尚林東,梁 鵬,吳青宜,肖東洋,徐立偉,劉坤香,李 備,*
絕對(duì)共軛共聚焦拉曼光譜技術(shù)研究
尚林東1,2,梁 鵬1,2,吳青宜1,2,肖東洋3,徐立偉3,劉坤香1,2,李 備1,2,3*
1中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所,吉林 長春 130031;2中國科學(xué)院大學(xué),北京 100049;3長光辰英生物科學(xué)儀器有限公司,吉林 長春 130031
為解決傳統(tǒng)拉曼光譜信號(hào)強(qiáng)度弱、信噪比低的問題,本文提出一種新型的共聚焦拉曼系統(tǒng),通過外接光子晶體光纖實(shí)現(xiàn)共聚焦點(diǎn)的絕對(duì)共軛,總結(jié)了光子晶體光纖耦合過程中出現(xiàn)的技術(shù)問題,并對(duì)實(shí)際樣品進(jìn)行測試。與Thorlabs、OZ兩種常規(guī)共聚焦拉曼系統(tǒng)所用光纖、Witec 532 nm-alpha300R拉曼系統(tǒng)進(jìn)行比較,在相同激光強(qiáng)度和積分時(shí)間下,本文信噪比為73.8382,顯著高于Thorlabs、OZ兩種光纖的37.1557和40.0342,而相較于Witec 532 nm-alpha300R的65.5312,也提升了12.68%,高質(zhì)量的拉曼信號(hào)使得該絕對(duì)共軛共聚焦拉曼系統(tǒng)具有廣闊的市場前景和超高的市場競爭力。
拉曼光譜;絕對(duì)共軛;光子晶體光纖;信噪比
拉曼散射最初在1928年由印度科學(xué)家拉曼提出,之后逐漸被應(yīng)用于材料檢測[1]、珠寶鑒定[2]等,但是對(duì)于生物樣品如細(xì)菌代謝檢測、微生物分辨等,拉曼光譜強(qiáng)度相對(duì)較弱且信噪比較低。為了解決強(qiáng)度相對(duì)較弱信噪比較低的問題,人們不斷探索能增強(qiáng)拉曼信號(hào)強(qiáng)度的方式,經(jīng)歷半個(gè)多世紀(jì)的發(fā)展研究衍生出了很多的分支,如共聚焦拉曼[3],對(duì)樣品表面進(jìn)行特殊處理的表面增強(qiáng)拉曼(surface enhanced Raman spectroscopy,SERS)[4],更改光源激發(fā)波長的共振拉曼(resonance Raman spectroscopy,RRS)[5],采用納米探針激發(fā)樣品的針尖增強(qiáng)拉曼(tip-enhanced Raman spectroscopy,TERS)[6]等。其中最具有通用性的是共聚焦拉曼,共聚焦拉曼主要由兩部分構(gòu)成,分別是拉曼光譜系統(tǒng)、顯微共聚焦系統(tǒng),激光通過顯微物鏡聚焦成一個(gè)極小的光斑,樣品經(jīng)光斑激發(fā)后產(chǎn)生的拉曼散射光被物鏡收集進(jìn)入拉曼光學(xué)系統(tǒng),最后由耦合透鏡透過小孔、狹縫或光纖進(jìn)入光譜儀,物鏡和耦合透鏡的兩個(gè)焦點(diǎn)的共軛程度越高,其拉曼信號(hào)強(qiáng)度越高。
光子晶體光纖(Photonic crystal fibel,PCF)的概念最早出現(xiàn)在20世紀(jì)九十年代,BATH大學(xué)的Russell[7]第一次提出光子晶體光纖概念,1996年Knight[8]成功制成了第一根石英六邊形結(jié)構(gòu)的折光率導(dǎo)光型PCF。1999年Cregan[9]成功研制出了第一根空芯帶隙型PCF,實(shí)現(xiàn)了真正意義上的光子帶隙PCF。2009年陳月娥[10]制備出了Yb3+摻雜的雙包層光子晶體光纖。2018年上海理工大學(xué)張學(xué)典[11]制成了正方形空氣孔的光子晶體光纖。根據(jù)導(dǎo)光機(jī)制可以分為折光率導(dǎo)光型(IG-PCF)和帶隙引導(dǎo)型(PCF)[12]兩大類,折光率導(dǎo)光型采用類似于全內(nèi)反射的機(jī)制導(dǎo)光;帶隙引導(dǎo)型依靠光子帶隙效應(yīng),其光纖對(duì)包層空氣孔結(jié)構(gòu)有著嚴(yán)格的周期性要求,只有特定頻率的光線才能經(jīng)其傳輸,兩者與普通光纖相比有著更高的傳輸效率、保真率、單模性,因此受到越來越多科技工作者的青睞。本文在常規(guī)共聚焦拉曼系統(tǒng)的基礎(chǔ)上,通過外接帶隙引導(dǎo)型光子晶體光纖進(jìn)行傳輸拉曼信號(hào),由于光子晶體光纖其獨(dú)特的物理結(jié)構(gòu)區(qū)別于一般的單模光纖,其對(duì)成像精度要求極高,入射光角度的微小偏差就會(huì)導(dǎo)致巨大的模場散失[13],使拉曼信號(hào)強(qiáng)度被“腰斬”,所以本文由光子晶體光纖構(gòu)成的共聚焦拉曼系統(tǒng)可以區(qū)別于常規(guī)共聚焦拉曼,而且一般來說物鏡聚焦點(diǎn)和耦合透鏡焦點(diǎn)兩者共軛程度越高,其得到的拉曼光譜質(zhì)量越好。因此從共軛程度出發(fā),本文的共聚焦系統(tǒng)可以稱為絕對(duì)共軛的共聚焦系統(tǒng)。光子晶體光纖對(duì)耦合精度的要求極高,大部分的科研工作者耦合光子晶體光纖時(shí)都按照一般光纖耦合方式進(jìn)行耦合,耦合過程費(fèi)時(shí)費(fèi)力,至今沒有一個(gè)完善的耦合方法。本文根據(jù)作者在大量光子晶體光纖耦合過程中得出的實(shí)驗(yàn)結(jié)果,對(duì)光子晶體光纖耦合過程中出現(xiàn)的問題和解決方式進(jìn)行總結(jié),提出一種較為簡單且實(shí)用的光子晶體光纖耦合方式,并對(duì)耦合結(jié)果效果進(jìn)行建模評(píng)估,進(jìn)而與拉曼光譜測量中常用的光纖和市面上高端光譜儀器公司W(wǎng)itec所售商品級(jí)共聚焦拉曼光譜儀532 nm-alpha300R[14]進(jìn)行對(duì)比。
本文基于光子晶體光纖耦合搭建一套絕對(duì)共軛共聚焦拉曼光譜系統(tǒng),如圖1所示。選擇532 nm激光(Cobolt DPL 532 nm)作為激發(fā)光,光束經(jīng)透鏡準(zhǔn)直后,被長波通濾光片反射、經(jīng)顯微物鏡(Olympus LMPLANFLN 100×)聚焦到樣品表面;樣品被激發(fā)后產(chǎn)生的拉曼信號(hào)則透過長波通濾光片,經(jīng)帶通濾光片濾光后,透過透鏡(Edmund ACH12.5×50VIS0INKED)耦合進(jìn)光子晶體光纖(NKT LMA-PM-15),光子晶體光纖最終將拉曼信息傳輸?shù)焦庾V儀(光譜相機(jī)為PIXIS100)采集拉曼光譜。實(shí)驗(yàn)中通過反射鏡(Thorlabs PF05-03-P01-10)的微調(diào),實(shí)現(xiàn)光子晶體光纖的共軛耦合(如圖2)。
圖1 絕對(duì)共軛共聚焦拉曼光路圖
圖2 光子晶體光纖結(jié)構(gòu)圖
不同于普通的單模或多模光纖,光子晶體光纖的耦合對(duì)于光路的同軸性及光束質(zhì)量要求更高。為了提高光子晶體光纖的耦合效率,得到更高質(zhì)量的拉曼光譜,保證光路具有良好的同軸性,入射激光為準(zhǔn)直激光,利用剪切干涉儀產(chǎn)生干涉條紋來確保激光準(zhǔn)直度。本文介紹一種光子晶體光纖耦合方法,具體步驟如下:
1) 在物鏡處放置一片紅色熒光片(Thorlabs,VRC2D05)。因?yàn)楸鞠到y(tǒng)中裝載了532 nm長通濾光片,所以采用532 nm激光對(duì)準(zhǔn)耦合的方式并不適用。然后安裝兩個(gè)孔徑光闌(因?yàn)楸疚闹形镧R的通光孔徑為3.5 mm,所以孔徑光闌也設(shè)置為3.5 mm),在此基礎(chǔ)上初步調(diào)節(jié)反射鏡3、反射鏡4、耦合透鏡、三維調(diào)節(jié)平臺(tái)進(jìn)行初步同軸調(diào)整。邊調(diào)整邊觀察拉曼峰值,峰值無法提升時(shí)為理想位置。
2) 將紅色熒光片替換為純Si片,在視野相機(jī)觀察下將聚焦光斑調(diào)節(jié)為最小(此處對(duì)軸穩(wěn)定度要求較高,對(duì)于手動(dòng)調(diào)節(jié)顯微鏡的軸多為機(jī)械結(jié)構(gòu),十分不穩(wěn)定,本文使用壓電平臺(tái),如PI公司的10 cm軸平臺(tái)(L-310&C-663.12))。之后調(diào)節(jié)三維調(diào)節(jié)平臺(tái)進(jìn)行精密調(diào)整,當(dāng)Si片的拉曼峰值無法提升時(shí),開始調(diào)整前方反射鏡的同軸度,按照從后到前的順序進(jìn)行耦合調(diào)整,隨著調(diào)整過程的進(jìn)行,系統(tǒng)共聚焦共軛程度越來越高,最后Si片峰強(qiáng)度達(dá)到一個(gè)峰值。此時(shí)稍微觸碰一下三維調(diào)節(jié)平臺(tái)都會(huì)讓Si片強(qiáng)度發(fā)生強(qiáng)烈的抖動(dòng)。
因?yàn)楣庾泳w光纖本身特殊的結(jié)構(gòu)形式,使其耦合過程變得復(fù)雜,兩個(gè)過程中最為重要和難度較大的為軸的穩(wěn)定程度和雙反射鏡的同軸程度,對(duì)最終結(jié)果起到?jīng)Q定性作用。
除光路的同軸性、光束質(zhì)量等因素,光子晶體光纖的耦合效率、拉曼光譜的質(zhì)量對(duì)顯微物鏡測試樣品時(shí)的成像精度影響極大,在顯微物鏡確定的情況下,測試樣品的平行度也會(huì)直接影響成像精度。普通多模光纖和單模光纖對(duì)樣品與載物臺(tái)的平行度要求不高,但光子晶體光纖對(duì)成像精度十分敏感,測試樣品微小的平行度誤差都會(huì)影響到其耦合效率和光譜信號(hào)質(zhì)量。因此在制作測試樣本時(shí)要盡可能保證測試樣本的平行度,以標(biāo)準(zhǔn)的硅片測試為例,在進(jìn)行硅片測試時(shí)通常需將硅片粘合在載玻片上,需要考慮到硅片粘合時(shí)片底殘存的粘合劑導(dǎo)致的硅片與載物臺(tái)不平行誤差,以及粘合劑干燥過程中的收縮所帶來的樣品不平行誤差等。圖3(a)為平行度誤差較大的測試硅片,圖3(b)為經(jīng)過定點(diǎn)激光測距檢測的標(biāo)準(zhǔn)硅片(極差小于50 nm)。
除上述所述,仍有一些其他因素對(duì)拉曼信號(hào)強(qiáng)度有較大影響,如系統(tǒng)中反射鏡的反射率、光學(xué)元件表面的灰塵等。本文采用表面鍍銀反射鏡,其反射率達(dá)到97%,如果反射鏡反射率較低會(huì)引起光斑色散,最終影響實(shí)驗(yàn)結(jié)果。此外,系統(tǒng)搭建及實(shí)驗(yàn)過程中需要做好防塵工作,鏡片上的灰塵會(huì)影響鏡片的反射率透過率等光學(xué)性能,光纖接口附著灰塵則會(huì)直接影響光線的準(zhǔn)直拉曼光譜強(qiáng)度。
本文所用實(shí)驗(yàn)樣品包括純硅片、光譜矯正標(biāo)準(zhǔn)參考材料(SRM2242)、聚苯乙烯(PS)、大腸桿菌(Escherichia coli),經(jīng)本文系統(tǒng)采集的各樣品圖譜數(shù)據(jù)如圖4所示。
圖3 實(shí)驗(yàn)硅片處理前(a)和后(b)對(duì)比圖
圖4 本文采集樣品圖譜
測試樣品所產(chǎn)生的信號(hào)圖譜中除包含拉曼信號(hào)外,還有一些熒光信號(hào)和背景噪聲等,以大腸桿菌(Escherichia coli)的拉曼圖譜為例,其中圖譜呈現(xiàn)的一個(gè)“鼓包”的基線是熒光干擾信號(hào),而譜線的上下高頻抖動(dòng)則屬于背景環(huán)境噪聲,對(duì)于這些信號(hào)需要通過算法進(jìn)行數(shù)據(jù)處理,具體流程如圖5。
本文采用連續(xù)小波變換的方式去除信號(hào)基線[15],對(duì)信號(hào)進(jìn)行小波分解,尺度選擇6,在該尺度上進(jìn)行小波重構(gòu),近似得到信號(hào)低頻信息,再與原始信號(hào)進(jìn)行對(duì)比,保留低于處理信號(hào)的部分,對(duì)高于處理信號(hào)的部分,高出的部分的百分之十與處理信號(hào)相加,多次迭代計(jì)算后得到原始信號(hào)的基線。本文采用S-G濾波方法[16],該算法是由Savizkg和Golag提出,是一種基于最小二乘原理的多項(xiàng)式平滑算法,也稱卷積平滑。本文設(shè)置濾波窗口寬度為6,通過對(duì)窗口內(nèi)的數(shù)據(jù)進(jìn)行最小二乘法擬合,然后連續(xù)移動(dòng)窗口,直到將整個(gè)光譜數(shù)據(jù)擬合完畢,濾波結(jié)果如圖5。
如前所述,絕對(duì)共軛共聚焦拉曼光譜對(duì)成像要求極為嚴(yán)格,位于顯微物鏡的焦點(diǎn)處的測試樣本微小的誤差,都會(huì)對(duì)拉曼光譜產(chǎn)生影響。為探究樣品偏離物鏡焦點(diǎn)對(duì)拉曼信號(hào)的影響,本文使用25mm量程定位精度50 nm的壓電軸(PI公司)控制樣本距離,對(duì)使用芯徑為25mm的單模光纖(Thorlas)和光子晶體光纖(NKT,LMA-PM-15)的拉曼光譜系統(tǒng)進(jìn)行對(duì)比實(shí)驗(yàn),在其他測試條件相同情況下,測得拉曼光譜如圖6。
從圖中可以看出,對(duì)于Thorlabs-25mm光纖當(dāng)偏離距離為2.0mm時(shí),拉曼峰值從1158衰減到687,強(qiáng)度減少40.67%。而對(duì)光子晶體光纖而言,當(dāng)偏離距離改變0.15mm時(shí),峰值強(qiáng)度從1210衰減到685,強(qiáng)度減少了43.39%。
為了更能體現(xiàn)絕對(duì)共軛共聚焦拉曼系統(tǒng)與常規(guī)共聚焦拉曼系統(tǒng)的區(qū)別,由于大腸桿菌背景熒光和樣品噪音較強(qiáng),本文主要選用大腸桿菌作為對(duì)比實(shí)驗(yàn)。本文選取拉曼儀器中常用的光纖,再選擇Witec所售532 nm共聚焦拉曼光譜儀alpha 300R,分別與本文進(jìn)行對(duì)照實(shí)驗(yàn)。
圖5 數(shù)據(jù)處理流程圖
圖6 光子晶體光纖與普通單模光纖成像精度對(duì)比圖
信噪比是評(píng)價(jià)拉曼光譜信號(hào)好壞的重要指標(biāo),從系統(tǒng)整體上來說決定信噪比的因素有很多,如激光光斑質(zhì)量、物鏡質(zhì)量、濾光片質(zhì)量、光纖的材料和種類、拉曼光譜儀的光柵刻線質(zhì)量、CCD暗噪音等。但單從光纖來說,決定信號(hào)信噪比的主要是光纖材料和芯徑大小,對(duì)于光子晶體光纖來說,主要影響信噪比的是光纖蜂窩狀微結(jié)構(gòu)的直徑、光纖材料的摻雜物質(zhì)和摻雜濃度[17]。
本文為驗(yàn)證絕對(duì)共軛共聚焦拉曼光譜系統(tǒng)相比于普通共聚焦拉曼光譜系統(tǒng)的優(yōu)勢,選取共聚焦拉曼系統(tǒng)中常用的兩種芯徑為10mm的單模光纖(Thorlabs M64L01、OZ QMMF-UVVIS-10/125-0.25-L)、同樣搭載光子晶體光纖產(chǎn)品級(jí)共聚焦拉曼光譜儀(Witec,alpha300R)進(jìn)行對(duì)比實(shí)驗(yàn),同樣選用熒光和噪音信號(hào)較強(qiáng)的大腸桿菌作為樣本,在激光能量3 mW,積分時(shí)間5 s的相同測試條件下,得到拉曼光譜如圖7。
圖7(a1)為Thorlabs M64L01獲得的原始圖像;圖7(a2)為Thorlabs M64L01獲得圖像經(jīng)去基線,平滑濾波,歸一化處理后圖像;圖7(b1)為OZ QMMF-UVVIS-10/125-0.25-L獲得的原始圖像;圖7(b2)為OZ QMMF-UVVIS-10/125-0.25-L獲得原始圖像經(jīng)去基線,平滑濾波,歸一化處理后圖像;圖7(c1)為Witec光譜儀獲得的原始圖像;圖7(c2)為Witec獲得圖像經(jīng)去基線,平滑濾波,歸一化處理后圖像;圖7(d1)為本文獲得的原始圖像;圖7(d2)為本文獲得原始圖像經(jīng)去基線,平滑濾波,歸一化處理后圖像。
從原始圖像可以,看出本方法獲得的原始圖像信號(hào)質(zhì)量明顯比兩種常用光纖得到的結(jié)果好。而且主觀上與Witec相差無幾,本文獲得的拉曼強(qiáng)度還高于Witec,但具體評(píng)價(jià)一個(gè)拉曼光譜的好壞有很多種方式,本文通過檢驗(yàn)信噪比的方法[18-19]來進(jìn)行評(píng)判。
一般來說,針對(duì)特定測量的拉曼噪聲評(píng)價(jià)函數(shù)為所測強(qiáng)度相對(duì)于標(biāo)準(zhǔn)偏差的倒數(shù),如下式:
建立圖像評(píng)估模型后分別對(duì)兩種光纖、Witec和本文獲得的圖像質(zhì)量進(jìn)行評(píng)估,結(jié)果如表1所示。
從表中可以看出,相同實(shí)驗(yàn)條件下,Thorlabs和OZ的光纖信噪比分別為37.1557和40.0342,光子晶體光纖顯著高于兩者近一倍,可見光子晶體光纖性能的優(yōu)越之處。反觀Witec共聚焦拉曼光譜儀的信噪比為65.5312,而本文獲得的拉曼光譜信噪比為73.8382,高于Witec 12.68%,本文獲得的圖譜質(zhì)量信噪比也明顯優(yōu)于Witec商品級(jí)共聚焦拉曼光譜儀。
表1 兩種光纖和Witec與本文信噪比對(duì)比表
為提高拉曼光譜信號(hào)強(qiáng)度與質(zhì)量,本文設(shè)計(jì)一種新型的通過外接光子晶體光纖實(shí)現(xiàn)絕對(duì)共軛的共聚焦拉曼系統(tǒng),并對(duì)光子晶體光纖耦合過程中出現(xiàn)的工程技術(shù)問題做出總結(jié)。通過對(duì)熒光信號(hào)、背景噪聲干擾較大的大腸桿菌樣品進(jìn)行測試,與Thorlabs、OZ兩種芯徑為10mm的單模光纖、Witec 532 nm-alpha300R產(chǎn)品級(jí)共聚焦拉曼光譜儀進(jìn)行對(duì)比,驗(yàn)證了絕對(duì)共軛共聚焦拉曼光譜系統(tǒng)在光譜信號(hào)強(qiáng)度和質(zhì)量上的優(yōu)勢。從其更高的光譜強(qiáng)度、更好的信號(hào)質(zhì)量以及應(yīng)用于生物樣本測試的特性,可以推測這種絕對(duì)共軛共聚焦拉曼光譜系統(tǒng)將具有更高的市場競爭力和廣闊的市場前景。
[1] Beyssac O, Goffé B, Chopin C,. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]., 2002, 20(9): 859–871.
[2] Bersani D, Lottici P P. Applications of Raman spectroscopy to gemology[J]., 2010, 397(7): 2631–2646.
[3] Dieing T, Hollricher O, Toporski J.[M]. Berlin, Heidelberg: Springer, 2011.
[4] Stiles P L, Dieringer J A, Shah N C,. Surface-enhanced Raman spectroscopy[J]., 2008, 1: 601–626.
[5] Carey P.[M]. Amsterdam: Elsevier, 2012.
[6] St?ckle R M, Suh Y D, Deckert V,. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]., 2000, 318(1–3): 131–136.
[7] Russell P S J. Photonic band gaps[J]., 1992, 5(8): 37–42.
[8] Knight J C, Birks T A, Russell P S J,. All-silica single-mode optical fiber with photonic crystal cladding[J]., 1996, 21(19): 1547–1549.
[9] Cregan R F, Mangan B J, Knight J C,. Single-mode photonic band gap guidance of light in air[J]., 1999, 285(5433): 1537–1539.
[10] Chen Y E, Hou L T. Preparation of Yb3+doped double-clad photonic crystal fiber[J]., 2009, 36(2): 62–66.
陳月娥, 侯藍(lán)田. Yb3+摻雜雙包層光子晶體光纖制備研究[J]. 光電工程, 2009, 36(2): 62–66.
[11] Zhang X D, Yuan M M, Chang M,. Characteristics in square air hole structure photonic crystal fiber[J]., 2018, 45(5): 20–28.
張學(xué)典, 袁曼曼, 常敏, 等. 正方形空氣孔光子晶體光纖特性分析[J]. 光電工程, 2018, 45(5): 20–28.
[12] Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]., 2006, 33(1): 57–66.
王清月, 胡明列, 柴路. 光子晶體光纖非線性光學(xué)研究新進(jìn)展[J]. 中國激光, 2006, 33(1): 57–66.
[13] Folkenberg J R, Nielsen M D, Mortensen N A,. Polarization maintaining large mode area photonic crystal fiber[J]., 2004, 12(5): 956–960.
[14] Polis B, Imiela A, Polis L,. Raman spectroscopy for medulloblastoma[J]., 2018, 34(12): 2425–2430.
[15] Lv M L. Baseline correction and noise suppression of Raman spectroscopy[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
呂明磊. 拉曼光譜基線校正與噪聲抑制技術(shù)研究[D]. 成都: 電子科技大學(xué), 2017.
[16] He Y J, Xie D H, Zhong R F. Research on SG filtering algorithm based on hyperspectral image[J]., 2018, 39(2): 70–75.
何英杰, 謝東海, 鐘若飛. 基于高光譜影像的SG濾波算法的研究[J]. 首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 39(2): 70–75.
[17] Shang T, Li F, Liu Z J. Numerical analysis of Raman amplifier based on triangular photonic crystal fiber[J]., 2008, 29(8): 63–68.
尚韜, 李鋒, 劉增基. 基于光子晶體光纖的拉曼放大器特性研究[J]. 通信學(xué)報(bào), 2008, 29(8): 63–68.
[18] Chen J M. Extraction of weak raman spectral imaging information and SNR estimation[J]., 2019, 37(4): 100–103.
陳金敏. 微弱拉曼光譜成像信息提取及SNR估計(jì)[J]. 數(shù)字技術(shù)與應(yīng)用, 2019, 37(4): 100–103.
[19] Zhang Z M, Chen S, Liang Y Z,. An intelligent background‐correction algorithm for highly fluorescent samples in Raman spectroscopy[J]., 2010, 41(6): 659–669.
Research on absolute conjugation confocal Raman spectroscopy technology
Shang Lindong1,2, Liang Peng1,2, Wu Qingyi1,2, Xiao Dongyang3,Xu Liwei3, Liu Kunxiang1,2, Li Bei1,2,3*
1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130031, China;2University of Chinese Academy of Sciences, Beijing 100049, China;3HOOKE Instruments Ltd, Changchun, Jilin 130031, China
Absolute conjugated confocal Raman spectrogram
Overview:After the discovery of the Raman scattering effect, due to its high sensitivity and non-invasiveness to test samples, it has been more and more used in materials testing, jewelry identification and other fields. However, in the direction of biological samples, such as bacterial metabolism detection, microbial discrimination, etc., the intensity of Raman spectroscopy is relatively weak, and the signal-to-noise ratio is low. As a conventional Raman signal acquisition method, the confocal Raman system occupies an important position in many Raman systems. However, most confocal Raman systems mostly use small holes or slits, and rarely use photonic crystal fibers. Aiming at the problems of weak signal strength and low signal-to-noise ratio of traditional Raman spectroscopy, a new confocal Raman system is proposed. The system realizes the absolute conjugation of the confocal point through the external photonic crystal fiber. Secondly, the difference in imaging accuracy between photonic crystal fiber and other single-mode fibers is verified, and it is found that the imaging accuracy of photonic crystal fiber is much higher than that of ordinary single-mode fiber. Then, the actual samples were tested and verified, and Escherichia coli with high background noise was screened out. The test results were compared with the optical fibers used in Thorlabs and OZ conventional confocal Raman systems and Witec 532 nm-alpha300R confocal Raman systems. Under the conditions of the same laser intensity of 3 mW and integration time of 5 s, the signal-to-noise ratio obtained is 73.8382, which is higher than that of Thorlabs and OZ systems. Compared with the 65.5312 of the Witec 532 nm-alpha300R confocal Raman system, the Raman signal quality of the two single-mode fibers are 37.1557 and 40.0342 respectively, an increase of 12.68%. It can be seen that the quality of the Raman signal obtained in this paper is relatively high. Absolutely conjugated confocal Raman system will promote the application of photonic crystal fiber in biological cell Raman, and has a very broad application prospect.
Shang L D, Liang P, Wu Q Y,Research on absolute conjugation confocal Raman spectroscopy technology[J]., 2021, 48(6): 200398; DOI:10.12086/oee.2021.200398
Research on absolute conjugation confocal Raman spectroscopy technology
Shang Lindong1,2, Liang Peng1,2, Wu Qingyi1,2, Xiao Dongyang3, Xu Liwei3, Liu Kunxiang1,2, Li Bei1,2,3*
1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130031, China;2University of Chinese Academy of Sciences, Beijing 100049, China;3HOOKE Instruments Ltd, Changchun, Jilin 130031, China
To solve the problems of weak signal strength and low signal-to-noise ratio in traditional Raman spectroscopy, a new confocal Raman system is proposed in this paper. The absolute conjugation of the confocal point is realized by external photonic crystal fiber. The technical problems in the coupling process of photonic crystal fiber are summarized, and the actual samples are tested. Compared with conventional confocal Raman fibers such as Thorlabs and OZ and Witec 532 nm-alpha300R Raman system, the signal-to-noise ratio in this paper is 73.8382 at the same laser intensity and integration time, which is significantly higher than that of Thorlabs and OZ (37.1557 and 40.0342, respectively). Compared with the signal-to-noise ratio of 65.5312 for Witec 532 nm-alpha300R, it also increased by 12.68%. High-quality Raman signal makes the absolute conjugated confocal Raman system have broad market prospects and ultra-high market competitiveness.
Raman spectrometer; absolute conjugation; photonic crystal fiber; SNR
尚林東,梁鵬,吳青宜,等. 絕對(duì)共軛共聚焦拉曼光譜技術(shù)研究[J]. 光電工程,2021,48(6): 200398
Shang L D, Liang P, Wu Q Y,Research on absolute conjugation confocal Raman spectroscopy technology[J]., 2021, 48(6): 200398
TN253;O734
A
10.12086/oee.2021.200398
2020-10-26;
2021-04-01
國家重點(diǎn)研發(fā)計(jì)劃“政府間國際科技創(chuàng)新合作/港澳臺(tái)科技創(chuàng)新合作”重點(diǎn)專項(xiàng)(SQ2018YFE010810)
尚林東(1998-),男,博士研究生,主要從事時(shí)間門控拉曼光譜的研究。E-mail:shanglindong20@mails.ucas.ac.cn
李備(1983-),男,博士,研究員,主要從事單細(xì)胞分選、拉曼光譜的研究。E-mail:beili@ciomp.ac.cn
National Key R & D Program "International Cooperation in Science and Technology Innovation Between Governments/Cooperation in Science and Technology Innovation Between Hong Kong, Macao and Taiwan" (SQ2018YFE010810)
* E-mail: beili@ciomp.ac.cn