亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        深水鉆井多壓力系統(tǒng)條件下的井筒溫度場(chǎng)研究*

        2021-07-12 04:18:32張銳堯柳貢慧楊宏偉
        石油機(jī)械 2021年7期
        關(guān)鍵詞:鉆柱環(huán)空溢流

        張銳堯 李 軍 柳貢慧,2 楊宏偉

        (1.中國(guó)石油大學(xué)(北京)石油工程學(xué)院 2.北京工業(yè)大學(xué))

        0 引 言

        隨著鉆井技術(shù)的進(jìn)一步發(fā)展以及對(duì)能源需求量的增加,深水油氣勘探開(kāi)發(fā)正成為世界石油工業(yè)的主要增長(zhǎng)點(diǎn)和科技創(chuàng)新前沿[1-3]。盡管深水區(qū)域油氣資源豐富,但其地質(zhì)環(huán)境復(fù)雜,如深水地區(qū)海水低溫與地層高溫所形成的復(fù)雜溫度場(chǎng)環(huán)境,淺部地層存在弱膠結(jié)、易坍塌的特點(diǎn)以及低破裂壓力與高孔隙壓力所形成的安全密度窗口窄等[4-8],使得深水鉆井過(guò)程中經(jīng)常會(huì)出現(xiàn)溢流與漏失等復(fù)雜工況。特別是當(dāng)多壓力系統(tǒng)存在時(shí),即地層出現(xiàn)多個(gè)漏失層與溢流層的情況,則井筒內(nèi)部的鉆井液與地層流體會(huì)發(fā)生傳質(zhì)與傳熱,導(dǎo)致鉆井液的熱物性參數(shù)改變,進(jìn)一步影響井筒壓力。

        目前,國(guó)內(nèi)外的許多學(xué)者通過(guò)分析法或數(shù)值法對(duì)井筒溫度場(chǎng)進(jìn)行了研究。H.J.RAMEY[9]將地層傳熱視為非穩(wěn)態(tài)而井筒傳熱視為穩(wěn)態(tài)進(jìn)行溫度場(chǎng)計(jì)算。C.S.KABIR等[10]在不考慮鉆井液性能變化以及鉆井液流動(dòng)產(chǎn)熱的條件下建立了溫度場(chǎng)計(jì)算模型。L.R.RAYMOND[11]所建立的溫度場(chǎng)模型也沒(méi)有考慮鉆井液循環(huán)過(guò)程中所產(chǎn)生的熱量,因此最終計(jì)算結(jié)果比實(shí)際值小。D.W.MARSHALL等[8]基于偏微分方程建立了從井筒到地層的井筒溫度預(yù)測(cè)模型。ZHANG Z.等[12-13]針對(duì)裸眼地層發(fā)生溢流以及關(guān)井階段,建立了井筒與地層的溫度場(chǎng)計(jì)算模型,通過(guò)環(huán)空溫度場(chǎng)的變化規(guī)律可以確定溢流發(fā)生的位置。LI M.B.等[14]建立了水平井瞬態(tài)傳熱計(jì)算模型,并利用有限體積法進(jìn)行求解。盡管對(duì)井筒和地層溫度分布的相關(guān)研究已經(jīng)有豐碩的成果,但目前很少有學(xué)者對(duì)深水鉆井過(guò)程中多壓力系統(tǒng)條件下的井筒溫度場(chǎng)進(jìn)行過(guò)研究。為此,本文對(duì)深水鉆井中多壓力系統(tǒng)在不同井深以及在不同漏失和溢流條件下的井筒溫度及鉆井液熱物性參數(shù)進(jìn)行數(shù)值計(jì)算和敏感性分析,以期為深水鉆井提供一定的理論支撐,從而降低作業(yè)風(fēng)險(xiǎn)與成本。

        1 多壓力系統(tǒng)條件下井筒傳熱與傳質(zhì)模型建立

        深水鉆井過(guò)程中所涉及到的傳熱過(guò)程包括:鉆柱內(nèi)鉆井液與鉆柱內(nèi)壁產(chǎn)生對(duì)流換熱;鉆柱內(nèi)壁與外壁產(chǎn)生熱傳導(dǎo);環(huán)空中鉆井液與鉆柱外壁以及井壁產(chǎn)生對(duì)流換熱。為了建立一套完整的多壓力系統(tǒng)條件下的井筒傳熱與傳質(zhì)物理模型,需做如下假設(shè):①鉆柱內(nèi)與環(huán)空中的流動(dòng)過(guò)程考慮熱傳導(dǎo)與對(duì)流換熱,將套管、水泥環(huán)以及地層作為一個(gè)整體區(qū)域,僅考慮其在徑向上的熱傳導(dǎo);②地層流體進(jìn)入環(huán)空后與鉆井液均勻混合,溢流層與漏失層相互交替均勻分布,同類型的各子層中流體速率(漏失速率或溢流速率)相等;③忽略井筒流體在徑向上的溫度變化,僅考慮沿軸向的溫度變化;④海水與地層的熱物性參數(shù)為常數(shù),不隨溫度而變化。根據(jù)以上假設(shè)建立物理模型,如圖1所示。

        圖1 深水鉆井多壓力系統(tǒng)條件下的井筒傳熱與傳質(zhì)物理模型

        該物理模型將主要的傳熱區(qū)域分為3個(gè)部分:一是鉆柱內(nèi)鉆井液所在傳熱區(qū)域(區(qū)域1),二是環(huán)空內(nèi)鉆井液所在傳熱區(qū)域(區(qū)域2),三是套管、水泥環(huán)與地層等只存在徑向?qū)岬膮^(qū)域(區(qū)域3)。根據(jù)漏失層與溢流層位置,將多壓力系統(tǒng)在軸向上劃分為多個(gè)子層,漏失層的漏失速率為vl(l=2,4,6,……,n),溢流層的溢流速率為vk(k=1,3,5,……,m),其中,n、m分別為漏失層和溢流層的層數(shù)(見(jiàn)圖1c)。vl與vk單位均為m3/s。多壓力系統(tǒng)位于中部地層時(shí),其位置如圖1b所示,多壓力系統(tǒng)位于井底往上連續(xù)地層時(shí),其位置位于井筒最下部。

        1.1 數(shù)學(xué)模型

        1.1.1 鉆柱內(nèi)的傳熱數(shù)學(xué)模型

        鉆井液在鉆柱內(nèi)部流動(dòng)過(guò)程中會(huì)與鉆柱內(nèi)壁產(chǎn)生對(duì)流換熱,同時(shí)鉆柱內(nèi)壁會(huì)與鉆柱外壁之間產(chǎn)生熱傳導(dǎo)。根據(jù)熱力學(xué)第一定律,建立如式(1)所示的數(shù)學(xué)模型。式(1)左邊表示Δt時(shí)間內(nèi)單元體內(nèi)能量的變化,式(1)右邊第1項(xiàng)表示Δt時(shí)間內(nèi)鉆井液與鉆柱內(nèi)壁之間的對(duì)流換熱量,右邊第2項(xiàng)表示Δt時(shí)間內(nèi)流入單元體的熱量,右邊第3項(xiàng)表示Δt時(shí)間內(nèi)鉆井液因流動(dòng)摩擦所產(chǎn)生的熱量。

        πUapdpi[Ta(y,t)-Tp(y,t)]+

        (1)

        式中:Uap為環(huán)空內(nèi)鉆井液與鉆柱內(nèi)鉆井液的綜合對(duì)流換熱系數(shù),W/(m2·K);dpi為鉆柱內(nèi)徑,mm;Tp為鉆柱溫度,℃;Ta為環(huán)空溫度,℃;ρp為鉆柱內(nèi)鉆井液密度,kg/m3;Qcp為鉆柱內(nèi)的鉆井液微元體流動(dòng)產(chǎn)生的熱量,W/m3;cp為鉆柱內(nèi)鉆井液比熱容,J/(kg·K);Qm為鉆井液排量,m3/s;t為時(shí)間,s;y為鉆井液微元體沿井眼方向的長(zhǎng)度,m。

        1.1.2 環(huán)空中的傳熱數(shù)學(xué)模型

        當(dāng)多壓力系統(tǒng)位于中部地層時(shí)(見(jiàn)圖1b),鉆井液從鉆柱內(nèi)注入,經(jīng)鉆頭后再由環(huán)空返回地面。此時(shí),下部環(huán)空位于多壓力系統(tǒng)的上游段,因此下部環(huán)空的鉆井液熱物性參數(shù)不受多壓力系統(tǒng)的影響,其傳熱過(guò)程與正常循環(huán)時(shí)相同。下部環(huán)空中的鉆井液繼續(xù)上返,當(dāng)流過(guò)多壓力系統(tǒng)段的漏失層位時(shí),部分鉆井液會(huì)進(jìn)入地層中,而在溢流層位則有地層流體進(jìn)入環(huán)空中,并與鉆井液均勻混合后上返至地面。在整個(gè)循環(huán)過(guò)程中,上部環(huán)空中的鉆井液熱物性參數(shù)會(huì)受到一定的影響,而下部環(huán)空中的鉆井液熱物性參數(shù)則不受多壓力系統(tǒng)的影響。根據(jù)上、下環(huán)空中的傳熱情況不同,本文分別建立不同的傳熱方程。

        下部環(huán)空鉆井液傳熱方程如式(2)所示。式(2)左邊第1項(xiàng)表示Δt時(shí)間內(nèi)環(huán)空單元體內(nèi)能的變化,式(2)右邊第1項(xiàng)和第2項(xiàng)分別表示環(huán)空內(nèi)鉆井液與鉆柱外壁以及井壁之間對(duì)流換熱的熱量,右邊第3項(xiàng)表示流入單元體內(nèi)的熱量,第4項(xiàng)表示環(huán)空內(nèi)鉆井液流動(dòng)過(guò)程中摩擦所產(chǎn)生的熱量。

        πUapdpo[Ta(y,t)-Tp(y,t)]+

        πUafdw[Ta(y,t)-Tf(y,t)]+

        (2)

        式中:dw為井眼內(nèi)徑,mm;dpo為鉆柱外徑,mm;ca為環(huán)空內(nèi)鉆井液比熱容,J/(kg·K);Uaf為環(huán)空內(nèi)鉆井液與井壁的綜合對(duì)流換熱系數(shù),W/(m2·K);Tf為地層溫度,℃;ρa(bǔ)為環(huán)空鉆井液密度,kg/m3;Qca為正常循環(huán)時(shí)環(huán)空中鉆井液微元體摩擦產(chǎn)生的熱量,W/m3。

        當(dāng)多壓力系統(tǒng)位于中部地層時(shí),因?yàn)槁┦c溢流同時(shí)存在,所以在溢流層位會(huì)有地層流體進(jìn)入環(huán)空,而漏失層位會(huì)有部分鉆井液進(jìn)入地層中,從而使多壓力系統(tǒng)所在井深處的環(huán)空內(nèi)鉆井液熱物性參數(shù)發(fā)生變化,并且隨著鉆井液上返,整個(gè)上部環(huán)空中的傳熱過(guò)程都會(huì)受到影響。因此建立如下傳熱方程:

        (3)

        當(dāng)多壓力系統(tǒng)位于井底往上連續(xù)地層時(shí),在井底附近環(huán)空中,部分鉆井液會(huì)因?yàn)槁┦нM(jìn)入地層中,同時(shí)在溢流層位中會(huì)有地層流體進(jìn)入環(huán)空中;然后鉆井液與地層流體在井底附近的環(huán)空區(qū)域混合均勻后,上返至地面。因此,從井底開(kāi)始出現(xiàn)溢流、漏失至上返到地面的過(guò)程中,整個(gè)環(huán)空中的鉆井液熱物性參數(shù)都會(huì)受到多壓力系統(tǒng)的影響,于是得到如下傳熱方程:

        (4)

        1.1.3 地層中的傳熱數(shù)學(xué)模型

        地層中存在流體與否對(duì)于傳熱過(guò)程有較大的影響。此次研究只考慮存在流體的情況,地層中流體的流動(dòng)可以看作是單向不可壓縮平面徑向穩(wěn)定滲流,其傳熱數(shù)學(xué)模型見(jiàn)文獻(xiàn)[15]。

        1.1.4 密度模型

        在鉆井循環(huán)過(guò)程中,由于鉆井液的熱物性參數(shù)與溫度、壓力之間相互影響,所以本文利用多元非線性回歸分析方法對(duì)W.C.MCMORDIE等[16]的水基鉆井液試驗(yàn)數(shù)據(jù)進(jìn)行處理,得到鉆井液的密度ρ與溫度T、壓力p的關(guān)系式:

        (5)

        1.2 初始條件與邊界條件

        1.2.1 初始條件

        海水的溫度分布受季節(jié)、水流和深度等多種因素的綜合影響,而海水的溫度變化又會(huì)影響井筒的傳熱過(guò)程。因此,本文將V.DOKHANI等[17]的海水溫度分布數(shù)學(xué)模型作為初始條件。

        1.2.2 邊界條件

        井口溫度可以看作是鉆柱內(nèi)部的初始溫度,其邊界條件可以表示為:

        T0(y=0,t=0)=Tin

        (6)

        根據(jù)假設(shè)條件③,不考慮井筒溫度在徑向上的變化,則在井底處鉆柱內(nèi)鉆井液、鉆頭處以及環(huán)空中的鉆井液位于同一井深位置,三者對(duì)應(yīng)的溫度相等,其邊界條件可以表示為:

        T0(y=H,t)=T1(y=H,t)=T2(y=H,t)

        (7)

        遠(yuǎn)離井筒的環(huán)境溫度分布邊界條件為:

        T(x→∞,y,t)=Tsurf+Gh

        (8)

        式中:T0為鉆柱內(nèi)鉆井液在井底的溫度,℃;Tin為鉆柱的入口溫度,℃。T1為鉆柱壁在井底的溫度,℃;T2為環(huán)空內(nèi)鉆井液在井底的溫度,℃;G為地溫梯度,℃/m;H為井深,m;h為泥線到目標(biāo)地層的深度,m。

        2 模型驗(yàn)證與敏感性分析

        通過(guò)有限差分方法對(duì)模型進(jìn)行離散,然后結(jié)合南海某區(qū)塊的鉆井?dāng)?shù)據(jù),通過(guò)高斯-賽德?tīng)柕姆椒▽?duì)模型進(jìn)行求解。將求解結(jié)果與現(xiàn)有經(jīng)典模型以及現(xiàn)場(chǎng)測(cè)量數(shù)據(jù)進(jìn)行對(duì)比分析,實(shí)現(xiàn)對(duì)本文模型的驗(yàn)證。對(duì)不同影響因素下的環(huán)空溫度、井底溫度以及鉆井液密度等進(jìn)行數(shù)值計(jì)算和敏感性分析。

        2.1 模型驗(yàn)證

        選擇南海某區(qū)塊的鉆井?dāng)?shù)據(jù)進(jìn)行計(jì)算,其關(guān)鍵參數(shù)為[18-19]:井深5 094 m,水深1 521 m,入口溫度15 ℃,地表溫度20 ℃,地溫梯度0.024 ℃/m,鉆井液密度1 200 kg/m3,地層巖石密度2 640 kg/m3,海水密度1 020 kg/m3,鉆井液比熱容3 935 J/(kg·K),鉆井液與巖石的導(dǎo)熱系數(shù)分別為1.73和2.10 W/(m·K),海水的導(dǎo)熱系數(shù)為0.60 W/(m·K),孔隙流體密度為1 400 kg/m3,孔隙流體導(dǎo)熱系數(shù)為0.8 W/(m·K),所用鉆頭直徑為215.9 mm。

        將以上參數(shù)代入本文模型以及其他幾個(gè)模型進(jìn)行計(jì)算,得到如圖2a所示結(jié)果。通過(guò)模型對(duì)比,本文模型與張正模型的計(jì)算結(jié)果很接近。因?yàn)镸arshall模型沒(méi)有考慮井身結(jié)構(gòu)的影響,所以下部環(huán)空鉆井液從地層中獲得的熱量多,上部環(huán)空鉆井液向海水傳遞的熱量多。因此,下部環(huán)空溫度高于本文計(jì)算結(jié)果,上部環(huán)空溫度低于本模型計(jì)算結(jié)果。

        楊謀模型主要適用于傳統(tǒng)的陸地鉆井,并且模型假設(shè)條件差異導(dǎo)致計(jì)算結(jié)果與本文模型有較大誤差。張正模型對(duì)漏失工況下的環(huán)空溫度進(jìn)行了計(jì)算,并與其他經(jīng)典模型以及現(xiàn)場(chǎng)數(shù)據(jù)進(jìn)行了對(duì)比[20-22],驗(yàn)證了該模型的合理性與精確度。本文模型不僅考慮了單獨(dú)漏失與單獨(dú)溢流情況,同時(shí)還考慮了存在多壓力系統(tǒng)時(shí)的工況,并且本文模型與張正模型計(jì)算的環(huán)空溫度誤差最大僅為3.31 ℃,滿足誤差小于5%的要求,驗(yàn)證了本文模型的正確性,說(shuō)明本文模型適用范圍更廣。圖2b為循環(huán)穩(wěn)定后某段時(shí)間的井口測(cè)量溫度與本文模型計(jì)算的井口溫度對(duì)比,因?yàn)槟P褪窃诩僭O(shè)條件下計(jì)算,所以二者之間存在一定誤差,計(jì)算值與測(cè)量值誤差在5%以內(nèi),同樣滿足精度要求。綜上所述,本文模型預(yù)測(cè)結(jié)果具有準(zhǔn)確性與合理性。

        圖2 多壓力系統(tǒng)條件下井筒溫度場(chǎng)模型驗(yàn)證

        2.2 敏感性分析

        當(dāng)多壓力系統(tǒng)分別位于中部地層(2 500~3 000 m)或井底往上連續(xù)地層(井底往上500 m)時(shí),結(jié)合上述鉆井?dāng)?shù)據(jù)對(duì)不同溢流和漏失速率條件下的環(huán)空溫度、環(huán)空與鉆柱內(nèi)的溫度差、井底溫度以及環(huán)空內(nèi)鉆井液密度的變化進(jìn)行了計(jì)算和敏感性分析。

        2.2.1 多壓力系統(tǒng)對(duì)環(huán)空溫度的影響

        圖3和圖4分別表示多壓力系統(tǒng)位于中部地層以及井底往上連續(xù)地層時(shí)的環(huán)空溫度分布。從圖3和圖4可以看出:當(dāng)多壓力系統(tǒng)位于中部地層時(shí),環(huán)空鉆井液溫度受到影響最大的井段為2 500~3 500 m(圖3區(qū)域1);當(dāng)多壓力系統(tǒng)位于井底往上連續(xù)地層時(shí)(井底往上500 m),則從井底至1 500 m的環(huán)空內(nèi)鉆井液溫度都受到多壓力系統(tǒng)的影響(圖4區(qū)域2)。無(wú)論多壓力系統(tǒng)位于中部地層或井底往上連續(xù)地層,在不同溢、漏工況(溢流與漏失速率不同)時(shí),只要溢流速率大于漏失速率,則環(huán)空溫度都要高于正常循環(huán)時(shí)的溫度,反之環(huán)空溫度低于正常循環(huán)時(shí)的溫度。圖5和圖6分別表示多壓力系統(tǒng)位于中部地層與井底往上連續(xù)地層時(shí),溢流同存條件與單獨(dú)溢流或者漏失條件對(duì)環(huán)空溫度的影響。從圖5和圖6可以看出:當(dāng)多壓力系統(tǒng)位于中部地層時(shí),環(huán)空溫度分布受影響區(qū)域主要為多壓力系統(tǒng)往上的環(huán)空區(qū)域(圖5區(qū)域1);當(dāng)多壓力系統(tǒng)位于井底往上連續(xù)地層時(shí),從井底直到海底泥線處環(huán)空溫度都受到顯著影響,所以后者受到的影響范圍更廣;當(dāng)多壓力系統(tǒng)位置一定時(shí),在相同井深處,出現(xiàn)單獨(dú)溢流時(shí)環(huán)空溫度最高,而單獨(dú)漏失時(shí)環(huán)空溫度最低,多壓力系統(tǒng)(溢漏同存)對(duì)環(huán)空溫度分布的影響在上述兩者之間。

        圖3 位于中部地層時(shí)的環(huán)空溫度

        圖4 位于井底往上連續(xù)地層時(shí)的環(huán)空溫度

        圖5 位于中部地層且不同溢漏條件下的環(huán)空溫度

        圖6 在井底往上連續(xù)地層且不同溢漏條件下的環(huán)空溫度

        2.2.2 多壓力系統(tǒng)對(duì)環(huán)空與鉆柱內(nèi)溫度差的影響

        圖7和圖8分別表示多壓力系統(tǒng)位于中部地層或井底往上連續(xù)地層時(shí),環(huán)空與鉆柱內(nèi)溫度差隨井深的分布。

        圖7 位于中部地層時(shí)環(huán)空與鉆柱內(nèi)的溫度差

        圖8 位于井底往上連續(xù)地層時(shí)環(huán)空與鉆柱內(nèi)的溫度差

        由圖7可知:當(dāng)多壓力系統(tǒng)位于中部地層時(shí),溫度差的變化最顯著的井段位于多壓力系統(tǒng)區(qū)域附近(中部井段);當(dāng)多壓力系統(tǒng)位于井底往上連續(xù)地層時(shí),其對(duì)溫度差的影響從井底區(qū)域一直到泥線附近都比較顯著。無(wú)論多壓力系統(tǒng)位于中部地層還是井底往上連續(xù)地層,只要出現(xiàn)溢流,則溫度差都明顯增加,而出現(xiàn)漏失時(shí),溫度差明顯減小,多壓力系統(tǒng)條件下(溢漏同存)的溫度差隨井深的分布介于兩者之間。在多壓力系統(tǒng)條件下,當(dāng)溢流速率大于漏失速率時(shí),在相同井深位置,其溫度差分布要大于溢流速率小于漏失速率條件下的分布,而正常循環(huán)時(shí)的溫度差分布在兩者之間。

        2.2.3 多壓力系統(tǒng)對(duì)井底溫度的影響

        圖9和圖10分別為多壓力系統(tǒng)位于中部地層與井底往上連續(xù)地層時(shí)的井底溫度。

        圖9 位于中部地層時(shí)的井底溫度

        圖10 位于井底往上連續(xù)地層時(shí)的井底溫度

        從圖9和圖10可以看出,當(dāng)其他條件不變時(shí),隨著循環(huán)時(shí)間的延長(zhǎng),井底溫度逐漸降低,然后趨于穩(wěn)定。這是因?yàn)殂@井液在循環(huán)過(guò)程中,井筒與地層之間不斷進(jìn)行熱量交換,下部環(huán)空中的鉆井液會(huì)吸收地層中的熱量,然后傳遞給上部環(huán)空,但是隨著循環(huán)時(shí)間的延長(zhǎng),井筒與地層經(jīng)過(guò)充分的熱量交換,最終地層溫度保持相對(duì)恒定,井底溫度也趨于穩(wěn)定。當(dāng)循環(huán)相同時(shí)間,如果只出現(xiàn)溢流時(shí),則井底溫度最高;只出現(xiàn)漏失時(shí),井底溫度最低。當(dāng)多壓力系統(tǒng)位于井底時(shí),如果溢流速率大于漏失速率,則其井底溫度低于單獨(dú)溢流時(shí)的井底溫度,而高于正常循環(huán)時(shí)的井底溫度。如果溢流速率小于漏失速率,則其井底溫度高于單獨(dú)漏失時(shí)的井底溫度,低于正常循環(huán)時(shí)的井底溫度。與多壓力系統(tǒng)位于中部地層時(shí)相比,當(dāng)其位于井底時(shí),如果都出現(xiàn)溢流速率小于漏失速率的情況,則后者對(duì)井底溫度的影響更大。

        2.2.4 多壓力系統(tǒng)對(duì)環(huán)空內(nèi)鉆井液密度的影響

        圖11和圖12分別表示多壓力系統(tǒng)位于中部地層和井底往上連續(xù)地層時(shí),不同溢流或漏失工況對(duì)鉆井液密度的影響。

        圖11 位于中部地層時(shí)的鉆井液密度

        圖12 位于井底地層時(shí)的鉆井液密度

        從圖11和圖12可見(jiàn):在多壓力系統(tǒng)條件下,當(dāng)溢流速率大于漏失速率時(shí),相同井深處鉆井液密度最大,與正常循環(huán)時(shí)相比顯著增加;當(dāng)溢流速率小于漏失速率時(shí),鉆井液密度仍然大于正常循環(huán)時(shí)的密度,但小于溢流速率大于漏失速率工況下的密度;僅出現(xiàn)溢流時(shí),鉆井液密度在溢流速率大于漏失速率與溢流速率小于漏失速率兩種工況的密度之間,但是明顯大于只有漏失或正常循環(huán)時(shí)的鉆井液密度。僅出現(xiàn)漏失時(shí),由于鉆井液的排量減小,但是其熱物性參數(shù)沒(méi)有改變,所以與正常循環(huán)時(shí)相比,密度基本保持不變。無(wú)論多壓力系統(tǒng)位于中部地層還是井底往上連續(xù)地層,只要出現(xiàn)溢流工況,則環(huán)空中鉆井液的密度都顯著增加,并且溢流速率大于漏失速率時(shí),環(huán)空鉆井液密度最大,而漏失工況對(duì)環(huán)空鉆井液密度基本沒(méi)有影響。

        3 結(jié) 論

        根據(jù)多壓力系統(tǒng)位于不同位置時(shí)井筒內(nèi)傳熱與傳質(zhì)的特點(diǎn),并依據(jù)熱力學(xué)第一定律,推導(dǎo)了多壓力系統(tǒng)條件下的井筒溫度場(chǎng)數(shù)學(xué)模型。分別采用有限差分法和高斯塞德?tīng)柕▽?duì)模型進(jìn)行離散和求解。將本文模型與現(xiàn)有經(jīng)典模型以及實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證了模型的可靠性。最后對(duì)影響井筒溫度與熱物性參數(shù)的因素進(jìn)行了數(shù)值計(jì)算和敏感性分析,得出以下結(jié)論。

        (1)多壓力系統(tǒng)位于中部地層時(shí),從該區(qū)域到泥線處的環(huán)空溫度及鉆井液熱物性參數(shù)會(huì)受到顯著影響;當(dāng)其位于井底往上連續(xù)地層時(shí),則從井底直到泥線處整個(gè)環(huán)空溫度分布以及鉆井液熱物性參數(shù)都會(huì)受到顯著影響。

        (2)單獨(dú)溢流或漏失對(duì)環(huán)空溫度和井底溫度的影響程度要大于兩者同存時(shí)的情況,并且相同井深位置,只存在溢流時(shí)環(huán)空溫度最高,只存在漏失時(shí)環(huán)空溫度最低,多壓力系統(tǒng)條件下(溢漏同存)介于兩者之間。

        (3)在多壓力系統(tǒng)條件下,只要出現(xiàn)溢流工況,則環(huán)空中鉆井液的密度都顯著增加,并且在溢流速率大于漏失速率時(shí),環(huán)空鉆井液密度最大,而漏失工況對(duì)環(huán)空鉆井液密度基本沒(méi)有影響。

        猜你喜歡
        鉆柱環(huán)空溢流
        基于熱傳遞作用的環(huán)空圈閉壓力預(yù)測(cè)與分析
        精確發(fā)現(xiàn)溢流研究及在西北工區(qū)現(xiàn)場(chǎng)應(yīng)用
        錄井工程(2017年3期)2018-01-22 08:40:07
        基于模糊專家系統(tǒng)的鉆井溢流智能預(yù)警技術(shù)
        自適應(yīng)BPSK在井下鉆柱聲波傳輸中的應(yīng)用
        氣井環(huán)空帶壓對(duì)水泥環(huán)力學(xué)完整性的影響
        油氣藏型地下儲(chǔ)氣庫(kù)注采井環(huán)空帶壓初步研究
        水平段鉆柱失穩(wěn)后自鎖分析*
        精細(xì)控壓鉆井溢流檢測(cè)及模擬研究
        環(huán)空附加當(dāng)量循環(huán)密度的計(jì)算方法
        斷塊油氣田(2014年5期)2014-03-11 15:33:50
        溢流染色機(jī)控制管理系統(tǒng)的應(yīng)用研究
        絲綢(2014年5期)2014-02-28 14:55:15
        免费夜色污私人影院在线观看| 西川结衣中文字幕在线| 久久综合九色综合久99| 99久久精品国产成人综合| 女同中的p是什么意思| 亚洲无av码一区二区三区| 中文字幕av久久亚洲精品| 亚洲av天天做在线观看| 最新亚洲人AV日韩一区二区 | 国产精品丝袜黑色高跟鞋| 亚洲精品动漫免费二区| 国产一区二区视频免费| 玩弄白嫩少妇xxxxx性| 免费人成再在线观看网站| 亚洲夫妻性生活视频网站| 国产精品黑丝美腿美臀| 国产福利视频在线观看| 一级午夜视频| 国产三级在线观看高清| 亚洲av免费手机在线观看| 怡红院a∨人人爰人人爽| 亚洲VA欧美VA国产VA综合| 日韩一区二区中文天堂| 亚洲av无码乱码在线观看牲色| 大学生被内谢粉嫩无套| 国产亚洲一区二区三区夜夜骚| 国产av一区二区亚洲精品| 女人让男人桶爽30分钟| 国产哟交泬泬视频在线播放| 国产在线视频一区二区三区| 无码人妻精品一区二区三区蜜桃| 又黄又爽又色又刺激的视频| 亚洲AV日韩AV高潮喷潮无码| 日韩精品一区二区三区乱码| 精品少妇一区二区三区免费观| 欧美成人中文字幕| 亚洲女同精品一区二区久久| 亚洲av中文无码乱人伦在线咪咕 | 特黄做受又硬又粗又大视频小说| 日韩区在线| 国产成人av一区二区三|