表達熱圖。
1. 6 實時熒光定量PCR(qRT-PCR)表達分析
利用反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄合成cDNA。采用SYBR Premix Ex Taq進行qRT-PCR檢測。反應(yīng)體系(20.0 μL):cDNA 2.0 μL,正、反向引物各0.8 μL,50×ROX Reference Dye II 0.4 μL,TB Green Premix Ex Taq II 10.0 μL,滅菌水補足至20.0 μL。擴增程序:95 ℃ 3 min;95 ℃ 10 s,60 ℃ 30 s(同時收集信號值),共進行40個循環(huán),溶解曲線分析為65 ℃。β-Actin作為相對定量的內(nèi)參基因。利用Primer Premier 5.0設(shè)計內(nèi)參基因和小麥NPR1基因家族成員的引物序列,如表1所示。采用2-ΔΔCt方法進行數(shù)據(jù)計算,每個樣本技術(shù)重復(fù)3次,基因的相對表達量用平均值±標(biāo)準(zhǔn)差表示。對照的相對表達量為1。
2 結(jié)果與分析
2. 1 小麥NPR1基因家族成員鑒定及序列特征分析結(jié)果
以8個擬南芥NPR1家族蛋白序列為參考序列,在小麥基因組數(shù)據(jù)庫進行BLASTp比對分析,并結(jié)合Pfam和SMART網(wǎng)站去除不具有BTB/POZ和Ank保守結(jié)構(gòu)域的序列,共鑒定獲得20個小麥NPR1基因家族成員(其中包含3個可變剪接體:TaNPR3.1-A、TaNPR3.1-B、TaNPR4.1-B),并根據(jù)其與擬南芥NPR1基因家族的進化關(guān)系進行分組及命名(表2)。20個小麥NPR1家族蛋白(TaNPR1s)的不穩(wěn)定指數(shù)均大于40,為不穩(wěn)定蛋白;平均總親水性值(GRAVY)均為負值(除TaNPR5-D為正值外),為親水蛋白;主要分布于細胞核內(nèi),在葉綠體、線粒體、內(nèi)質(zhì)網(wǎng)和細胞質(zhì)等部位也有分布。
2. 2 TaNPR1s蛋白結(jié)構(gòu)預(yù)測結(jié)果
由表3可知,TaNPR1s蛋白二級結(jié)構(gòu)由α-螺旋、延伸鏈、β-轉(zhuǎn)角和無規(guī)卷曲4種元件組成,以α-螺旋和無規(guī)則卷曲為主,其中TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR2-A、TaNPR2-D、TaNPR3-A、TaNPR3-B、TaNPR3-D、TaNPR4-A、TaNPR4-B和TaNPR4-D蛋白以α-螺旋比例最大,TaNPR5-A、TaNPR5-B、TaNPR5-D、TaNPR6-A、TaNPR6-B和TaNPR6-D蛋白中α-螺旋和無規(guī)卷曲所占比例較相近。此外,TaNPR5-A、TaNPR5-B、TaNPR5-D、TaNPR6-A、TaNPR6-B和TaNPR6-D蛋白結(jié)構(gòu)不含NPR1-like C-terminal結(jié)構(gòu)域,與該家族其他蛋白差異較大。
利用SWISS-MODEL構(gòu)建小麥NPR1蛋白的三級結(jié)構(gòu)模型,共有10種,如表3所示。TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR2-A和TaNPR2-D蛋白的二級結(jié)構(gòu)相似,但三級結(jié)構(gòu)差異較大,除TaNPR1-B和TaNPR1-D對應(yīng)的結(jié)構(gòu)模型相同外,其余蛋白對應(yīng)的結(jié)構(gòu)模型均不相同;TaNPR3-A、TaNPR3.1-A、TaNPR4-A、TaNPR4.1-B和TaNPR4-D蛋白的二級結(jié)構(gòu)相似,對應(yīng)結(jié)構(gòu)模型均為5y4d.1。5y4d.1三維結(jié)構(gòu)在I和II組均有分布,其原因可能是與I和II組的遺傳關(guān)系較近(Liu et al.,2019)。第III組內(nèi)除TaNPR6-A和TaNPR6-B蛋白三級結(jié)構(gòu)差異較大外,其余蛋白三級結(jié)構(gòu)相似(圖1)。TaNPR3-A和TaNPR3-B蛋白分別與其對應(yīng)的可變剪接體TaNPR3.1-A和TaNPR3.1-B三級結(jié)構(gòu)類似,而TaNPR4-B蛋白與其對應(yīng)的可變剪接體TaNPR4.1-B三級結(jié)構(gòu)差異相對較大。
2. 3 TaNPR1s蛋白互作網(wǎng)絡(luò)構(gòu)建
為了更好地理解基因功能,使用STRING在線數(shù)據(jù)庫構(gòu)建TaNPR1s蛋白的互作網(wǎng)絡(luò)(圖2)。所有TaNPR1s蛋白均可與轉(zhuǎn)錄因子HBP-1b及未知蛋白A、B、C、D發(fā)生相互作用。通過Pfam檢測發(fā)現(xiàn),這5種蛋白均含有bZIP結(jié)構(gòu)域(含TGACG基序)和種子休眠特異基因結(jié)構(gòu)域(DOG1)。TaNPR1可能通過與這兩個結(jié)構(gòu)域發(fā)生相互作用從而發(fā)揮其功能。
2. 4 TaNPR1s基因在不同組織中的表達分析結(jié)果
從NCBI下載與中國春小麥籽粒、穗、葉、莖和根5個組織在生長發(fā)育過程中的RNA-Seq原始數(shù)據(jù)(SBA編號:PRJEB25639),對TaNPR1s基因在小麥生長發(fā)育過程中表達水平進行分析。在20個TaNPR1s基因中,大部分基因在小麥生長發(fā)育過程中均有表達,TPM值為1.00~31.32(圖3)。按照在不同組織的表達情況,TaNPR1s基因可分為三大類:第一類在多個組織中表達,包括TaNPR3.1-A、TaNPR3-B、TaNPR3-D、TaNPR4-A、TaNPR4-B、TaNPR4-D和TaNPR4.1-B共7個基因;第二類僅在特定的組織或發(fā)育階段表達,包括TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR2-A、TaNPR2-D、TaNPR5-A、TaNPR5-B、TaNPR5-D、TaNPR6-A、TaNPR6-B和TaNPR6-D共11個基因;第三類在不同組織發(fā)育階段均低表達或不表達,包括TaNPR3-A和TaNPR3.1-B。以第二類中的TaNPR5-B基因為例,利用BAR在線軟件繪制其基因表達的電子熒光象形圖(圖4),該圖直觀顯示了TaNPR5-B基因在小麥早、中、晚3個生長發(fā)育階段在不同組織的表達情況。由上述結(jié)果推測小麥NPR1基因家族成員在小麥不同組織生長發(fā)育過程中發(fā)揮重要作用。
2. 5 TaNPR1s基因在不同脅迫條件下的表達分析結(jié)果
從NCBI下載與生物脅迫(SBA編號:條銹菌PRJEB12497;禾谷鐮刀菌PRJEB12358)和非生物脅迫(SBA編號:干旱PRJNA306536;高溫─干旱共處理PRJNA257938)相關(guān)的RNA-Seq原始數(shù)據(jù),對TaNPR1s基因在不同逆境脅迫下的表達模式進行分析,結(jié)果圖5所示。TaNPR1s基因在不同逆境脅迫條件下表達模式不同。TaNPR1-A、TaNPR1-B、TaNPR1-D和TaNPR4.1-B基因在接種條銹菌后1 d時表達量上升,而后表達量下降;TaNPR3.1-A和TaNPR3-D基因在接種后3 d時表達量下降,而在5 d時表達量上升。禾谷鐮刀菌侵染后,TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR5-A、TaNPR5-B和TaNPR6-B基因的表達量總體上呈上升趨勢,TaNPR4-B、TaNPR4.1-B和TaNPR5-D基因的表達量總體呈下降趨勢。在干旱脅迫處理條件下,TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR4.1-B和TaNPR4-D基因表達量下降。此外,TaNPR1-A、TaNPR1-B、TaNPR1-D、TaNPR4.1-B和TaNPR4-D基因在高溫或高溫—干旱共處理條件下表達量變化不顯著,而TaNPR1-A、TaNPR1-B和TaNPR1-D基因在干旱處理1 h時表達量上升,隨后下降,TaNPR4.1-B、TaNPR4-A和TaNPR4-D基因在干旱處理6 h時表達量下降。TaNPR3-B基因在干旱處理條件下表達量下降,在高溫或高溫—干旱共處理條件下表達量上升。TaNPR4-B干旱處理條件下表達量下降,在高溫或高溫—干旱共處理條件下表達量先上升后下降。綜上所述,TaNPR1s基因參與逆境環(huán)境的響應(yīng)及信號轉(zhuǎn)導(dǎo),且不同NPR1基因在不同脅迫下基因的表達量變化不同。
隨機挑選8個TaNPR1s基因,利用qRT-PCR檢測其在生物脅迫(禾谷鐮刀菌和白粉病菌)下的表達情況,結(jié)果如圖6-A和圖6-B所示。與對照相比,TaNPR2-D、TaNPR3.1-A和TaNPR3-D基因在禾谷鐮刀菌脅迫下的情況下相對表達量降低,而在白粉病菌脅迫下相對表達量升高;TaNPR3-B和TaNPR3.1-B基因在兩種菌脅迫下相對表達量均升高,TaNPR2-A和TaNPR4-A基因在兩種菌的脅迫下相對表達量均下降。
利用qRT-PCR檢測上述隨機挑選的8個TaNPR1s基因在非生物脅迫(冷、熱、NaCl、SA、MeJA和ABA)下的表達情況,結(jié)果如圖6-C~圖6-H所示。TaNPR1s基因?qū)?種非生物脅迫處理均有響應(yīng),但表達模式存在明顯差異。與對照相比,在冷脅迫下,除TaNPR3-B和TaNPR3.1-A基因的相對表達量上升外,其余基因相對表達量均下降;在熱和SA脅迫下,所有基因的相對表達量均下降;在NaCl脅迫下,TaNPR2-A、TaNPR2-D和TaNPR3.1-B基因的相對表達量上升,其余基因相對表達量下降;在MeJA脅迫下,除TaNPR2-A基因外,其他基因的相對表達量下降;在ABA脅迫下,除TaNPR3-A基因外,其余基因的相對表達量下降。
3 討論
NPR1是植物SAR及PRs基因表達的激活子,也參與SA與JA/乙烯信號途徑的相互作用,是調(diào)節(jié)植物整體抗病性的重要作用因子,參與植物多種抗性代謝通路,在植物生長發(fā)育和抗病性研究中具有重要作用(Cao et al.,1997),因而植物NPR1基因的研究受到國內(nèi)外學(xué)者的普遍關(guān)注。本研究在Liu等(2019)對于NPR1基因系統(tǒng)分類分析的基礎(chǔ)上,對小麥NPR1家族蛋白的理化性質(zhì)、結(jié)構(gòu)預(yù)測、互作網(wǎng)絡(luò)及在不同組織和不同逆境脅迫下的表達情況進行系統(tǒng)分析,初步揭示了小麥NPR1基因家族成員的結(jié)構(gòu)和功能,為該基因家族在小麥遺傳改良中的應(yīng)用提供了理論參考。前人研究發(fā)現(xiàn),NPR1蛋白的BTB結(jié)構(gòu)域與TGA2的抑制區(qū)結(jié)合會導(dǎo)致TGA2抑制PRs基因表達的功能缺失,從而提升植物抗病性,可見,NPR1典型特征結(jié)構(gòu)域?qū)ζ涔δ馨l(fā)揮極為重要(Rochon et al.,2006;Boyle et al.,2009;李微巍,2014);NPR1蛋白的NPR1-like C-terminal結(jié)構(gòu)域含有核定位信號,對定位于細胞核內(nèi)的NPR1參與轉(zhuǎn)錄共激活發(fā)揮重要作用(Kinkema et al.,2000)。本研究通過構(gòu)建蛋白互作網(wǎng)絡(luò)發(fā)現(xiàn),所有TaNPR1s蛋白均與轉(zhuǎn)錄因子HBP-1b及未知蛋白A、B、C、D發(fā)生相互作用,經(jīng)Pfam檢測發(fā)現(xiàn)這5種蛋白均含有bZIP結(jié)構(gòu)域和DOG1結(jié)構(gòu)域,這兩類結(jié)構(gòu)域均屬于TGA轉(zhuǎn)錄因子。在細胞核內(nèi),NPR1蛋白能與TGA亞家族成員(含有TGACG基序,屬于bZIP轉(zhuǎn)錄因子家族)結(jié)合,這些轉(zhuǎn)錄因子參與SAR反應(yīng),在SA的誘導(dǎo)下能激活下游防衛(wèi)基因PR1的表達(Zhang et al.,1999;Fan and Dong,2002)。而DOG1結(jié)構(gòu)域可以通過結(jié)合ABA信號傳遞的負調(diào)控因子,增加對ABA的敏感性從而引起種子休眠,在種子成熟和發(fā)育過程中發(fā)揮作用(宋松泉等,2020)。說明TaNPR1蛋白可能通過與bZIP或DOG1結(jié)構(gòu)域結(jié)合,進而在生物和非生物脅迫過程中發(fā)揮功能。
本研究發(fā)現(xiàn),部分TaNPR1s基因(TaNPR3.1-A、TaNPR3-B、TaNPR3-D、TaNPR4.1-B和TaNPR4-D)在不同組織中均有較高的相對表達量,即使在不同脅迫下,這些基因仍保持較高的相對表達量,表明這些基因在小麥不同生長階段發(fā)揮重要的調(diào)控作用,可能直接或間接參與小麥的生長發(fā)育過程和形態(tài)建成。此外,本研究還發(fā)現(xiàn),盡管TaNPR1s基因在不同生物脅迫和非生物脅迫下的相對表達量不同,但大多數(shù)TaNPR1s基因的相對表達量明顯上調(diào)或下調(diào),表明這些基因參與逆境環(huán)境的響應(yīng)及信號轉(zhuǎn)導(dǎo)(Ma and Bohnert,2007),且TaNPR3.1-A、TaNPR3-B和TaNPR4.1-B基因在不同發(fā)育時期均具有較高的相對表達量,但其對應(yīng)的可變剪接體TaNPR3-A、TaNPR3.1-B和TaNPR4-B基因的相對表達量較低??勺兗羟畜w可使同一個基因翻譯成不同的蛋白,進而表現(xiàn)出不同的功能,可變剪接是基因在轉(zhuǎn)錄過程中普遍存在的現(xiàn)象,是導(dǎo)致蛋白質(zhì)功能多樣性的重要原因之一(Wang et al.,2015)。小麥的3個NPR1基因與其對應(yīng)的可變剪切體在逆境脅迫下表達情況不同,說明可變剪切增加了小麥NPR1家族的轉(zhuǎn)錄本,豐富了其蛋白的遺傳多樣性。NPR1介導(dǎo)的逆境脅迫下植物信號通路非常復(fù)雜,今后應(yīng)進一步比較TaNPR1s基因可變剪切體之間的差異,并探究其具體作用機制,對挖掘NPR1基因在響應(yīng)逆境脅迫中的關(guān)鍵位點具有重大意義。
4 結(jié)論
小麥NPR1基因家族成員在不同組織生長發(fā)育過程和生物和非生物脅迫響應(yīng)中發(fā)揮重要調(diào)控作用,且基因的可變剪接體也表現(xiàn)出不同組織表達特性,豐富了NPR1s蛋白功能。TaNPR1s蛋白可能通過與bZIP和DOG1結(jié)構(gòu)域結(jié)合發(fā)揮其生物學(xué)功能。
參考文獻:
蔡韡韡,曾志芳,魏春,楊華麗,佘文琴,陳桂信. 2019. ?NPR1同源基因全長cDNA的分離與表達分析[J]. 園藝學(xué)報,46(3):567-576. [Cai W W,Zeng Z F,Wei C,Yang H L,She W Q,Chen G X. 2019. Isolation and expression analysis of full-length cDNA of NPR1 homologous genes in Nai(Prunus salicina var. cordata)[J]. Acta Horticulturae Sinica,46(3):567-576.] doi:10.16420/j.issn.0513-353x.2019-0030.
陳文燁,楊帆,劉永偉,董福雙,趙和,柴建芳,呂孟雨,周碩. 2020. 小麥TaNAC-B072基因的克隆和表達分析[J]. 江西農(nóng)業(yè)學(xué)報,32(8):1-7. [Chen W Y,Yang F,Liu Y W,Dong F S,Zhao H,Chai J F,Lü M Y,Zhou S. 2020 Cloning and expression analysis of TaNAC-B072 in wheat[J]. Acta Agriculturae Jiangxi,32(8):1-7.] doi:10.19386/ j.cnki.jxnyxb.2020.08.01.
韓永光,馬利剛,趙樂,馮衛(wèi)生,鄭曉珂. 2018. 植物抗性基因NPR1研究進展[J]. 安徽農(nóng)業(yè)科學(xué),46(26):18-20. [Han Y G,Ma L G,Zhao L,F(xiàn)eng W S,Zheng X K. 2018. Research progress on resistance gene NPR1 in plants[J]. Journal of Anhui Agricultural Sciences,46(26):18-20.] doi:10.13989/j.cnki.0517-6611.2018.26.006.
焦鵬. 2016. 蘋果NPR1基因家族的全基因組鑒定與表達分析[D]. 楊凌:西北農(nóng)林科技大學(xué). [Jiao P. 2016. Genome-wide identification and expression analysis of NPR1 gene family in apple[D]. Yangling:Northwest A & F University.]
李微巍. 2014. 楊樹NPR-like基因家族抗病相關(guān)基因的鑒定及功能研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué). [Li W W. 2014. Identification of disease-resistance cancer-critical genes and functional research of NPR-Like family in poplar[D]. Hefei:Anhui Agricultural University.]
任陪娣,謝碧玉,陳翠,賈彩紅,王靜毅,張建斌. 2019. 香蕉 NPR1基因家族的鑒定及在枯萎病菌脅迫下表達分析[J]. 植物遺傳資源學(xué)報,20(6):1621-1629. [Ren P D,Xie B Y,Chen C,Jia C H,Wang J Y,Zhang J B. 2019. Genome-wide survey of the NPR1 gene family in banana(Musa spp.) and expression pattern analysis upon infection with Foc TR4[J]. Journal of Plant Genetic Resources,20(6):1621-1629.] doi:10.13430/j.cnki.jpgr.20190416 002.
宋松泉,劉軍,徐恒恒,劉旭,黃薈. 2020. 脫落酸代謝與信號傳遞及其調(diào)控種子休眠與萌發(fā)的分子機制[J]. 中國農(nóng)業(yè)科學(xué),53(5):857-873. [Song S Q,Liu J,Xu H H,Liu X,Huang H. 2020. ABA metabolism and signaling and their molecular mechanism regulating seed dormancy and germination[J]. Scientia Agricultura Sinica,53(5):857-873.] doi:10.3864/j.issn.0578-1752.2020.05.001.
鄭世仲,王培育,張春柳,江勝滔,江金蘭,顏沛沛,葉煒,賴鐘雄. 2020. 文心蘭NPR1基因的克隆與誘導(dǎo)抗性過程中的表達分析[J]. 福建農(nóng)業(yè)學(xué)報,35(2):140-149. [Zheng S Z,Wang P Y,Zhang C L,Jiang S T,Jiang J L,Yan P P,Ye W,Lai Z X. 2020. NPR1 Cloning and expression du-ring development of induced systemic resistance in Oncidium hybridum[J]. Fujian Journal of Agricultural Scien-ces,35(2):140-149.] doi:10.19303/j.issn.1008-0384.2020. 02.004.
Altschul S F,Madden T L,Sch?ffer A A,Zhang J,Zhang Z,Miller W,Lipman D J. 1997. Gapped BLAST and PSI-BLAST:A new generation of protein database search programs[J]. Nucleic Acids Research,25(17):3389-3402. doi:10.1093/nar/25.17.3389.
Aravind L,Koonin E V. 1999. Fold prediction and evolutiona-ry analysis of the POZ domain:Structural and evolutio-nary relationship with the potassium channel tetramerization domain[J]. Journal of Molecular Biology,285(4):1353-1361. doi:10.1006/jmbi.1998.2394.
Backer R,Naidoo S,Berg N. 2019. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1(NPR1) and related family:mechanistic insights in plant disease resistance[J]. Frontiers in Plant Science,10:102. doi:10.3389/fpls. 2019.00102.
Boyle P,Su E L,Rochon A,Shearer H L,Murmu J,Chu J Y,F(xiàn)obert P R,Després C. 2009. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function[J]. The Plant Cell,21(11):3700-3713. doi:10.1105/tpc.109.069971.
Cao H,Bowling S A,Gordon A S,Dong X. 1994. Characteri-zation of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance[J]. The Plant Cell,6(11):1583. doi:10.1105/tpc.6.11.1583.
Cao H,Glazebrook J,Clarke J D,Volko S,Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. The Cell,88(1):57-63. doi:10.1016/S0092-8674(00)81858-9.
Castelló M J,Medina-puche L,Lamilla J,Tornero P. 2018. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception[J]. PLoS One,13(12):e0209835. doi:10. 1371/journal.pone.0209835.
Fan W H,Dong X N. 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis[J]. The Plant Cell,14(6):1377-1389. doi:10.1105/tpc.001628.
Finn R D,Mistry J,Schuster-b?ckler B,Griffiths-jones S,Hollich V,Lassmann T,Moxon S,Marshall M,Khanna A,Durbin R,Eddy S R,Sonnhammer E L L,Bateman A. 2006. Pfam:Clans,web tools and services[J]. Nucleic Acids Research,34(S1):247-251. doi:10.1093/nar/gkj149.
Hepworth S R,Zhang Y,Mckim S,Li X,Haughn G W. 2005. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis[J]. The Plant Cell,17(5):1434-1448. doi:10.1105/tpc.104.030536.
Horton P,Park K J,Obayashi T,F(xiàn)ujita N,Harada H,Adams-collier C J,Nakai K. 2007. WoLF PSORT:Protein loca-lization predictor[J]. Nucleic Acids Research,35(S2):585-587. doi:10.1093/nar/gkm259.
Initiative T A G. 2000. Analysis of the genome sequence of the fowering plant Arabidopsis thaliana[J]. Nature,408(6814):796-815. doi:10.1038/35048692.
Jiang W Q,Yang L,He Y Q,Zhang H T,Li W,Chen H G,Ma D F,Yin J L. 2019. Genome-wide identification and transcriptional expression analysis of superoxide dismutase(SOD) family in wheat[J]. PeerJ,7(2):e8062. doi:10.7287/peerj.preprints.27402.
Jones J D G,Dangl J L. 2006. The plant immune system[J]. Nature,444(7117):323-329. doi:10.1038/nature05286.
Kinkema M,F(xiàn)an W,Dong X. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. The Plant Cell,12(12):2339-2350. doi:10.1105/tpc. 12.12.2339.
Kogel K,Langen G. 2005. Induced disease resistance and gene expression in cereals[J]. Cellular Microbiology,7(11):1555-1564. doi:10.1111/j.1462-5822.2005.00592.x.
Liu X,Liu Z G,Niu X H,Xu Q,Yang L. 2019. Genome-wide identification and analysis of the NPR1-Like gene family in bread wheat and its relatives[J]. International Journal of Molecular Sciences,20(23):5974. doi:10.3390/ ijms20235974.
Liu Y,Schiff M,Marathe R,Dinesh-kumar S P. 2002. Tobacco Rar1,EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus[J]. The Plant Journal,30(4):415-429. doi:10.1046/j.1365-313x. 2002.01297.x.
Ma S,Bohnert H J. 2007. Integration of Arabidopsis thaliana stress-related transcript profiles,promoter structures,and cell-specific expression[J]. Genome Biology,8(4):R49. doi:10.1186/gb-2007-8-4-r49.
Malnoy M,Jin Q,Borejsza-wysocka E E,He S Y,Aldwinckle H S. 2007. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica[J]. Molecular Plant-Microbe Interactions,20(12):1568-1580. doi:10.1094/MPMI-20-12-1568.
Mhamdi A. 2019. NPR1 has everything under control[J]. Plant Physiology,181(1):6-7. doi:10.1104/pp.19.00890.
Mikael N,Mattias H,Ove N. 2005. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs[J]. Development,132(9):2203-2213. doi:10.1242/dev.01815.
Mulder N,Apweiler R. 2007. InterPro and InterProScan:Tools for protein sequence classification and comparison[J]. Methods in Molecular Biology,396:59-70. doi:10. 1007/978-1-59745-515-2_5.
Olate E,Jiménez-gómez J M,Holuigue L,Salinas J. 2018. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants,4(10):811-23. doi:10.1038/s41477-018-0254-2.
Peraza-echeverria S,Santamaría J M,F(xiàn)uentes G,Menéndez-cerón M,Vallejo-reyna M,Herrera-valencia V A. 2012. The NPR1 family of transcription cofactors in papaya:Insights into its structure,phylogeny and expression[J]. Genes & Genomics,34(4):379-390. doi:10.1007/s13258- 011-0218-7.
Pieterse C M J,Van Wees S C M,Van Pelt J A,Knoester M,Laan R,Gerrits H,Weisbeek P J,Van Loon L C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell,10(9):1571-1580. doi:10.1105/tpc.10.9.1571.
Rochon A,Boyle P,Wignes T,F(xiàn)obert P R,Despres C. 2006. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines[J]. The Plant Cell,18(12):3670-3685. doi:10.1105/tpc.106.046953.
Schwede T,Kopp J,Guex N,Peitsch M C. 2003. SWISS-MODEL:An automated protein homology-modeling ser-ver[J]. Nucleic Acids Research,31(13):3381-3385. doi:10.1093/nar/gkg520.
Silva K J P,Brunings A,Peres N A,Mou Z,F(xiàn)olta K M. 2015. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry[J]. Transgenic Research,24(4):693-704. doi:10.1007/s11248-015-9869-5.
Spoel S H,Koornneef A,Claessens S M C,Korzelius J P,Van Pelt J A,Mueller M J,Buchala A J,Métraux J,Brown R,Kazan K,Van Loon L C,Dong X,Pieterse C. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. The Plant Cell,15(3):760-770. doi:10.1105/tpc.009159.
Szklarczyk D,Gable A L,Lyon D,Junge A,Wyder S,Huerta-cepas J,Simonovic M,Doncheva N T,Morris J H,Bork P,Jensen L J,Mering C. 2018. STRING v11:Protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research,47(D1):D607-D613. doi:10.1093/nar/gky1131.
Tripathi D,Raikhy G,Kumar D. 2019. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs[J]. Current Plant Biology,17:48-59. doi:10.1016/j.cpb.2019.03.002.
Wang X D,Bi W S,Gao J,Yu X M,Wang H Y,Liu D Q. 2018. Systemic acquired resistance,NPR1,and pathoge-nesis-related genes in wheat and barley[J]. Journal of Integrative Agriculture,17(11):60345-60347. doi:10.1016/S2095-3119(17)61852-5.
Wang X D,Yang B J,Li K,Kang Z S,Cantu D,Dubcovsky J. 2016. A conserved Puccinia striiformis protein intera-cts with wheat NPR1 and reduces induction of pathogenesis-related genes in response to pathogens[J]. Molecular Plant-Microbe Interactions,29(12):977-989. doi:10.1094/MPMI-10-16-0207-R.
Wang Y,Liu J,Huang B O,Xu Y M,Li J,Huang L F,Lin J,Zhang J,Min Q H,Yang W M,Wang X Z. 2015. Mechanism of alternative splicing and its regulation[J]. Biome-dical Reports,3(2):152-158. doi:10.3892/br.2014.407.
Wang Z,Ma L Y,Li X,Zhao F Y,Sarwar R,Cao J,Li Y L,Ding L N,Zhu K M,Yang Y H,Tan X L. 2020. Genome?wide identification of the NPR1 like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum[J]. Plant Cell Reports,39:709-722. doi:10.1007/s00299-020-02525-z.
Wilkins M R,Gasteiger E,Bairoch A,Sanchez J C,Williams K L,Appel R D. 1999. Protein identification and analysis tools in the ExPASy Server[J]. Methods in Molecular Biology,112(112):531-552. doi:10.1385/1-59259-584-7:531.
Yuan Y X,Zhong S H,Li Q,Zhu Z R,Lou Y G,Wang L Y,Wang J J,Wang M Y,Li Q L,Yang D L,He Z H. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal,5(2):313-324. doi:10.1111/j.1467- 7652.2007.00243.x.
Zhang Y L,Cheng Y T,Qu N,Zhao Q G,Bi D L,Li X. 2006. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs[J]. The Plant Journal,48(5):647-656. doi:10.1111/j.1365-313X.2006.02903.x.
Zhang Y L,F(xiàn)an W H,Kinkema M,Li X,Dong X N. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene[J]. Proceedings of the National Academy of Sciences,96(11):6523-6528. doi:10.1073/pnas.96.11.6523.
Zhou J,Trifa Y,Silva H,Pontier D,Lam E,Jyoti S,Klessig D F,Zhou J M,Shah J. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid[J]. Molecular Plant-Microbe Interactions,13(2):191-202. doi:10.1016/S1369-5266(00)80027-8.
(責(zé)任編輯 陳 燕)