高志遠(yuǎn) 袁鳴 姚槐應(yīng) 葛超榮
摘要:隨著現(xiàn)代社會(huì)的快速發(fā)展和人類(lèi)活動(dòng)的日益增多,極端氣候如干旱和高溫等事件越來(lái)越頻繁地出現(xiàn)。干旱和高溫的同時(shí)發(fā)生容易形成極端干旱,不僅會(huì)改變土壤基本理化性質(zhì)及功能,還會(huì)影響土壤微生物群落的組成和結(jié)構(gòu),同時(shí)對(duì)微生物介導(dǎo)的土壤微生物過(guò)程及生物地球化學(xué)循環(huán)產(chǎn)生深遠(yuǎn)影響,因此了解極端干旱如何影響土壤微生物群落及其功能顯得至關(guān)重要。本文從個(gè)體到群落的角度綜述了極端干旱對(duì)土壤微生物的影響及微生物對(duì)極端干旱的響應(yīng),包括極端干旱對(duì)微生物DNA及細(xì)胞完整性造成的傷害、對(duì)細(xì)菌群落和真菌群落組成的影響、對(duì)土壤微生物介導(dǎo)的碳氮循環(huán)功能的影響以及極端干旱下根際分泌物對(duì)根際微生物功能的影響,最后從交叉學(xué)科原位研究角度和分子組學(xué)角度對(duì)相關(guān)機(jī)理進(jìn)行了展望。
關(guān)鍵詞:極端干旱;土壤微生物響應(yīng);微生物群落;微生物功能
中圖分類(lèi)號(hào): S154.3 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào):1002-1302(2021)13-0035-11
極端氣候的產(chǎn)生對(duì)全球農(nóng)業(yè)生產(chǎn)產(chǎn)生了負(fù)面影響[1],而且其影響程度在未來(lái)很可能持續(xù)加劇[2]。在這些極端事件中,干旱與高溫通常同時(shí)發(fā)生,容易形成長(zhǎng)期的極端干旱,而且可能成為生態(tài)系統(tǒng)功能變化的重要驅(qū)動(dòng)力[3]。研究顯示,全球干旱地區(qū)的面積已達(dá)到總陸地面積的45%,由于氣候變化造成干旱加劇,預(yù)計(jì)全球干旱地區(qū)面積將在21世紀(jì)末上升到68%,而干旱地區(qū)面積的擴(kuò)張又會(huì)進(jìn)一步造成局部地區(qū)的高溫[4]。土壤是一種能夠支持植物生產(chǎn)和保持其健康的復(fù)雜體系[5]。土壤微生物群落在土壤-植物體系的養(yǎng)分循環(huán)中扮演著重要的角色[6],其活動(dòng)是植物群落組成和生產(chǎn)力的關(guān)鍵驅(qū)動(dòng)因素[7]。但是,極端氣候?qū)ν寥牢⑸锘钚约岸鄻有栽斐闪溯^大的擾動(dòng),也對(duì)微生物參與的土壤生態(tài)服務(wù)功能造成了較大的影響[8]。高溫和干旱事件會(huì)對(duì)土壤微生物群落產(chǎn)生累加、協(xié)同或抑制的作用,雖然這2個(gè)因素在極端干旱條件下同時(shí)出現(xiàn)[9-10],但是結(jié)合高溫和干旱這2種因素的綜合研究仍然不夠系統(tǒng)[11-12]。因此,全面深入地了解高溫干旱對(duì)微生物行為及其生態(tài)系統(tǒng)功能的影響具有重要意義。
極端干旱通常定義為土壤含水量小于2%,同時(shí)表層土壤(0~5 cm)溫度高于45 ℃的干旱條件[12]。極端干旱通過(guò)改變微生物生理而以非常直接的方式影響微生物群落。微生物利用各種生理策略來(lái)應(yīng)對(duì)氣候變化,一些微生物種群快速生長(zhǎng),而另一些則死亡[13-14],從而導(dǎo)致了微生物群落組成的轉(zhuǎn)變[12]。另一方面,極端干旱也會(huì)引起土壤理化性質(zhì)的變化[15],從而通過(guò)改變微生物棲息地環(huán)境來(lái)間接改變微生物群落[16-17],以致進(jìn)一步影響到土壤元素循環(huán)及植物的生長(zhǎng)。
在過(guò)去的幾十年中,有大量涉及極端干旱對(duì)土壤微生物的生理、豐度、群落組成及多樣性影響的研究[18],這些研究也包括干旱對(duì)土壤呼吸的影響[19]以及干旱[20]和溫度因素對(duì)藥物、農(nóng)業(yè)和食品工業(yè)的影響等[21]。然而,在全球極端氣候變化條件下,關(guān)于干旱和高溫因素對(duì)土壤微生物個(gè)體與群落、土壤生態(tài)系統(tǒng)功能的影響,以及土壤微生物對(duì)高溫干旱的響應(yīng)等方面,尚未有系統(tǒng)的闡述。本研究綜述了極端干旱對(duì)土壤微生物從個(gè)體細(xì)胞水平到群落系統(tǒng)水平的影響,主要包括:(1)極端干旱對(duì)土壤微生物細(xì)胞的直接影響;(2)極端干旱對(duì)土壤微生物的間接影響;(3)極端干旱條件下土壤微生物群落結(jié)構(gòu)和多樣性的改變;(4)極端干旱對(duì)土壤微生物生態(tài)功能的影響。
1 極端干旱對(duì)微生物細(xì)胞的直接影響
微生物通過(guò)其半滲透性細(xì)胞壁與水緊密接觸。在干旱條件下,微生物細(xì)胞內(nèi)水分的流失可能會(huì)損害細(xì)胞完整性并對(duì)細(xì)胞具有致死性[22]。此外,大多數(shù)微生物只能耐受40 ℃以下的溫度[12]。當(dāng)微生物長(zhǎng)期暴露在極端干旱條件下時(shí),在核酸層面上會(huì)造成DNA鏈斷裂、彎曲、超螺旋、化學(xué)修飾以及mRNA二級(jí)結(jié)構(gòu)的改變等[23]。另外,極端干旱條件還可以通過(guò)烷基化或氧化等化學(xué)修飾、交聯(lián)或堿基去除等方式來(lái)破壞微生物核酸,從而改變微生物細(xì)胞的基因表達(dá)模式[24-25]。在細(xì)胞膜結(jié)構(gòu)層面上,極端干旱去除了微生物細(xì)胞膜磷脂雙分子層的水合殼,增加了相鄰脂質(zhì)之間范德華力的相互作用,造成了膜相變溫度的升高,并且促進(jìn)了膜在環(huán)境相變溫度下向凝膠相的轉(zhuǎn)變,相變溫度較高的膜將進(jìn)入凝膠相,并與相變溫度較低的膜分離,從而導(dǎo)致蛋白質(zhì)聚集[22]。在再水化過(guò)程中,如果經(jīng)過(guò)干燥的膜在后高溫干旱時(shí)期的相變溫度高于環(huán)境溫度,造成的膜泄漏對(duì)細(xì)胞是一種嚴(yán)重傷害[26]。此外,極端干旱造成的脫水還會(huì)誘導(dǎo)蛋白構(gòu)象變化并限制酶效率,導(dǎo)致電子傳輸鏈發(fā)生變化,進(jìn)而造成自由基積聚[20]。脫水過(guò)程中自由基的積累可改變微生物的膜特性,并導(dǎo)致細(xì)胞溶解,這主要是因?yàn)槠湟鹆思?xì)胞內(nèi)蛋白質(zhì)的變性和脂質(zhì)的過(guò)氧化[25,27]。
微生物在受到環(huán)境影響時(shí),可以采取多種生理適應(yīng)機(jī)制,使其能夠保持活躍并生存下去[13]。為了保護(hù)微生物的結(jié)構(gòu)和細(xì)胞器的完整,微生物采取的主要生理適應(yīng)機(jī)制為DNA的自我修復(fù)[24]。此外,暴露于高溫下的微生物還可以合成部分熱休克蛋白[28]。另外,經(jīng)歷干旱的一些細(xì)菌可以儲(chǔ)存大量核糖體,從而使它們能夠快速合成蛋白質(zhì)[29]。微生物還可以通過(guò)改變脂質(zhì)脂肪酸成分的組成[27]來(lái)實(shí)現(xiàn)膜組成的變化以維持關(guān)鍵特性,例如通過(guò)快速的細(xì)胞生理調(diào)節(jié)機(jī)質(zhì)來(lái)保持膜的流動(dòng)性狀態(tài)[30]。為了降低土壤干旱對(duì)細(xì)胞膜和蛋白質(zhì)的損傷,微生物還可以合成細(xì)胞內(nèi)滲透因子[31]。最后,微生物孢子形成和休眠也是其克服各種不利極端環(huán)境條件的重要策略[32]。這些策略標(biāo)志著在極端干旱等應(yīng)激過(guò)程中,細(xì)胞生長(zhǎng)控制和細(xì)胞周期調(diào)控的最終形式的形成[33]。
2 極端干旱對(duì)土壤微生物的間接影響
土壤具有各種各樣的微環(huán)境,這些環(huán)境提供了適合于微生物生長(zhǎng)、活動(dòng)和生存發(fā)展的廣泛生態(tài)位。微生物生境特征取決于土壤的非生物特性,例如水分、溫度、pH值、鹽度、滲透平衡、土壤養(yǎng)分、氧氣和氧化還原電位等。不同的土壤孔隙提供了不同的生境,可以適應(yīng)不同的微生物種群的生存[34]。土壤顆粒的排列結(jié)構(gòu)決定了土壤的孔隙空間大小[35],在該空間內(nèi)部,水分含量決定了土壤的物理通透性,并且是控制土壤非生物因子空間異質(zhì)性的關(guān)鍵因素之一[36]。在變動(dòng)的環(huán)境條件下,水的運(yùn)動(dòng)推動(dòng)了微環(huán)境特征的快速時(shí)空動(dòng)態(tài)變化,對(duì)微生物種群變化造成了重要影響[37]。極端干旱條件對(duì)土壤微生物的影響取決于所涉及的土壤特性,但是由于極端干旱條件本身也是土壤特性的決定因素之一,因此極端干旱也可以通過(guò)改變土壤特性來(lái)間接影響土壤微生物群落結(jié)構(gòu)。
2.1 極端干旱對(duì)土壤理化性質(zhì)及微生物活動(dòng)的影響
極端干旱主要通過(guò)增加和減少土壤中水分的聚集過(guò)程來(lái)調(diào)節(jié)土壤結(jié)構(gòu)[38]。土壤結(jié)構(gòu)的改變通過(guò)改變土壤的凈水特性[39]和保水能力[40]以及其熱導(dǎo)率[41]來(lái)影響土壤水分的運(yùn)動(dòng)。更好的通氣條件也可能改變土壤的氧化還原狀態(tài),這會(huì)導(dǎo)致一些離子在可溶與不可溶形式之間轉(zhuǎn)化,改變了其生物可利用度,從而改變這些元素的化學(xué)存在形式及微生物對(duì)其利用的方式。此外,土壤含水量決定了土壤pH值,隨著土壤溶液變得更加濃縮,它可能會(huì)使微生物暴露于滲透脅迫下[42]。土壤pH值在廣泛的生物地球化學(xué)條件下與微生物群落密切相關(guān)[43]。土壤pH值以不同的方式影響微生物的代謝。在自然環(huán)境中,將環(huán)境pH值升高或降低1個(gè)單位會(huì)使微生物群落的代謝活性降低多達(dá)50%[44]。
極端干旱還可以通過(guò)改變養(yǎng)分的利用率來(lái)改變微生物的活動(dòng)。干燥土壤,尤其是再濕潤(rùn)的干燥土壤會(huì)導(dǎo)致生物或物理過(guò)程中有機(jī)物的利用率增加,從而增加微生物的活性[45]。這可能是由于在干旱期間土壤微生物分泌的外切酶改變了土壤的微環(huán)境,但所產(chǎn)生的有機(jī)質(zhì)對(duì)于微生物仍然不可利用,直到潤(rùn)濕使其具有生物可利用性,從而提升了這些有機(jī)質(zhì)的利用率[12,45]。此外,極端干旱條件下,有機(jī)物的“質(zhì)量”可能會(huì)提高,并且可能具有高周轉(zhuǎn)率使其更容易被降解,從而為微生物提供了新的營(yíng)養(yǎng)優(yōu)勢(shì)[46]。另外,極端干旱可能會(huì)加劇有機(jī)質(zhì)分解,提高有機(jī)物的生物利用率[18],從而促進(jìn)了高親和力土壤有機(jī)礦物的分解和吸收[47],并可能在動(dòng)力學(xué)上刺激微生物對(duì)不穩(wěn)定碳的吸收和利用[48]。
2.2 微生物細(xì)胞膜對(duì)極端干旱條件的響應(yīng)
生物膜是由細(xì)胞生物量和細(xì)胞外聚合物組成的一種混合微生物群體。其中,后者主要成分是微生物分泌的高分子量物質(zhì)以及細(xì)胞裂解和大分子水解的產(chǎn)物,可顯著促進(jìn)微生物聚集并維持微生物聚集體的穩(wěn)定性。胞外聚合物是生物膜的主要成分,可在極端環(huán)境下為細(xì)胞提供碳源和能量[49]。眾所周知,各種微生物生物膜環(huán)境,例如水生附生植物和生物土壤結(jié)皮,都對(duì)微生物群落有利,可以保護(hù)它們免受極端環(huán)境的干擾[50]。在極端環(huán)境下,胞外聚合物的產(chǎn)生不僅在細(xì)胞上而且在環(huán)境層面上都起著關(guān)鍵作用[51]。實(shí)際上,在干旱、侵蝕、輻射和高溫下的沙漠表層土壤微生態(tài)系統(tǒng)中,生物土壤結(jié)皮的形成、土壤穩(wěn)定化和保水作用均取決于胞外聚合物的產(chǎn)生[52]。
胞外聚合物能夠吸收環(huán)境中的水[26],保留土壤養(yǎng)分[53],保持了土壤中水分的運(yùn)輸特性以及土壤的濕潤(rùn)性[54],并增加了土壤團(tuán)聚體的穩(wěn)定性[55]。這意味著胞外聚合物可能在快速干濕過(guò)程中造成一定程度的水分隔離,從而保護(hù)了土壤中包埋在生物膜中的微生物[50]。土壤胞外聚合物在土壤-微生物界面的位置及其特定的水文特征,可能對(duì)極端干旱條件下,分析土壤孔隙連通性和受水合作用影響的微生物活性之間的相互影響具有重要作用[56]。
3 極端干旱條件下土壤微生物群落結(jié)構(gòu)和多樣性格局的改變 ?極端干旱不僅能對(duì)土壤微生物細(xì)胞產(chǎn)生影響,還能進(jìn)一步改變土壤微生物群落的組成和結(jié)構(gòu)。由于微生物群落是生態(tài)過(guò)程的重要驅(qū)動(dòng)因素,了解極端干旱對(duì)土壤微生物群落的影響對(duì)于預(yù)測(cè)生態(tài)系統(tǒng)功能具有重要意義[57-58]。
3.1 極端干旱對(duì)微生物群落組成的影響
雖然極端干旱對(duì)微生物群落組成產(chǎn)生了一定的影響,但不同微生物種類(lèi)對(duì)極端干旱的響應(yīng)存在較大的差異。與細(xì)菌相比,真菌在全球范圍內(nèi)對(duì)高溫更加敏感[59]。研究顯示,大部分真菌比細(xì)菌更適合土壤低濕度條件[60]。這種適應(yīng)性差異與特定的真菌性狀有關(guān),例如,在低擴(kuò)散率時(shí),真菌菌絲比細(xì)菌更能自主運(yùn)輸擴(kuò)散,不過(guò)度依賴水驅(qū)動(dòng)運(yùn)輸[61]。因此,干旱條件可能會(huì)增加微生物群落中的真菌優(yōu)勢(shì)[62-63]。在細(xì)菌組中,干旱可能會(huì)對(duì)革蘭氏陰性細(xì)菌影響較大,而對(duì)于革蘭氏陽(yáng)性細(xì)菌影響較小[13,64]。革蘭氏陽(yáng)性細(xì)菌被認(rèn)為比革蘭氏陰性細(xì)菌更能適應(yīng)高的水位滲透勢(shì)[65],因?yàn)樗鼈兙哂斜J氐纳飳W(xué)特性,例如厚而堅(jiān)硬的細(xì)胞壁、高滲透壓調(diào)節(jié)能力[13,66-68]和孢子形成能力[25]。有研究者應(yīng)用了這些發(fā)現(xiàn),并提出了優(yōu)化革蘭氏陽(yáng)性對(duì)革蘭氏陰性和真菌對(duì)細(xì)菌的比率,作為群落抗旱性的全球指標(biāo)[69]。
極端干旱還會(huì)對(duì)微生物的豐度造成較大的影響,研究顯示干旱環(huán)境的土壤微生物菌群主要由放線菌門(mén)、變形菌門(mén)、擬桿菌門(mén)、酸桿菌門(mén)和厚壁菌門(mén)為主,而海洋微生物門(mén)、衣原體門(mén)、軟壁菌門(mén)和糖化菌門(mén)等不存在[70]。進(jìn)一步研究表明,在干旱土壤中,微生物結(jié)構(gòu)似乎受到年平均降水量和年平均溫度的強(qiáng)烈調(diào)控,而不是pH值的影響[70]。從溫度角度來(lái)說(shuō),寒冷條件下的土壤微生物主要是由變形菌門(mén)(12.1%)、放線菌門(mén)(31.8%)、擬桿菌門(mén)(11.7%)和酸桿菌門(mén)(15.4%)組成,高溫條件下的土壤微生物是由厚壁菌門(mén)(8.6%)、放線菌門(mén)(36.8%)、變形菌門(mén)(23.8%)和酸桿菌門(mén)(5.5%)組成。同樣地,盡管放線菌是干旱土壤中的優(yōu)勢(shì)門(mén),但隨著年平均降水量的增加,其相對(duì)豐度顯著降低。這些觀察結(jié)果強(qiáng)調(diào)了溫度和水分對(duì)干旱土壤中某些微生物類(lèi)群相對(duì)豐度的影響。
有些研究認(rèn)為,放線菌是干旱土壤中的優(yōu)勢(shì)門(mén),與土壤相對(duì)濕度的降低呈正相關(guān)[71-72]。也有研究認(rèn)為,當(dāng)土壤濕度降低時(shí),變形菌、藍(lán)藻菌和黑體菌與其正相關(guān)[70]。將微生物豐度與年平均溫度的增加對(duì)比,可以觀察到變形菌門(mén)和厚壁菌門(mén)豐度增加,而酸桿菌門(mén)和擬桿菌門(mén)豐度減少[70]。相反,寒冷條件下內(nèi)蒙古草原上擬桿菌門(mén)的豐度很高[73]。同樣,Kumar等研究表明,擬桿菌門(mén)在寒冷環(huán)境中占優(yōu)勢(shì),但在研究的較冷地區(qū)則不占優(yōu)勢(shì)[74]。有趣的是,研究發(fā)現(xiàn)極端干旱條件下細(xì)菌群落內(nèi)部觀察到了更多的擬桿菌,這個(gè)門(mén)類(lèi)微生物在28 d 50 ℃試驗(yàn)中表現(xiàn)出耐熱性[75]。這表明,擬桿菌門(mén)在寒冷環(huán)境和高溫干旱環(huán)境中都能生長(zhǎng)旺盛,具有較好的極端環(huán)境適應(yīng)性。
3.2 細(xì)菌群落和真菌群落對(duì)極端干旱的響應(yīng)差異
生態(tài)網(wǎng)絡(luò)分析是研究微生物群落對(duì)擾動(dòng)反應(yīng)的一種新方法[76]。土壤微生物群落形成了高度復(fù)雜的生態(tài)網(wǎng)絡(luò),其中包括共存類(lèi)群之間的多種相互作用,而且越來(lái)越多的證據(jù)表明,這些網(wǎng)絡(luò)的特性可以影響它們對(duì)極端氣候的反應(yīng)。例如,最近的一項(xiàng)研究顯示,干旱對(duì)細(xì)菌的影響大于對(duì)真菌的影響[77],這與土壤細(xì)菌群落比真菌群落抗旱能力弱的預(yù)期相一致[62,78-79]。然而,也有研究發(fā)現(xiàn),細(xì)菌共生網(wǎng)絡(luò)在理論上具有在擾動(dòng)下穩(wěn)定性較低的特性,如高連通性和中心性,而真菌網(wǎng)絡(luò)具有穩(wěn)定性較高的特性,如負(fù)相關(guān)性較少,從而使微生物生態(tài)共生網(wǎng)絡(luò)趨于穩(wěn)定[80-83]。另一個(gè)重要的發(fā)現(xiàn)是,對(duì)干旱反應(yīng)最靈敏的主要細(xì)菌類(lèi)群高度集中并在生態(tài)網(wǎng)絡(luò)中相互連接,這表明它們是細(xì)菌網(wǎng)絡(luò)結(jié)構(gòu)變化的主要驅(qū)動(dòng)因素[77]。盡管在解釋共生網(wǎng)絡(luò)時(shí)需要謹(jǐn)慎[84-85],但它可以提供關(guān)于微生物類(lèi)群間的相關(guān)性和時(shí)空結(jié)構(gòu)以及面對(duì)極端氣候等擾動(dòng)時(shí)微生物群落的穩(wěn)定性的重要信息[77,86]。
細(xì)菌和真菌群落如何適應(yīng)干旱脅迫呢?細(xì)菌群落對(duì)干旱的適應(yīng)力和恢復(fù)力取決于該群落的組成以及它們是否或如何適應(yīng)干旱脅迫。一般來(lái)說(shuō),革蘭氏陽(yáng)性細(xì)菌有內(nèi)在的抗旱能力,因?yàn)樗鼈冇泻窈竦募?xì)胞壁起到限制脫水的作用[87],這與前述一致。相比之下,革蘭氏陰性硝化菌或甲烷氧化菌對(duì)脫水更敏感,受干旱影響較大,會(huì)被弱化部分功能[13]。暴露在干旱脅迫下的細(xì)菌群落能夠通過(guò)更靈敏的感應(yīng)脅迫、溶質(zhì)合成和休眠等反應(yīng)機(jī)制[88]以更好地應(yīng)對(duì)干旱[89]。在干旱很少發(fā)生的地方,細(xì)菌群落更容易受到干旱的影響,因?yàn)樗鼈儾荒茴A(yù)先適應(yīng)土壤濕度的極端范圍[89]。
真菌是土壤微生物群落的另一個(gè)重要組成部分。真菌被認(rèn)為比細(xì)菌更能適應(yīng)水分脅迫,并且能夠通過(guò)多糖的分泌在自己周?chē)鷦?chuàng)造一個(gè)保護(hù)環(huán)境來(lái)防止脫水[90]。當(dāng)土壤水分受限時(shí),底物擴(kuò)散限制可能會(huì)迫使土壤真菌菌絲網(wǎng)絡(luò)擴(kuò)張,有助于真菌對(duì)水分和養(yǎng)分的吸收[91],而且真菌群落組成的變異性更高,具有高可塑性的種群周轉(zhuǎn)率使得真菌能快速對(duì)干旱做出響應(yīng)[92]。另一方面,土壤水分變化通過(guò)植物群落間接影響真菌,真菌群落中大量的菌根和腐生真菌強(qiáng)烈依賴植物物種[93-94]。腐生真菌更易受到資源可用性的影響,如植物根系分泌物輸入量及化學(xué)特性[95]。像細(xì)菌一樣,真菌也以多元醇[96]而不是氨基酸的形式積累滲透物質(zhì)。在極端水分脅迫下,真菌細(xì)胞的碳和氮可分別增加30%~40%和20%[13,97]。干濕交替和長(zhǎng)期干旱也可能增加真菌與細(xì)菌的比率[98],真菌群落比例較大的土壤更能保持養(yǎng)分[99]。
4 極端干旱對(duì)微生物功能的影響
微生物群落組成及其與物種的相互作用是生態(tài)系統(tǒng)功能的關(guān)鍵驅(qū)動(dòng)力[100]。極端干旱引起的微生物組成變化可能會(huì)影響土壤功能,進(jìn)而影響土壤所提供的服務(wù)[101]。極端干旱造成的土壤條件的變化會(huì)影響微生物的功能,如二氧化碳排放、有機(jī)質(zhì)降解、養(yǎng)分循環(huán)和固氮等[12,18,63,102-103]。在這些功能里面,涉及土壤碳氮循環(huán)及微生物-植物相互作用等方面更值得被關(guān)注。
4.1 極端干旱條件對(duì)微生物參與土壤碳氮循環(huán)的影響
極端干旱顯著地影響了土壤微生物群落的結(jié)構(gòu)和功能,從而改變土壤微生物介導(dǎo)的碳氮轉(zhuǎn)化。由于干旱通常與高溫同時(shí)發(fā)生,因此了解土壤中碳氮循環(huán)與水和溫度相互作用至關(guān)重要[104]。極端干旱主要通過(guò)降低土壤水分來(lái)影響土壤碳氮循環(huán),所以土壤碳氮循環(huán)對(duì)土壤水分的變化較為敏感[105]。干旱期間較低的水位滲透勢(shì)和減少底物擴(kuò)散可以抑制微生物的生長(zhǎng),增加微生物的死亡率,誘導(dǎo)微生物休眠,從而造成微生物群落組成發(fā)生變化[105-106]。同時(shí),干旱會(huì)降低微生物的活性,例如降低呼吸作用[105]。干旱也會(huì)降低參與蛋白質(zhì)解聚的細(xì)胞外酶活性,但是其對(duì)微生物攝入和生產(chǎn)總氨基酸的影響仍未能確定[107]。在干旱期間,有機(jī)化合物可以集中在剩余的土壤溶液中,并可能增加底物酶解作用的能力[108]。此外,在干燥條件下,細(xì)胞外酶的活性可能比微生物細(xì)胞更高[109]。干旱會(huì)降低NO-3產(chǎn)生量和增加NH+4的吸收。氮礦化的減少導(dǎo)致微生物氮素利用效率總體減少。雖然干旱可能會(huì)刺激微生物采取策略來(lái)保護(hù)氮,例如生產(chǎn)含氮的滲透壓化合物[105],但干旱對(duì)氮礦化和硝化的影響很大程度上取決于生態(tài)系統(tǒng)和土地管理類(lèi)型[104,110]。研究顯示,干旱降低了2個(gè)草地中微生物生物量中的氮濃度,顯著提高了蛋白質(zhì)解聚速率,這是蛋白酶催化的胞外過(guò)程[111],這與在溫帶荒地中觀察到的動(dòng)態(tài)變化相反。在溫帶荒地中,蛋白質(zhì)解聚速率不受干旱的影響[112]??傮w而言,干旱能夠增加微生物中碳氮比,這種現(xiàn)象與以前的研究結(jié)果[63]一致,表明干旱對(duì)微生物氮循環(huán)的影響可能比碳循環(huán)更大。
溫度升高通常會(huì)增加微生物的活性,但也會(huì)增加維護(hù)成本和微生物能量需求[113]。如果微生物將更多的碳分配給呼吸,而不是增加其生物量,則會(huì)降低微生物的碳利用率[114],這可能會(huì)導(dǎo)致土壤碳的整體損失[115]。較高的溫度可使蛋白質(zhì)在熱力學(xué)上以更快的速度分解為適合微生物吸收的有機(jī)氮形式,從而刺激微生物生長(zhǎng)[116],盡管它們也可能會(huì)加速酶的失活[117]。還有研究顯示,隨著溫度的升高,微生物對(duì)氮的礦化作用和硝化作用比吸收無(wú)機(jī)氮的作用更強(qiáng)烈,從而導(dǎo)致土壤中無(wú)機(jī)氮的凈增加[118-119]。總體而言,微生物的碳和氮循環(huán)過(guò)程對(duì)環(huán)境條件的變化反應(yīng)不同,微生物的碳循環(huán)對(duì)溫度變化更敏感,而氮循環(huán)受水的可利用性更強(qiáng)烈。
在干旱期間,表層土壤中常出現(xiàn)多個(gè)干濕交替的情況,因?yàn)檫@些地區(qū)有一些間歇降雨,但不足以使土壤完全重新濕潤(rùn)并打破干旱。研究發(fā)現(xiàn),重復(fù)的干濕交替循環(huán)增加了有機(jī)質(zhì)的氮礦化和周轉(zhuǎn)[120]。多次干濕交替會(huì)降低氨氮含量和脲酶活性,增加溶解的有機(jī)碳[121]。草地土壤干濕交替后,可提取有機(jī)碳立即增加80%,微生物生物量碳下降[122]。然而,重濕后并沒(méi)有發(fā)現(xiàn)土壤氮總?cè)芙鉂舛仍黾拥淖C據(jù)[123]。礦化率增加導(dǎo)致的氮和碳的淋洗可能在2~3 d后消退[124],或者在最初的重新潤(rùn)濕后持續(xù)10 d[125]。Butterly等測(cè)定的重新濕潤(rùn)后溶解氮增加,持續(xù)4 d后恢復(fù)到與干燥前相同的水平[126]。
在同一研究中,微生物生物量碳隨著每次干濕交替的發(fā)生而降低,在5個(gè)循環(huán)后為潮濕對(duì)照中測(cè)量的60%。Mikha等也觀察到,反復(fù)干燥和濕潤(rùn)循環(huán)導(dǎo)致碳量的減少[127]。同樣,增加濕潤(rùn)和干燥循環(huán)次數(shù)會(huì)減少干燥再濕潤(rùn)事件中的氮礦化[128],凋落物分解隨著再濕潤(rùn)頻率的增加而減少[129]。在反復(fù)的水土流失事件中,土壤中碳和氮的損失分別高達(dá)18%和10%[130],這是每年土壤養(yǎng)分損失的重要部分。
4.2 極端干旱條件下根系分泌物對(duì)微生物功能的影響
土壤微生物對(duì)植物多樣性和生產(chǎn)力的貢獻(xiàn)可能是其在生態(tài)系統(tǒng)功能中,特別是在農(nóng)業(yè)系統(tǒng)中最重要的作用之一[131-132]。在根際這樣的土壤微生物活動(dòng)“熱點(diǎn)”區(qū)域中,微生物在不同時(shí)空尺度上參與了土壤-植物體系的各種過(guò)程[5]。另外,已經(jīng)有研究顯示,植物可以直接或間接控制和介導(dǎo)土壤中尤其是微生物圈的多營(yíng)養(yǎng)相互作用[5,133],植物群落組成差異影響微生物生物量和分解代謝活動(dòng),從而對(duì)干濕擾動(dòng)的恢復(fù)力存在抗性差異[134]。隨著植物通過(guò)碳輸入獲得更多的資源,微生物群落結(jié)構(gòu)對(duì)全球變化干擾的適應(yīng)力會(huì)增加,這可能會(huì)刺激胞外聚合物的產(chǎn)生和生物膜的發(fā)育[56]。研究顯示,極端干旱條件下,土壤微生物的多樣性與植物的多樣性存在顯著正相關(guān)[135],因此植物與土壤微生物之間存在著相互反饋的協(xié)同抗旱機(jī)制。
根系分泌物是植物與微生物間的主要交流途徑,在生態(tài)系統(tǒng)對(duì)環(huán)境變化的響應(yīng)中發(fā)揮著關(guān)鍵作用。植物發(fā)育會(huì)影響根系分泌物的組成,進(jìn)而通過(guò)優(yōu)先吸收特定代謝產(chǎn)物影響根際細(xì)菌群落[136]。微生物群落的變化也可以促進(jìn)植物的生長(zhǎng)和物候變化,例如擬南芥中香豆素的滲出刺激了致病菌誘導(dǎo)和促進(jìn)生長(zhǎng)的根瘤菌的存在[137]。也有研究顯示,根系分泌物選擇的土壤微生物增加了土壤氮的利用率,進(jìn)而延遲了開(kāi)花時(shí)間[138]。另外,根系分泌物也可能反映干旱后植物再生和生態(tài)系統(tǒng)恢復(fù)情況[139-140],例如,有研究記錄了干旱恢復(fù)期間向日葵和大豆根系分泌物滲出速率和組成的差異響應(yīng)[141]。而在冬櫟中,分泌物的代謝特征取決于干旱或恢復(fù)的不同階段[142]。還有一些植物通過(guò)微生物影響根部基因的表達(dá)以促進(jìn)干旱保護(hù),例如,干旱期間玉米得益于與叢枝菌根真菌(arbuscular mycorrhizal fungi)的共生關(guān)系,叢枝菌根真菌通過(guò)減少根中水通道蛋白相關(guān)基因的表達(dá)來(lái)調(diào)節(jié)水分流失[143]。此外,植物還可以通過(guò)根系分泌物選擇特定的細(xì)菌來(lái)增強(qiáng)抗旱能力,例如,干旱能增加玉米中有機(jī)酸的滲出,特別是蘋(píng)果酸(以及富馬酸、丙二酸、琥珀酸和草酸)[144],它是枯草芽孢桿菌(Bacillus subtilis)的一種有效的化學(xué)吸引劑[145],枯草芽孢桿菌是有益的細(xì)菌種類(lèi),研究顯示其可增加植物的抗旱性[146]。這些研究表明,不同生長(zhǎng)策略的植物根系分泌物不同,根系分泌物可以選擇有益的土壤微生物群落,以不同的方式降低極端干旱對(duì)植物的脅迫并保證植物的正常生長(zhǎng)。
5 總結(jié)與展望
極端干旱(干旱與高溫同時(shí)存在的條件)對(duì)土壤微生物介導(dǎo)的生物地球化學(xué)循環(huán)及其陸地生態(tài)系統(tǒng)生態(tài)服務(wù)功能產(chǎn)生了較大的影響。為了應(yīng)對(duì)極端干旱,土壤微生物動(dòng)員了從個(gè)體到群落的應(yīng)對(duì)策略(圖1),包括DNA的自我修復(fù)、合成熱休克蛋白、維持細(xì)胞膜的流動(dòng)性、分泌胞外聚合物以及合成生物膜等措施。從群落角度而言,真菌比細(xì)菌更容易耐受極端干旱條件,革蘭氏陽(yáng)性菌比陰性菌也具有更高的極端干旱耐受性。放線菌門(mén)、擬桿菌門(mén)、變形菌門(mén)等門(mén)類(lèi)的微生物是極端干旱環(huán)境下微生物的主要門(mén)類(lèi)。土壤微生物所介導(dǎo)的碳循環(huán)對(duì)溫度變化更敏感,而氮循環(huán)受水的影響更大。植物根際分泌物也能夠選擇有益的土壤微生物群落,根際微生物能夠以不同的方式降低極端干旱對(duì)植物的脅迫,并保證營(yíng)養(yǎng)和水分的運(yùn)輸。雖然本文梳理了極端干旱對(duì)土壤微生物從個(gè)體到群落以及功能方面的影響,但是其相關(guān)機(jī)制仍然不甚清楚,為了更加系統(tǒng)地研究極端干旱對(duì)土壤微生物群落與功能的影響機(jī)制,還需要從以下幾個(gè)方面進(jìn)行進(jìn)一步的研究:(1)在極端干旱對(duì)土壤微生物群落的影響上,應(yīng)該考慮進(jìn)行原位研究,比較微生物群落對(duì)不
同緯度和不同土地土壤中極端氣候事件的反應(yīng),并討論高溫和干旱綜合影響的模型效果。(2)有必要開(kāi)展極端干旱條件下土壤微生物結(jié)構(gòu)功能的穩(wěn)定性狀、共耐受性和微生物抗性和恢復(fù)性的相關(guān)性方面的研究。(3)元轉(zhuǎn)錄組學(xué)和代謝組學(xué)可以提供定量信息來(lái)反映具有相同功能的微生物群落,可以通過(guò)識(shí)別分類(lèi)單元功能基因的表達(dá)來(lái)反應(yīng)環(huán)境干擾。雖然轉(zhuǎn)錄組學(xué)和代謝組學(xué)為在極端干旱環(huán)境下將土壤微生物群落結(jié)構(gòu)的穩(wěn)定性與微生物群落的功能聯(lián)系起來(lái)提供了新的補(bǔ)充工具,但是極端干旱環(huán)境下土壤中潛在的功能基因的分布仍然是一個(gè)挑戰(zhàn)。(4)積極開(kāi)展跨學(xué)科的合作,進(jìn)一步研究極端干旱發(fā)生前后根際及其寄主的物理化學(xué)特性與植物和微生物相互作用機(jī)制,對(duì)理解土壤微生物的農(nóng)業(yè)生態(tài)功能有重要意義。
參考文獻(xiàn):
[1]IPCC. Climate change 2014[M]. Cambridge:Cambridge University Press,2014.
[2]IPCC. Climate change 2013[M]. Cambridge:Cambridge University Press,2013.
[3]Heisler J L,Weltzin J F. Variability matters:towards a perspective on the influence of precipitation on terrestrial ecosystems[J]. New Phytologist,2006,172(2):189-192.
[4]Huang J P,Yu H P,Guan X D,et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change,2016,6(2):166-171.
[5]Chakraborty S,Pangga I,Roper M. Climate change and multitrophic interactions in soil:the primacy of plants and functional domains[J]. Global Change Biology,2012,18(7):2111-2125.
[6]Reynolds H L,Packer A,Bever J D,et al. Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics [J]. Ecology,2003,84(9):2281-2291.
[7]Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304(5677):1629-1633.
[8]Jentsch A,Kreyling J,Elmer M,et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J]. Journal of Ecology,2011,99(3):689-702.
[9]Berard A,Bouchet T,Sévenier G,et al. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves[J]. European Journal of Soil Biology,2011,47(6):333-342.
[10]Wang H,Yang J P,Yang S H,et al. Effect of a 10 ℃-elevated temperature under different water contents on the microbial community in a tea orchard soil [J]. European Journal of Soil Biology,2014,62:113-120.
[11]Acosta-Martínez V,Cotton J,Gardner T,et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling [J]. Applied Soil Ecology,2014,84:69-82.
[12]Acosta-Martinez V,Moore-Kucera J,Cotton J,et al. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics [J]. Applied Soil Ecology,2014,75:43-51.
[13]Schimel J,Balser T C,Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology,2007,88(6):1386-1394.
[14]Allison S D,Martiny J B H. Resistance,resilience,and redundancy in microbial communities [J]. PNAS,2008,105(s1):11512-11519.
[15]Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(781):165-173.
[16]Parker S S,Schimel J P. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland[J]. Applied Soil Ecology,2011,48(2):185-192.
[17]Navarro-Garcia F,Casermeiro M A,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[18]Hamdi S,Chevallier T,Ben Aissa N,et al. Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures[J]. Soil Biology & Biochemistry,2011,43(9):1752-1758.
[19]Manzoni S,Schimel J P,Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology,2012,93(4):930-938.
[20]Vriezen J C,de Bruijn F J,Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress,oxygen,and temperature[J]. Applied and Environmental Microbiology,2007,73(11):3451-3459.
[21]García A H. Anhydrobiosis in bacteria:from physiology to applications[J]. Journal of Biosciences,2011,36(5):939-950.
[22]Billi D,Potts M. Life and death of dried prokaryotes[J]. Research in Microbiology,2002,153(1):7-12.
[23]Schumann W. Temperature sensors of eubacteria [J]. Advances in Applied Microbiology,2009,67:213-256.
[24]Dose K,Bieger-Dose A,Kerz O,et al. DNA-strand breaks limit survival in extreme dryness[J]. Origins of Life and Evolution of the Biosphere,1991,21(3):177-187.
[25]Potts M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews,1994,58(4):755-805.
[26]Potts M. Desiccation tolerance:a simple process?[J]. Trends in Microbiology,2001,9(11):553-559.
[27]Russell N J,Evans R I,ter Steeg P,et al. Membranes as a target for stress adaptation[J]. International Journal of Food Microbiology,1995,28(2):255-261.
[28]Hecker M,Schumann W,Vlker U. Heat-shock and general stress response in Bacillus subtilis[J]. Molecular Microbiology,1996,19(3):417-428.
[29]Placella S A,Brodie E L,F(xiàn)irestone M K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups[J]. PNAS,2012,109(27):10931-10936.
[30]Kakumanu M L,Cantrell C L,Williams M A. Microbial community response to varying magnitudes of desiccation in soil:a test of the osmolyte accumulation hypothesis [J]. Soil Biology & Biochemistry,2013,57:644-653.
[31]Zhang Q,Yan T. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations[J]. Applied and Environmental Microbiology,2012,78(20):7407-7413.
[32]Lennon J T,Jones S E. Microbial seed banks:the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology,2011,9(2):119-130.
[33]Kültz D. Molecular and evolutionary basis of the cellular stress response[J]. Annual Review of Physiology,2005,67:225-257.
[34]Ruamps L S,Nunan N,Chenu C. Microbial biogeography at the soil pore scale[J]. Soil Biology & Biochemistry,2011,43(2):280-286.
[35]Voroney R P. 2-The soil habitat [M]//Soil Microbiology,Ecology & Biochemistry,Academic Press,2007:25-49.
[36]Ettema C H,Wardle D A. Spatial soil ecology[J]. Trends in Ecology & Evolution,2002,17(4):177-183.
[37]賈全全,黃寶祥,劉麗婷,等. 水梔子根結(jié)線蟲(chóng)種群動(dòng)態(tài)及其對(duì)土壤微環(huán)境的影響[J]. 南方林業(yè)科學(xué),2019,47(1):33-36,48.
[38]Denef K,Six J,Bossuyt H,et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics[J]. Soil Biology & Biochemistry,2001,33(12/13):1599-1611.
[39]Alaoui A,Lipiec J,Gerke H H. A review of the changes in the soil pore system due to soil deformation:a hydrodynamic perspective [J]. Soil & Tillage Research,2011,115/116:1-15.
[40]馬媛媛,戴顯慶,彭紹好,等. 天然沸石對(duì)松嫩平原黑鈣土理化性質(zhì)和保水能力的影響[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2018,40(2):51-57.
[41]Usowicz B,Lipiec J,Usowicz J B,et al. Effects of aggregate size on soil thermal conductivity:comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer,2013,57(2):536-541.
[42]Bertram J E,Orwin K H,Clough T J,et al. Effect of soil moisture and bovine urine on microbial stress[J]. Pedobiologia,2012,55(4):211-218.
[43]Thompson L R,Sanders J G,Mcdonald D,et al. A communal catalogue reveals Earths multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.
[44]Fernández-Calvio D,Bth E. Growth response of the bacterial community to pH in soils differing in pH[J]. FEMS Microbiology Ecology,2010,73(1):149-156.
[45]Navarro-García F,ngel Casermeiro M,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[46]Zhang B,Deng H,Wang H L,et al. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?[J]. Soil Biology & Biochemistry,2010,42(5):850-859.
[47]Conant R T,Ryan M G,Agren G I,et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward[J]. Global Change Biology,2011,17(11):3392-3404.
[48]Hamdi S,Moyano F,Sall S,et al. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions [J]. Soil Biology & Biochemistry,2013,58:115-126.
[49]臺(tái)喜榮,馮 騫,孫亞青,等. 胞外DNA在生物膜形成及發(fā)展過(guò)程中的作用[J]. 凈水技術(shù),2019,38(11):54-60.
[50]Flemming H C,Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9):623-633.
[51]Rossi F,Potrafka R M,Pichel F G,et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts [J]. Soil Biology & Biochemistry,2012,46:33-40.
[52]Wu N,Zhang Y M,Pan H X,et al. The role of nonphotosynthetic microbes in the recovery of biological soil crusts in the gurbantunggut desert,northwestern China[J]. Arid Land Research and Management,2010,24(1):42-56.
[53]Mager D M,Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts:a review of their role in dryland soil processes[J]. Journal of Arid Environments,2011,75(2):91-97.
[54]Schaumann G E,Braun B,Kirchner D,et al. Influence of biofilms on the water repellency of urban soil samples[J]. Hydrological Processes,2010,21(17):2276-2284.
[55]Sandhya V,Skz A,Grover M,et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils,2009,46(1):17-26.
[56]Redmile-Gordon M A,Brookes P C,Evershed R P,et al. Measuring the soil-microbial interface:extraction of extracellular polymeric substances (EPS) from soil biofilms [J]. Soil Biology & Biochemistry,2014,72:163-171.
[57]Tardy V,Mathieu O,Lévêque J,et al. Stability of soil microbial structure and activity depends on microbial diversity[J]. Environmental Microbiology Reports,2014,6(2):173-183.
[58]Shade A,Peter H,Allison S D,et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology,2012,3:417.
[59]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[60]Yuste J C,Penuelas J,Estiarte M,et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature[J]. Global Change Biology,2011,17(3):1475-1486.
[61]Poll C,Ingwersen J,Stemmer M,et al. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere[J]. European Journal of Soil Science,2010,57(4):583-595.
[62]Barnard R L,Osborne C A,F(xiàn)irestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal,2013,7(11):2229-2241.
[63]Zeglin L H,Bottomley P J,Jumpponen A,et al. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales[J]. Ecology,2013,94(10):2334-2345.
[64]Castro Gonzalez H F,Classen A T,Austin E E,et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology,2010,76(4):999-1007.
[65]Rokitko P V,Romanovskaia V A,Malashenko I,et al. Soil drying as a model for the action of stress factors on natural bacterial populations [J]. Mikrobiologiia,2003,72(6):854-861.
[66]Kempf B,Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology,1998,170(5):319-330.
[67]Uhlírová E,Elhottová D,Tríska J,et al. Physiology and microbial community structure in soil at extreme water content[J]. Folia Microbiologica,2005,50(2):161-166.
[68]Hamer U,Unger M,Manuela F,et al. Impact of air-drying and rewetting on PLFA profiles of soil microbial communities[J]. Journal of Plant Nutrition and soil Science,2007,170(2):259-264.
[69]de Vries F T,Shade A. Controls on soil microbial community stability under climate change[J]. Frontiers in Microbiology,2013,4:265.
[70]Vásquez-Dean J,Maza F,Morel I,et al. Microbial communities from arid environments on a global scale. A systematic review[J]. Biological Research,2020,53(1):29.
[71]Chanal A,Chapon V,Benzerara K,et al. The desert of Tataouine:an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria[J]. Environmental Microbiology,2006,8(3):514-525.
[72]Nagy M L,Pérez A,Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument,AZ)[J]. FEMS Microbiology Ecology,2005,54(2):233-245.
[73]Yao M J,Rui J P,Niu H S,et al. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe[J]. Catena,2017,152:47-56.
[74]Kumar S,Suyal D C,Yadav A,et al. Microbial diversity and soil physiochemical characteristic of higher altitude[J]. PLoS One,2019,14(3):e0213844.
[75]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[76]Ramirez K S,Geisen S,Morrin E,et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science,2018,23(9):759-768.
[77]de Vries F T,Griffiths R I,Bailey M,et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications,2018,9:3033.
[78]de Vries F T,Liiri M E,Bjrnlund L,et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nature Climate Change,2012,2(4):276-280.
[79]Bapiri A,Bth E,Rousk J. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil[J]. Microbial Ecology,2010,60(2):419-428.
[80]Rooney N,McCann K,Gellner G,et al. Structural asymmetry and the stability of diverse food webs[J]. Nature,2006,442(710):265-269.
[81]Neutel A M,Heesterbeek J A,De Ruiter P C. Stability in real food webs:weak links in long loops[J]. Science,2002,296(5570):1120-1123.
[82]Coyte K Z,Schluter J,F(xiàn)oster K R. The ecology of the microbiome:networks,competition,and stability[J]. Science,2015,350(6261):663-666.
[83]Stouffer D B,Bascompte J. Compartmentalization increases food-web persistence[J]. PNAS,2011,108(9):3648-3652.
[84]Freilich M A,Wieters E,Broitman B R,et al. Species co-occurrence networks:can they reveal trophic and non-trophic interactions in ecological communities?[J]. Ecology,2018,99(3):690-699.
[85]Berry D,Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks[J]. Frontiers in Microbiology,2014,5:219.
[86]Barberán A,Bates S T,Casamayor E O,et al. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal,2012,6(2):343-351.
[87]Koch A L. The biophysics of the gram-negative periplasmic space[J]. Critical Reviews in Microbiology,1998,24(1):23-59.
[88]Wood J M. Osmosensing by bacteria:signals and membrane-based sensors[J]. Microbiology and Molecular Biology Reviews,1999,63(1):230-262.
[89]Fierer N,Schimel J P,Holden P A. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology,2003,45(1):63-71.
[90]Borken W,Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Global Change Biology,2009,15(4):808-824.
[91]胡振琪,紀(jì)晶晶,王幼珊,等. AM真菌對(duì)復(fù)墾土壤中苜蓿養(yǎng)分吸收的影響[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2009,38(3):428-432,449.
[92]Kaisermann A,Maron P A,Beaumelle L,et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities [J]. Applied Soil Ecology,2015,86:158-164.
[93]Hawkes C V,Kivlin S N,Rocca J D,et al. Fungal community responses to precipitation[J]. Global Change Biology,2015,17(4):1637-1645.
[94]Suttle K B,Thomsen M A,Power M E. Species interactions reverse grassland responses to changing climate[J]. Science,2007,315(5812):640-642.
[95]Waldrop M P,Zak D R,Blackwood C B,et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127-1135.
[96]Witteveen C F B,Visser J. Polyol pools in Aspergillus niger[J]. FEMS Microbiology Letters,1995,134(1):57-62.
[97]Schimel J P,Scott W J,Killham K. Changes in cytoplasmic carbon and nitrogen pools in a soil bacterium and a fungus in response to salt stress[J]. Applied and Environmental Microbiology,1989,55(6):1635-1637.
[98]Evans S E,Wallenstein M D. Soil microbial community response to drying and rewetting stress:does historical precipitation regime matter?[J]. Biogeochemistry,2012,109(1):101-116.
[99]Gordon H,Haygarth P M,Bardgett R D. Drying and rewetting effects on soil microbial community composition and nutrient leaching[J]. Soil Biology & Biochemistry,2008,40(2):302-311.
[100]Bell T,Newman J A,Silverman B W,et al. The contribution of species richness and composition to bacterial services[J]. Nature,2005,436(754):1157-1160.
[101]Strickland M S,Lauber C,F(xiàn)ierer N,et al. Testing the functional significance of microbial community composition[J]. Ecology,2009,90(2):441-451.
[102]Unger S,Máguas C,Pereira J S,et al. The influence of precipitation pulses on soil respiration—Assessing the“Birch effect”by stable carbon isotopes[J]. Soil Biology & Biochemistry,2010,42(10):1800-1810.
[103]Mills R T E,Gavazov K S,Spiegelberger T,et al. Diminished soil functions occur under simulated climate change in a sup-alpine pasture,but heterotrophic temperature sensitivity indicates microbial resilience [J]. Science of the Total Environment,2014,473/474:465-472.
[104]Novem A D,Suseela V,Dukes J S. Warming and drought reduce temperature sensitivity of nitrogen transformations[J]. Global Change Biology,2013,19(2):662-676.
[105]Moyano F E,Manzoni S,Chenu C. Responses of soil heterotrophic respiration to moisture availability:an exploration of processes and models [J]. Soil Biology & Biochemistry,2013,59:72-85.
[106]Blagodatskaya E,Kuzyakov Y. Active microorganisms in soil:critical review of estimation criteria and approaches [J]. Soil Biology & Biochemistry,2013,67:192-211.
[107]Sanaullah M,Blagodatskaya E,Chabbi A,et al. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition[J]. Applied Soil Ecology,2011,48(1):38-44.
[108]Tiemann L K,Billings S A. Tracking C and N flows through microbial biomass with increased soil moisture variability [J]. Soil Biology & Biochemistry,2012,44:11-22.
[109]Steinweg J M,Dukes J S,Paul E A,et al. Microbial responses to multi-factor climate change:effects on soil enzymes[J]. Frontiers in Microbiology,2013,4:146.
[110]Homyak P M,Allison S D,Huxman T E,et al. Effects of drought manipulation on soil nitrogen cycling:a meta-analysis[J]. Journal of Geophysical Research:Biogeosciences,2017,122(12):3260-3272.
[111]Wanek W,Mooshammer M,Blchl A,et al. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique[J]. Soil Biology & Biochemistry,2010,42(8):1293-1302.
[112]Wild B,Ambus P,Reinsch S,et al. Resistance of soil protein depolymerization rates to eight years of elevated CO2,warming,and summer drought in a temperate heathland[J]. Biogeochemistry,2018,140(3):255-267.
[113]Frey S D,Lee J,Melillo J M,et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change,2013,3(4):395-398.
[114]Dijkstra P,Salpas E,F(xiàn)airbanks D,et al. High carbon use efficiency in soil microbial communities is related to balanced growth,not storage compound synthesis [J]. Soil Biology & Biochemistry,2015,89:35-43.
[115]Melillo J M,F(xiàn)rey S D,DeAngelis K M,et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science,2017,358(6359):101-105.
[116]吳堂清,周昭芬,王鑫銘,等. 微生物致裂的熱力學(xué)和動(dòng)力學(xué)分析[J]. 中國(guó)腐蝕與防護(hù)學(xué)報(bào),2019,39(3):227-234.
[117]Alvarez G,Shahzad T,Andanson L,et al. Catalytic power of enzymes decreases with temperature:new insights for understanding soil C cycling and microbial ecology under warming[J]. Global Change Biology,2018,24(9):4238-4250.
[118]Larsen K S,Andresen L C,Beier C,et al. Reduced N cycling in response to elevated CO2,warming,and drought in a Danish heathland:synthesizing results of the CLIMAITE project after two years of treatments[J]. Global Change Biology,2011,17(5):1884-1899.
[119]Niboyet A,Le Roux X,Dijkstra P,et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere,2011,2(5):1-24.
[120]Xiang S R,Doyle A,Holden P A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology & Biochemistry,2008,40(9):2281-2289.
[121]Zhao B Z,Chen J,Zhang J B,et al. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices[J]. Geoderma,2010,160(2):218-224.
[122]Wu J,Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry,2005,37(3):507-515.
[123]Shepherd M,Lucci G,Vogeler I,et al. The effect of drought and nitrogen fertiliser addition on nitrate leaching risk from a pasture soil;an assessment from a field experiment and modelling[J]. Journal of the Science of Food and Agriculture,2018,98(10):3795-3805.
[124]Franzluebbers A J. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture[J]. Soil Biology and Biochemistry,1999,31(8):1083-1090.
[125]Murphy D V,Sparling G P,F(xiàn)illery I P,et al. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil[J]. Soil Research,1998,36(2):231-246.
[126]Butterly C R,Marschner P,McNeill A M,et al. Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties[J]. Biology and Fertility of Soils,2010,46(7):739-753.
[127]Mikha M M,Rice C W,Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology & Biochemistry,2005,37(2):339-347.
[128]Appel T. Non-biomass soil organic N-the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying[J]. Soil Biology & Biochemistry,1998,30(10/11):1445-1456.
[129]Jin V L,Haney R L,F(xiàn)ay P A,et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality [J]. Soil Biology & Biochemistry,2013,58:172-180.
[130]Miller A E,Schimel J P,Meixner T,et al. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology & Biochemistry,2005,37(12):2195-2204.
[131]Van Der Heijden M A. Bardgett R D,Van Straalen N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
[132]楊雍康,藥 棟,李 博,等. 微生物群落在修復(fù)重金屬污染土壤過(guò)程中的作用[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2020,36(5):1322-1331.
[133]Chaparro J M,Badri D V,Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal,2014,8(4):790-803.
[134]王 攀,朱灣灣,牛玉斌,等. 氮添加對(duì)荒漠草原植物群落組成與微生物生物量生態(tài)化學(xué)計(jì)量特征的影響[J]. 植物生態(tài)學(xué)報(bào),2019,43(5):427-436.
[135]王靜婭,王明亮,張鳳華. 干旱區(qū)典型鹽生植物群落下土壤微生物群落特征[J]. 生態(tài)學(xué)報(bào),2016,36(8):2363-2372.
[136]Zhalnina K,Louie K B,Hao Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3(4):470-480.
[137]Stringlis I A,Yu K,F(xiàn)eussner K,et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5213-5222.
[138]Lu T,Ke M J,Lavoie M,et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome,2018,6(1):231.
[139]Mommer L,Hinsinger P,Prigent-Combaret C,et al. Advances in the rhizosphere:stretching the interface of life[J]. Plant and Soil,2016,407(1):1-8.
[140]Karlowsky S,Augusti A,Ingrisch J,et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions[J]. Journal of Ecology,2018,106(3):1230-1243.
[141]Canarini A,Merchant A,Dijkstra F A. Drought effects on Helianthus annuus and Glycine max metabolites:from phloem to root exudates [J]. Rhizosphere,2016,2:85-97.
[142]Gargallo-Garriga A,Preece C,Sardans J,et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports,2018,8(1):12696.
[143]Quiroga G,Erice G,Aroca R,et al. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar[J]. Frontiers in Plant Science,2017,8:1056.
[144]Henry A,Doucette W,Norton J,et al. Changes in crested wheatgrass root exudation caused by flood,drought,and nutrient stress[J]. Journal of Environmental Quality,2007,36(3):904-912.
[145]Allard-Massicotte R,Tessier L,Lécuyer F,et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio,2016,7(6):1616-1664.
[146]Gagné-Bourque F,Bertrand A,Claessens A,et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with?Bacillus subtilis B26[J]. Frontiers in Plant Science,2016,7:584.