亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        銻基硫?qū)倩衔锇雽?dǎo)體及太陽電池*

        2021-07-03 10:23:08鄭建楂麥耀華
        新能源進(jìn)展 2021年3期
        關(guān)鍵詞:效率

        劉 聰,鄭建楂,沈 凱,麥耀華

        銻基硫?qū)倩衔锇雽?dǎo)體及太陽電池*

        劉 聰,鄭建楂,沈 凱?,麥耀華?

        (暨南大學(xué) 信息科學(xué)技術(shù)學(xué)院,新能源技術(shù)研究院,廣州 510632)

        銻基硫?qū)倩衔锸且活愋再|(zhì)穩(wěn)定、環(huán)境友好、元素含量豐富、帶隙連續(xù)可調(diào)、光電性質(zhì)優(yōu)異的半導(dǎo)體材料,包括硒化銻(Sb2Se3)、硫化銻(Sb2S3)以及硒硫化銻[Sb2(S,Se)3]等。其中,Sb2(S,Se)3的帶隙和太陽光譜的匹配度較高,比較適合作為太陽電池的光吸收層材料。以Sb2(S,Se)3為光吸收層的太陽電池取得了10%的認(rèn)證能量轉(zhuǎn)換效率,顯示了銻基硫?qū)倩衔锾栯姵氐木薮鬂摿?。本文詳?xì)闡述了銻基硫?qū)倩衔锏牟牧霞肮怆娞匦浴⒈∧ぶ苽涔に嚰叭毕萏匦?。結(jié)合近年來銻基硫?qū)倩衔锾栯姵氐难芯窟M(jìn)展,提出進(jìn)一步提高銻基硫?qū)倩衔锾栯姵匦阅艿姆较蚝筒呗浴?/p>

        銻基硫?qū)倩衔?;硒化銻;硫化銻;硒硫化銻;太陽電池

        0 引 言

        當(dāng)前,我國社會(huì)經(jīng)濟(jì)正處于快速發(fā)展的過程中,對能源的需求很大。能源問題已經(jīng)上升到國家的重大戰(zhàn)略問題,為此我國政府出臺一系列政策支持新能源產(chǎn)業(yè)的發(fā)展。其中,太陽能憑借環(huán)境友好、資源分布廣泛和使用安全可靠等優(yōu)勢成為可再生能源中的佼佼者。太陽能光伏組件在太陽光的照射下可產(chǎn)生直流電,將太陽能轉(zhuǎn)化為電能應(yīng)用到社會(huì)生產(chǎn)當(dāng)中,對人類社會(huì)的可持續(xù)發(fā)展具有重要意義。光伏產(chǎn)業(yè)在過去幾年里取得了巨大進(jìn)展,2019年全國新增光伏發(fā)電裝機(jī)30.11 GW,2020年新增光伏發(fā)電裝機(jī)48.45 GW。2019年中國太陽能發(fā)電量為1 172億kW?h,同比增長13.3%。

        晶硅太陽電池憑借高效率和高工作穩(wěn)定性實(shí)現(xiàn)了商業(yè)化應(yīng)用,并占據(jù)了絕大部分太陽能光伏市場。然而,其生產(chǎn)成本較高,對材料純度的要求非常嚴(yán)格。而且,剛性的晶硅電池板也不能滿足日益流行的柔性可穿戴電子設(shè)備的要求。在薄膜太陽電池中,銅銦鎵硒[Cu(In,Ga)Se2]和碲化鎘(CdTe)太陽電池已經(jīng)取得了超過22%的能量轉(zhuǎn)換效率[1-2],但不利的是銦、鎵的稀缺性和鎘的毒性。有機(jī)太陽電池以低成本、質(zhì)量輕、可大面積制備以及柔性制備等優(yōu)勢而引起光伏研究者的強(qiáng)烈興趣,其能量轉(zhuǎn)換效率達(dá)到了18.2%[3]。但是,聚合物分子價(jià)格昂貴,合成步驟繁瑣,并且在光熱條件下的穩(wěn)定性差,這些缺點(diǎn)限制了其商業(yè)化的進(jìn)程。鈣鈦礦太陽電池作為一種新型太陽電池,憑借其低成本、溶液加工和優(yōu)異的光電性能等優(yōu)勢迅速發(fā)展起來,能量轉(zhuǎn)換效率達(dá)到了25.5%,但人們對其穩(wěn)定性仍有些疑慮,大面積制備技術(shù)也不夠成熟。

        為了滿足光伏產(chǎn)業(yè)多元化、高效率、高穩(wěn)定性和低成本的需求,開展基于銻基硫?qū)倩衔锏男滦吞栯姵厥欠浅1匾?。銻基硫?qū)倩衔镏饕ㄎR(Sb2Se3)、硫化銻(Sb2S3)以及硒硫化銻[Sb2(S1?Se)3或Sb2(S,Se)3]。從2013年以來,銻基硫?qū)倩衔锾栯姵氐难芯课墨I(xiàn)逐年遞增,引起了國內(nèi)外科研工作者的廣泛關(guān)注。此外,銻基硫?qū)倩衔锊牧线€應(yīng)用于光電探測器、熱電、鋰離子電池和光解水制氫等領(lǐng)域[4-8],顯示出其在光電、能源方面的巨大應(yīng)用潛力。本文闡述了銻基硫?qū)倩衔锊牧霞肮怆娞匦?,薄膜制備方法及缺陷特性。結(jié)合近年來銻基硫?qū)倩衔锾栯姵氐难芯窟M(jìn)展,提出進(jìn)一步提高銻基硫?qū)倩衔锾栯姵匦阅艿难芯坎呗院头较颉?/p>

        1 銻基硫?qū)倩衔锊牧霞肮怆娦再|(zhì)

        1.1 材料性質(zhì)

        硒化銻和硫化銻是一種無機(jī)化合物材料,化學(xué)式分別為Sb2Se3和Sb2S3,分子量分別為480.38和339.68。Sb2Se3屬于正交晶系,空間群為Pnma 62,晶格常數(shù)為= 1.162 nm、= 1.177 nm和= 0.396 2 nm,其晶格結(jié)構(gòu)如圖1所示。Sb2Se3具有一維晶體結(jié)構(gòu),在[001]方向上通過Sb-Se共價(jià)鍵連接形成[Sb4Se6]納米帶,每條帶由三棱錐Sb1Se2Se3和四棱錐Sb2Se2Se3交替構(gòu)成,而在[100]、[010]方向上則是[Sb4Se6]納米帶通過范德華力堆疊而成[9]。Sb2S3同屬正交晶系,空間群為Pnma 62,晶格常數(shù)= 1.131 nm、= 0.383 6 nm、= 1.123 nm[10]。Sb2Se3和Sb2S3近乎同晶形,S2?和Se2?可以相互替代,形成Sb2(S,Se)3。

        銻基硫?qū)倩衔锊牧系膬?yōu)勢在于其光電性能優(yōu)異、性質(zhì)穩(wěn)定、組分和物相簡單、元素含量豐富、環(huán)境友好。如表1所示,Sb、Se和S元素豐度分別為0.20 g/t、0.05 g/t和260.00 g/t,原材料價(jià)格低廉[10]。同時(shí),制備銻基硫?qū)倩衔锕夥∧に璨牧嫌昧枯^少。

        圖1 硒化銻的晶體結(jié)構(gòu)示意圖

        表1 銻基硫?qū)倩衔镌刎S度、產(chǎn)量和價(jià)格[10]

        1.2 光電性質(zhì)

        銻基硫?qū)倩衔锞哂袃?yōu)異的光電性能,非常有潛力作為新型太陽電池的吸光材料[11-15]。

        1.2.1 光學(xué)性質(zhì)

        Sb2Se3間接帶隙為1.03 eV,直接帶隙為1.17 eV,接近硅的帶隙(1.12 eV)。根據(jù)肖克利?奎伊瑟極限(Shockley-Queisser limit)理論計(jì)算[16],Sb2Se3太陽電池的理論極限效率可達(dá)30%以上。Sb2Se3在紫外可見光范圍內(nèi)的吸光系數(shù)可達(dá)約1 × 105cm?1,幾百納米厚(約500 nm)的薄膜就可以吸收足夠的太陽光。Sb2S3為直接帶隙半導(dǎo)體,光學(xué)帶隙約為1.7 ~ 1.8 eV。其電子結(jié)構(gòu)被廣泛研究[17-21],一般認(rèn)為價(jià)帶頂由Sb-5p、Sb-5s和S-3p電子態(tài)組成,后者起主導(dǎo)作用。導(dǎo)帶主要由Sb-5p和S-3p反鍵電子態(tài)構(gòu)成。根據(jù)Shockley-Querisser理論計(jì)算此帶隙制備出的單結(jié)太陽電池的理論能量轉(zhuǎn)換效率可以超過28.64%。Sb2S3的光吸收系數(shù)在1 × 104~ 1 × 105cm?1之間,吸收邊可以達(dá)到750 nm,只需幾百納米厚度的薄膜就可以對入射太陽光進(jìn)行充分吸收。Sb2(S,Se)3中的Sb2S3和Sb2Se3可以形成均勻的合金,通過調(diào)節(jié)Se/S比例可以對Sb2(S,Se)3的帶隙在1.1 ~ 1.8 eV范圍內(nèi)進(jìn)行調(diào)控。

        1.2.2 電學(xué)特性

        根據(jù)熱電功率測試,Sb2Se3表現(xiàn)為p型導(dǎo)電性,Sb2S3表現(xiàn)n型導(dǎo)電性[22]。Sb2Se3的相對介電常數(shù)為15,電子和空穴遷移率分別為15 cm2/(V·s)和42 cm2/(V·s)?;瘜W(xué)水浴法制備的Sb2S3薄膜的霍爾遷移率是 9.8cm2/(V·s),載流子濃度大于1×1012cm?3。電子擴(kuò)散長度較長,在290 ~ 900 nm之間[23]。Sb2Se3和Sb2S3的一維晶體結(jié)構(gòu)使其具有高度的各向異性,制備的薄膜具有多種取向。電荷載流子在沿著(Sb4X6)方向上具有較高的遷移率,在(Sb4X6)納米帶間跳躍傳輸效率就低得多。

        2 銻基硫?qū)倩衔锉∧さ闹苽?/h2>

        2.1 硒化銻

        Sb2Se3具有較高的飽和蒸汽壓(550℃時(shí)約為1 200 Pa)和較低的熔點(diǎn)(611℃),并且其組分和物相單一,適用于多種方法制備。目前文獻(xiàn)報(bào)道的制備方法主要分為真空法和非真空法。如圖2 所示,真空法主要包括快速熱蒸發(fā)(rapid thermal evaporation, RTE)、近空間升華(close-space sublimation, CSS)、載氣輸運(yùn)沉積(vapor transport deposition, VTD)、磁控濺射沉積和脈沖激光沉積(pulsed laser deposition, PLD)。非真空法包括電化學(xué)沉積、水熱沉積、溶液旋涂法、噴霧熱解等。

        圖2 (a)快速熱蒸發(fā)[24];(b)近空間升華[25];(c)載氣輸運(yùn)沉積[26];(d)磁控濺射[27];(e)脈沖激光沉積[28]

        2.2 硫化銻

        在基于敏化結(jié)構(gòu)和平面結(jié)構(gòu)的Sb2S3太陽電池中,化學(xué)水浴沉積(chemical bath deposition, CBD)是最常用的制備方法。CBD法除了成本低、操作簡單外,還具有以下優(yōu)勢:在化學(xué)浴中加入不同濃度的摻雜劑,可以很容易地實(shí)現(xiàn)膜的摻雜;在合成過程中,溶液可以滲透到多孔結(jié)構(gòu)中,薄膜可以在多孔結(jié)構(gòu)中共沉積,這是敏化太陽電池的關(guān)鍵。此外,溶液旋涂法、水熱沉積、原子層沉積(atomic layer deposition, ALD)也常用來制備Sb2S3薄膜。由于Sb2S3的熔點(diǎn)較低(約550℃),可以在較低溫度下制備高結(jié)晶質(zhì)量的薄膜。

        2.3 硒硫化銻

        Sb2(S,Se)3光吸收層可通過對Sb2Se3后硫化處理得到,以及對單源Sb2(Se1?S)3粉末通過RTE、VTD法制備得到。目前,高質(zhì)量的Sb2(S,Se)3光吸收層是通過水熱沉積法制備而來。在水熱體系中,以酒石酸銻鉀為銻源,硫代硫酸鈉為硫源,硒脲為硒源,125℃下水熱沉積2 ~ 3 h,在惰性氣體氛圍下經(jīng)過350℃退火得到高度結(jié)晶、大晶粒的Sb2(S,Se)3薄膜[59]。

        3 銻基硫?qū)倩衔锉∧と毕萏匦约皺z測

        3.1 缺陷特性

        銻基硫?qū)侔雽?dǎo)體點(diǎn)缺陷主要包括空位缺陷、替位缺陷和間隙缺陷。硒化銻只有硒和銻兩種元素,因此只有6種可能的點(diǎn)缺陷,分別是陽離子空位(VSb)、陰離子空位(VSe)、陽離子間隙(Sbi)、陰離子間隙(Sei)、陽離子取代陰離子反位缺陷(SbSe)和陰離子取代陽離子反位缺陷(SeSb)。與銅鋅錫硫、銅鋅錫硫硒等多元化合物相比[29-30],硒化銻可能的點(diǎn)缺陷要少很多。在這種情況下,硒化銻中的點(diǎn)缺陷更為良性,并且缺陷更加容易控制。因此,通過缺陷鈍化可以獲得更高的能量轉(zhuǎn)換效率。

        然而,第一性原理計(jì)算的結(jié)果表明硒化銻的本征缺陷非常復(fù)雜。在硒化銻分子體系中,不同位點(diǎn)的Sb原子周圍鍵合的Se原子數(shù)目不同,這就造成兩個(gè)Sb原子和三個(gè)Se原子的成鍵環(huán)境不同,是不等價(jià)的。相同類型的缺陷位于非等價(jià)原子位點(diǎn),具有不同的性質(zhì),即使在只有幾種點(diǎn)缺陷的情況下,點(diǎn)缺陷的性質(zhì)也很復(fù)雜[31]。這些缺陷在帶隙中產(chǎn)生一系列的受體和施主能級,會(huì)對光生載流子的傳輸、復(fù)合與收集產(chǎn)生不利影響,進(jìn)而限制了太陽電池的器件性能。

        圖3 硒化銻的本征點(diǎn)缺陷[31]

        3.2 檢測手段

        3.2.1 深能級瞬態(tài)譜

        深能級瞬態(tài)光譜(deep-level transient spectroscopy, DLTS)是一種研究光伏薄膜的缺陷能級、缺陷類型和濃度的有效工具[32-34]。通過探測不同溫度下p-n結(jié)的瞬態(tài)電容來監(jiān)測深能級缺陷復(fù)合中心電荷態(tài)的變化。給器件施加一個(gè)脈沖電壓,器件中的缺陷態(tài)將會(huì)被載流子填充,就會(huì)改變與p-n結(jié)相關(guān)的電容[35]。在不同溫度下,Δ/0的變化可以反映出DLTS的信號。基于缺陷放電過程中的電容變化,空穴缺陷和電子缺陷可以通過Δ的正負(fù)來區(qū)分。

        WEN等[26]采用深能級瞬態(tài)譜比較了VTD和RTE制備的硒化銻太陽電池的缺陷水平。在這兩種器件中,一個(gè)負(fù)的、兩個(gè)正的DLTS信號同時(shí)出現(xiàn),表明硒化銻薄膜中存在著一種電子缺陷(E1)和兩種空穴缺陷(H1和H2)。根據(jù)DLTS信號做出阿倫尼烏斯曲線,缺陷活化能可從曲線斜率計(jì)算得到,俘獲截面可從與軸的截距得到。他們將H1和H2缺陷歸于銻空位(VSb)和硒反位缺陷(SeSb),將E1缺陷歸于銻反位缺陷(SbSe),計(jì)算得到的缺陷態(tài)濃度在1.1 × 1014~ 2.3 × 1015cm?3范圍內(nèi)。

        圖4 (a)載氣輸運(yùn)沉積和快速熱蒸發(fā)制備的硒化銻太陽電池的DLTS信號;(b)從DLTS信號獲得的阿倫尼烏斯圖[26]

        3.2.2 導(dǎo)納譜

        導(dǎo)納光譜學(xué)涉及復(fù)導(dǎo)納的測量:(,) =(,) +(,),為角頻率和溫度的函數(shù)。其中,(,)為電導(dǎo),(,)為電容。在這里只討論電容光譜。除了半導(dǎo)體結(jié)的空間電荷區(qū)(space charge region, SCR)的電容外,該結(jié)的SCR中的電子活性缺陷或陷阱也可能在較低頻率或較高溫度下影響電容譜[36]。這是由于電子(空穴)的缺陷能級t與準(zhǔn)費(fèi)米能級Fn(Fp)交叉時(shí),缺陷會(huì)被捕獲和釋放。

        HU等[37]采用導(dǎo)納譜確定了硒化銻光吸收層內(nèi)部的三種缺陷。圖5顯示了效率分別為5.91%的Sb2Se3太陽電池在不同溫度下(從180 K到334 K,以4 ~ 5 K增量)測量的電容譜。在不同頻率下,所有譜的低頻區(qū)(20 ~ 105Hz)均表現(xiàn)出三個(gè)明顯的電容階躍。這種電容響應(yīng)歸因于Sb2Se3帶隙中的三種缺陷,分別為D1、D2和D3。利用高斯函數(shù)對三種缺陷的分布進(jìn)行擬合,得到的高斯分布的面積作為缺陷密度。同樣,從阿倫尼烏斯曲線得到活化能。結(jié)果顯示,三種缺陷的密度分別為2.46 × 1014cm?3、1.36 × 1015cm?3、1.15 × 1016cm?3,活化能分別為286 meV、188 meV、570 meV。

        圖5 能量轉(zhuǎn)換效率為5.91%的Sb2Se3太陽電池:(a)不同溫度下的?dC/dlnf與頻率的比;(b)三種缺陷的阿倫尼烏斯曲線;(c)D1、D2和D3的缺陷分布[37]

        4 銻基硫?qū)倩衔锾栯姵匦拾l(fā)展

        4.1 硒化銻太陽電池

        圖6展示了近年來硒化銻太陽電池能量轉(zhuǎn)換效率的發(fā)展情況。2009年,NGO等[38]制備了器件結(jié)構(gòu)為FTO/TiO2/Sb2Se3/CuSCN/Au的敏化太陽電池,實(shí)現(xiàn)了18 mA/cm2的短路電流密度。MESSINA等[39]首次以化學(xué)水浴沉積硒化銻作為太陽電池的光吸收層,獲得了0.13%的能量轉(zhuǎn)換效率。2014年,CHOI等[40]在介孔TiO2上旋涂Sb、Se前驅(qū)體,由此制備的敏化太陽電池取得了3.21%的能量轉(zhuǎn)換效率。隨后國內(nèi)外多個(gè)團(tuán)隊(duì)開展了相關(guān)研究。WEN等[26]采用載氣輸運(yùn)沉積制備了平面異質(zhì)結(jié)硒化銻太陽電池,能量轉(zhuǎn)換效率快速提升至7.6%。LI等[41]制備了基于納米棒核殼結(jié)構(gòu)的Sb2Se3太陽電池,效率達(dá)到9.2%,是目前已知的硒化銻太陽電池的世界最高能量轉(zhuǎn)換效率。此外,SHEN等[42]發(fā)展了基于三方晶系硒結(jié)構(gòu)的頂襯Sb2Se3薄膜太陽電池,可有效鈍化吸收層表面缺陷,促進(jìn)界面空穴傳輸和抑制載流子界面復(fù)合,能量轉(zhuǎn)換效率達(dá)到7.5%。LIU等[43]采用氧化鎢空穴傳輸層進(jìn)行背接觸修飾,形成良好的能級匹配并提高器件的內(nèi)建電勢,基于n-i-p結(jié)構(gòu)的Sb2Se3太陽電池的能量轉(zhuǎn)換效率達(dá)到了7.1%。TANG等[27]提出了一種兩步法,即先磁控濺射Sb2Se3薄膜和后硒化處理制備Sb2Se3太陽電池,可以同時(shí)優(yōu)化Sb2Se3薄膜質(zhì)量和Sb2Se3/CdS異質(zhì)結(jié)界面。通過調(diào)整硒化參數(shù),制備的Sb2Se3薄膜太陽電池的效率達(dá)到了6.06%,開路電壓高達(dá)494 mV。而后,LIANG等[44]采用濺射和硒化銻前驅(qū)體薄膜的組合工藝制備Sb2Se3太陽電池。在適當(dāng)?shù)腟b前驅(qū)體薄膜厚度和優(yōu)化的硒化方案下,成功地實(shí)現(xiàn)了具有大晶粒、擇優(yōu)取向和精確化學(xué)成分的Sb2Se3薄膜的自組裝生長。由此制備的太陽電池效率達(dá)到了6.84%,開路電壓高達(dá)504 mV,這與Sb2Se3吸收層缺陷密度降低、Sb2Se3/CdS異質(zhì)結(jié)界面缺陷鈍化以及異質(zhì)結(jié)熱處理引起的Cd和S互擴(kuò)散密切相關(guān)。

        圖6 Sb2Se3太陽電池能量轉(zhuǎn)換效率的進(jìn)展

        4.2 硫化銻太陽電池

        Sb2S3最早應(yīng)用于介孔太陽電池。2010年,SEOK課題組[45]通過化學(xué)水浴法制備了結(jié)構(gòu)為FTO/TiO2/Sb2S3/P3HT/Au的介孔太陽電池,能量轉(zhuǎn)換效率為5.13%。2014年,該課題組制備了器件結(jié)構(gòu)為Au/PCPDTBT/Sb2S3/mp-TiO2/BL/FTO的電池,通過后硫化處理獲得了7.5%的能量轉(zhuǎn)換效率[46],是目前Sb2S3太陽電池的最高效率。之后,陸續(xù)有學(xué)者報(bào)道了不同方法制備Sb2S3薄膜太陽電池。

        2014年,ESCORCIA-GARCíA等[47]在FTO/CdS上蒸發(fā)沉積Sb2S3獲得1.27%的能量轉(zhuǎn)換效率。2015年,MAYON等[48]在TiO2上蒸發(fā)沉積Sb2S3,器件能量轉(zhuǎn)換效率達(dá)1.69%。ZHANG等[49]及DENG等[50]采用VTD和RTE工藝,通過調(diào)控Sb2S3晶向生長分別獲得4.5%和5.4%的能量轉(zhuǎn)換效率。ZENG等[51]同樣通過VTD工藝獲得4.73%的能量轉(zhuǎn)換效率?;贛o電極的底襯Sb2S3太陽電池,PAN等及LIU等采用RTE法分別獲得了1.75%[52]和1.86%[53]的能量轉(zhuǎn)換效率。LUO等[54]利用射頻磁控濺射的方法獲得0.95%的能量轉(zhuǎn)換效率。

        JIANG等[55]采用旋涂法研究了堿金屬(Li、Na、K、Rb、Cs)、氯化鋅(ZnCl2)對Sb2S3薄膜太陽電池的影響,發(fā)現(xiàn)重堿金屬銫摻雜Sb2S3對載流子濃度、結(jié)晶度和成膜性能都有顯著提高,器件能量轉(zhuǎn)換效率達(dá)6.56%。ZnCl2則可以調(diào)節(jié)薄膜的生長以提高結(jié)晶度,器件能量轉(zhuǎn)換效率達(dá)6.35%[56]。此外,通過一種快速化學(xué)方法(fast chemical approach, FCA),以Sb2O3為銻源制備高性能Sb2S3平面異質(zhì)結(jié)太陽電池,以Spiro-OMeTAD為空穴傳輸層獲得4.3%的能量轉(zhuǎn)換效率[57],以V2O5為空穴傳輸層獲得4.8%的能量轉(zhuǎn)換效率[58]。TANG等[59]通過水熱法以酒石酸銻鉀為銻源、五水合硫代硫酸鈉為硫源制備Sb2S3薄膜,能量轉(zhuǎn)換效率達(dá)6.02%。此外,JIN等[60]在溶液引入額外鎘源,促進(jìn)Sb2S3垂直取向生長從而獲得6.4%的能量轉(zhuǎn)換效率。HAN等[61]采用鹵化鋅無機(jī)鹽修飾TiO2電子傳輸層,改善TiO2的電學(xué)性能,促進(jìn)了Sb2S3薄膜的生長,使其具有更大的晶粒尺寸和更高的結(jié)晶度。實(shí)驗(yàn)結(jié)果和理論計(jì)算進(jìn)一步揭示,鹵化鋅可與TiO2相互作用,同時(shí)與上層Sb2S3膜形成強(qiáng)烈的鍵合,形成獨(dú)特的電子轉(zhuǎn)移途徑,鈍化陷阱態(tài),有效地緩解復(fù)合損失。引入ZnCl2后,器件能量轉(zhuǎn)換效率達(dá)到7.08%。HAN等[62]采用無機(jī)鹽SbCl3對Sb2S3薄膜進(jìn)行表面鈍化,可以減少缺陷和抑制非輻射復(fù)合。結(jié)果顯示,引入SbCl3層可以將開路電壓提升至0.72 V,能量轉(zhuǎn)換效率達(dá)到7.1%。圖7為硫化銻太陽電池能量轉(zhuǎn)換效率的進(jìn)展。

        圖7 Sb2S3太陽電池能量轉(zhuǎn)換效率的進(jìn)展

        4.3 硒硫化銻太陽電池

        Sb2S3具有較大的帶隙,可以實(shí)現(xiàn)高開路電壓,但也限制了光吸收范圍。Sb2Se3帶隙小,可以利用較長波段的太陽光,但實(shí)際oc損失嚴(yán)重。Sb2(S,Se)3是為了利用Sb2S3、Sb2Se3兩者的優(yōu)點(diǎn)而衍生的吸收層材料。2008年,EL-SAYAD[63]采用熱蒸發(fā)制備了Sb2(S,Se)3非晶薄膜,通過調(diào)節(jié)Se/S含量,發(fā)現(xiàn)隨著S含量增加,其光帶隙能量呈二次增長。2015年,YANG等[64]通過旋涂Sb-S-Se肼溶液得到了單相多晶Sb2(S1?Se)3膜,得出帶隙與Se/S含量的關(guān)系式g() = 0.1182? 0.662+ 1.62 eV。這些發(fā)現(xiàn)證明了Sb2(S,Se)3帶隙及能帶水平的可調(diào)性,有望能成為除Sb2S3、Sb2Se3之外的高效光伏材料。2016年,YANG等[65]通過在快速熱蒸發(fā)Sb2Se3中引入硫化步驟制備了均勻Sb2(Se0.8S0.2)3薄膜,器件效率達(dá)到5.79%,有力證明了Sb2(S,Se)3可以成為優(yōu)異的太陽電池光吸收材料。之后,ISHAQ等[66]采用單源Sb2(Se1?S)3粉末通過RTE制備吸收層薄膜,電池能量轉(zhuǎn)換效率為5.73%。LU等[67]采用單源Sb2(Se1?S)3粉末通過VTD制備吸收層薄膜,電池能量轉(zhuǎn)換效率為6.30%。LI等[68]采用雙源Sb2Se3、Sb2S3粉末通過VTD法獲得了7.27%的效率。NIE等[69]在Sb2(SSe1?)3前驅(qū)體中摻入BiI3,更大的Bi和I離子可分別替換Sb和S,從而調(diào)節(jié)晶格之間的應(yīng)變關(guān)系并降低缺陷態(tài)能級,獲得了7.05%的器件能量轉(zhuǎn)換效率。WANG等[70]采用一步水熱法,以酒石酸銻鉀為銻源,以硫代硫酸鈉為硫源,在120℃下水熱沉積12 h制備Sb2S3,再經(jīng)硒化后得到Sb2(S,Se)3薄膜,以此制備的太陽電池獲得了5.73%的能量轉(zhuǎn)換效率,后來通過工藝改進(jìn)獲得了6.14%的器件效率[71]。TANG等[59]采用化學(xué)水熱法沉積硒硫化銻光吸收層薄膜,由此制備器件結(jié)構(gòu)為FTO/CdS/Sb2(S,Se)3/Spiro-OMeTAD/Au的太陽電池,取得了10%的認(rèn)證效率,成為又一個(gè)能量轉(zhuǎn)換效率可以達(dá)到10%的光伏材料。在水熱體系中,以酒石酸銻鉀為銻源,硫代硫酸鈉為硫源,硒脲為硒源,通過改變Se/S的比例和后退火的溫度,改善了薄膜形貌,增大了晶粒尺寸,并減小了缺陷的數(shù)量。研究發(fā)現(xiàn),提高Se/S的比例可以使一維納米帶擇優(yōu)生長。在此基礎(chǔ)上,WANG等[72]在水熱體系中引入乙二胺四乙酸(ethylenediaminetetra-acetic acid, EDTA)添加劑控制晶體成核和生長過程,將器件效率進(jìn)一步提升至10.5%。此外,HAN等[73]通過水熱沉積技術(shù)制備了大面積、化學(xué)成分和表面形貌都較均勻的Sb2(S,Se)3薄膜。利用激光劃線技術(shù),獲得了串聯(lián)的Sb2(S,Se)3光伏組件,效率達(dá)到了7.43%,活性面積為15.66 cm2。圖8展示了硒硫化銻太陽電池能量轉(zhuǎn)換效率的進(jìn)展。

        圖8 Sb2(S,Se)3太陽電池效率進(jìn)展

        5 結(jié)論與展望

        近年來,銻基硫?qū)倩衔锾栯姵匕l(fā)展迅速,表2總結(jié)了銻基硫?qū)倩衔锾栯姵氐钠骷阅?。其中,Sb2S3太陽電池取得了7.5%的能量轉(zhuǎn)換效率,Sb2Se3太陽電池取得了9.2%的能量轉(zhuǎn)換效率,Sb2(S,Se)3太陽電池能量轉(zhuǎn)換效率更是突破了10.5%,成為又一個(gè)效率可以達(dá)到10%的光伏材料。但是,這尚不能滿足產(chǎn)業(yè)化的要求,需要進(jìn)一步提高銻基硫?qū)倩衔锾栯姵氐钠骷省?/p>

        銻基硫?qū)倩衔锾栯姵厥且粋€(gè)復(fù)雜的系統(tǒng),涉及器件結(jié)構(gòu)的設(shè)計(jì)、緩沖層及窗口層的選擇和光吸收層的結(jié)構(gòu)及質(zhì)量等。鈍化吸收層本征缺陷態(tài)和界面修飾是提升器件性能的關(guān)鍵。關(guān)于本征缺陷態(tài),可以利用第一性原理計(jì)算銻基硫?qū)倩衔锇雽?dǎo)體點(diǎn)缺陷性質(zhì),開發(fā)新的缺陷檢測手段,識別缺陷的類型、位點(diǎn)及分布。在此基礎(chǔ)上,可以針對性地進(jìn)行后鈍化處理以降低缺陷態(tài)密度。此外,可探索缺陷態(tài)的產(chǎn)生原因及形成過程,在生長動(dòng)力學(xué)模擬指導(dǎo)下抑制缺陷的產(chǎn)生。通過對器件前接觸和背接觸的界面修飾,可優(yōu)化界面結(jié)構(gòu)和能級排列,促進(jìn)載流子的傳輸和收集,是制備高效率銻基硫?qū)倩衔锾栯姵氐谋匾侄巍?/p>

        銻基硫?qū)倩衔镄再|(zhì)穩(wěn)定,元素含量豐富,環(huán)境友好,帶隙連續(xù)可調(diào),非常有潛力實(shí)現(xiàn)低成本、高效率的太陽電池。此外,銻基硫?qū)倩衔镞€應(yīng)用于光電探測器、熱電、鋰離子電池和光解水等領(lǐng)域。相信在未來的科學(xué)研究中,銻基硫?qū)倩衔飳?huì)成為一個(gè)明星材料,太陽電池效率也會(huì)不斷取得突破。

        表2 銻基硫?qū)倩衔锾栯姵貐R總

        [1] GREEN M A, HISHIKAWA Y, DUNLOP E D, et al. Solar cell efficiency tables (version 52)[J]. Progress in photovoltaics: research and applications, 2018, 26(7): 427-436. DOI: 10.1002/pip.3040.

        [2] CARRON R, NISHIWAKI S, FEURER T, et al. Advanced alkali treatments for high-efficiency Cu(In,Ga)Se2solar cells on flexible substrates[J]. Advanced energy materials, 2019, 9(24): 1900408. DOI: 10.1002/aenm.201900408.

        [3] LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Science bulletin, 2020, 65(4): 272-275. DOI: 10.1016/j.scib.2020.01.001.

        [4] LI G, LI Z Q, CHEN J W, et al. Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3layer[J]. Journal of alloys and compounds, 2018, 737: 67-73. DOI: 10.1016/j.jallcom.2017.12.039.

        [5] WEN X X, LU Z H, VALDMAN L, et al. High-crystallinity epitaxial Sb2Se3thin films on mica for flexible near-infrared photodetectors[J]. ACS applied materials & interfaces, 2020, 12(31): 35222-35231. DOI: 10.1021/acsami.0c08467.

        [6] AN D C, CHEN S P, LU Z X, et al. Low thermal conductivity and optimized thermoelectric properties of p-type Te-Sb2Se3: synergistic effect of doping and defect engineering[J]. ACS applied materials & interfaces,2019, 11(31): 27788-27797. DOI: 10.1021/acsami.9b07313.

        [7] XUE M Z, FU Z W. Pulsed laser deposited Sb2Se3anode for lithium-ion batteries[J]. Journal of alloys and compounds,2008, 458(1/2): 351-356. DOI: 10.1016/j.jallcom.2007.03.109.

        [8] YANG W, LEE S, KWON H C, et al. Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3photocathodes for photoelectrochemical water splitting[J]. ACS nano, 2018, 12(11): 11088-11097. DOI: 10.1021/acsnano.8b05446.

        [9] 薛丁江, 石杭杰, 唐江. 新型硒化銻材料及其光伏器件研究進(jìn)展[J]. 物理學(xué)報(bào), 2015, 64(3): 038406. DOI: 10.7498/aps.64.038406.

        [10] WANG X M, TANG R F, WU C Y, et al. Development of antimony sulfide-selenide Sb2(S,Se)3-based solar cells[J]. Journal of energy chemistry, 2018, 27(3): 713-721. DOI: 10.1016/j.jechem.2017.09.031.

        [11] OU C Z, SHEN K, LI Z Q, et al. Bandgap tunable CdS:O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells. Solar Energy Materials and Solar Cells 2019, 194, 47-53.DOI: 10.1016/j.solmat.2019.01.043

        [12] HU X B, TAO J H, CHEN S M, et al. Improving the efficiency of Sb2Se3thin-film solar cells by post annealing treatment in vacuum condition[J]. Solar energy materials and solar cells, 2018, 187: 170-175. DOI: 10.1016/j.solmat.2018.08.006.

        [13] YUAN C C, ZHANG L J, LIU W F, et al. Rapid thermal process to fabricate Sb2Se3thin film for solar cell application[J]. Solar energy, 2016, 137: 256-260. DOI: 10.1016/j.solener.2016.08.020.

        [14] BIRKETT M, LINHART W M, STONER J, et al. Band gap temperature-dependence of close-space sublimation grown Sb2Se3by photo-reflectance[J]. APL materials, 2018, 6(8): 084901. DOI: 10.1063/1.5027157.

        [15] YAO S, WANG J S, CHENG J, et al. Improved performance of thermally evaporated Sb2Se3thin-film solar cells via substrate-cooling-speed control and hydrogen-sulfide treatment[J]. ACS applied materials & interfaces, 2020, 12(21): 24112-24124. DOI: 10.1021/acsami.0c03674.

        [16] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency ofjunction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519. DOI: 10.1063/1.1736034.

        [17] CARACAS R, GONZE X. First-principles study of the electronic properties of A2B3minerals, with A=Bi, Sb and B=S, Se[J]. Physics and chemistry of minerals, 2005, 32(4): 295-300. DOI: 10.1007/s00269-005-0470-y.

        [18] FILIP M R, PATRICK C E, GIUSTINO F. Quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite[J]. Physical review B, 2013, 87(20): 205125. DOI: 10.1103/PhysRevB.87.205125.

        [19] BEN NASR T, MAGHRAOUI-MEHERZI H, BEN ABDALLAH H, et al. Electronic structure and optical properties of Sb2S3crystal[J]. Physica B: condensed matter,2011, 406(2): 287-292. DOI: 10.1016/j.physb.2010.10.070.

        [20] KOC H, MAMEDOV A M, DELIGOZ E, et al. First principles prediction of the elastic, electronic, and optical properties of Sb2S3and Sb2Se3compounds[J]. Solid state sciences, 2012, 14(8): 1211-1220. DOI: 10.1016/j.solidstatesciences.2012.06.003.

        [21] VADAPOO R, KRISHNAN S, YILMAZ H, et al. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap[J]. Nanotechnology, 2011, 22(17): 175705. DOI: 10.1088/0957-4484/22/17/175705.

        [22] SAVADOGO O, MANDAL K C. Fabrication of low-cost n-Sb2S3/p-Ge heterojunction solar cells[J]. Journal of physics D: applied physics, 1994, 27(5): 1070-1075. DOI: 10.1088/0022-3727/27/5/028.

        [23] ENGLMAN T, TERKIELTAUB E, ETGAR L. High open circuit voltage in Sb2S3/metal oxide-based solar cells[J]. The journal of physical chemistry C, 2015, 119(23): 12904-12909. DOI: 10.1021/acs.jpcc.5b04231.

        [24] ZHOU Y, WANG L, CHEN S Y, et al. Thin-film Sb2Se3photovoltaics with oriented one-dimensional ribbons and benign grain boundaries[J]. Nature photonics, 2015, 9(6): 409-415. DOI: 10.1038/nphoton.2015.78.

        [25] SHEN K, OU C Z, HUANG T L, et al. Mechanisms and modification of nonlinear shunt leakage in Sb2Se3thin film solar cells[J]. Solar energy materials and solar cells, 2018, 186: 58-65. DOI: 10.1016/j.solmat.2018.06.022.

        [26] WEN X X, CHEN C, LU S C, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency[J]. Nature communications, 2018, 9(1): 2179. DOI: 10.1038/s41467-018-04634-6.

        [27] TANG R, ZHENG Z H, SU Z H, et al. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3thin film[J]. Nano energy, 2019, 64: 103929. DOI: 10.1016/j.nanoen.2019.103929.

        [28] CHEN C, YIN Y W, LIAN W T, et al. Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells[J]. Applied physics letters, 2020, 116(13): 133901. DOI: 10.1063/1.5139467.

        [29] CHEN S Y, GONG X G, WALSH A, et al. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4[J].Applied physics letters, 2010, 96(2): 021902. DOI: 10.1063/1.3275796.

        [30] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4and Cu2ZnSnSe4earth-abundant solar cell absorbers[J]. Advanced materials, 2013, 25(11): 1522-1539. DOI: 10.1002/adma.201203146.

        [31] HUANG M L, XU P, HAN D, et al. Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3[J]. ACS applied materials & interfaces, 2019, 11(17): 15564-15572. DOI: 10.1021/acsami.9b01220.

        [32] HEO S, SEO G, LEE Y, et al. Deep level trapped defect analysis in CH3NH3PbI3perovskite solar cells by deep level transient spectroscopy[J]. Energy & environmental science, 2017, 10(5): 1128-1133. DOI: 10.1039/C7EE00303J.

        [33] LANG D V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors[J]. Journal of applied physics, 1974, 45(7): 3023-3032. DOI: 10.1063/1.1663719.

        [34] AURET F D, NEL M. Detection of minority-carrier defects by deep level transient spectroscopy using Schottky barrier diodes[J]. Journal of applied physics, 1987, 61(7): 2546-2549. DOI: 10.1063/1.337931.

        [35] NGUYEN T P. Defects in organic electronic devices[J]. Physica status solidi (a), 2008, 205(1): 162-166. DOI: 10.1002/pssa.200776805.

        [36] JASENEK A, RAU U, NADENAU V, et al. Electronic properties of CuGaSe2-based heterojunction solar cells. Part II. Defect spectroscopy[J]. Journal of applied physics, 2000, 87(1): 594-602. DOI: 10.1063/1.371904.

        [37] HU X B, TAO J H, WENG G E, et al. Investigation of electrically-active defects in Sb2Se3thin-film solar cells with up to 5.91% efficiency via admittance spectroscopy[J]. Solar energy materials and solar cells, 2018, 186: 324-329. DOI: 10.1016/j.solmat.2018.07.004.

        [38] NGO T T, CHAVHAN S, KOSTA I, et al. Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells[J]. ACS applied materials & interfaces, 2014, 6(4): 2836-2841. DOI: 10.1021/am405416a.

        [39] MESSINA S, NAIR M T S, NAIR P K. Antimony selenide absorber thin films in all-chemically deposited solar cells[J]. Journal of the electrochemical society, 2009, 156(5): H327-H332. DOI: 10.1149/1.3089358

        [40] CHOI Y C, MANDAL T N, YANG W S, et al. Sb2Se3-sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor[J]. Angewandte chemie, 2014, 126(5): 1353-1357. DOI: 10.1002/ange.201308331.

        [41] LI Z Q, LIANG X Y, LI G, et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells[J]. Nature communications, 2019, 10(1): 125. DOI: 10.1038/s41467-018-07903-6.

        [42] SHEN K, ZHANG Y, WANG X Q, et al. Efficient and stable planar n-i-p Sb2Se3solar cells enabled by oriented 1D trigonal selenium structures[J]. Advanced science, 2020, 7(16): 2001013. DOI: 10.1002/advs.202001013.

        [43] LIU C, SHEN K, LIN D X, et al. Back contact interfacial modification in highly-efficient all-inorganic planar n-i-p Sb2Se3solar cells[J]. ACS applied materials & interfaces, 2020, 12(34): 38397-38405. DOI: 10.1021/acsami.0c10629.

        [44] LIANG G X, LUO Y D, CHEN S, et al. Sputtered and selenized Sb2Se3thin-film solar cells with open-circuit voltage exceeding 500 mV[J]. Nano energy, 2020, 73: 104806. DOI: 10.1016/j.nanoen.2020.104806.

        [45] CHANG J A, RHEE J H, IM S H, et al. High-performance nanostructured inorganic-organic heterojunction solar cells[J]. Nano letters, 2010, 10(7): 2609-2612. DOI: 10.1021/nl101322h.

        [46] CHOI Y C, LEE D U, NOH J H, et al. Highly improved Sb2S3sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy[J]. Advanced functional materials, 2014, 24(23): 3587-3592. DOI: 10.1002/adfm.201304238.

        [47] ESCORCIA-GARCíA J, BECERRA D, NAIR M T S, et al. Heterojunction CdS/Sb2S3solar cells using antimony sulfide thin films prepared by thermal evaporation[J]. Thin solid films, 2014, 569: 28-34. DOI: 10.1016/j.tsf.2014.08.024.

        [48] MAYON Y O, WHITE T P, WANG R P, et al. Evaporated and solution deposited planar Sb2S3solar cells: a comparison and its significance[J]. Physica status solidi (A), 2016, 213(1): 108-113. DOI: 10.1002/pssa.201532438.

        [49] ZHANG H, YUAN S J, DENG H, et al. Controllable orientations for Sb2S3solar cells by vertical VTD method[J].Progress in photovoltaics: research and applications, 2020, 28(8): 823-832. DOI: 10.1002/pip.3278.

        [50] DENG H, ZENG Y Y, ISHAQ M, et al. Quasiepitaxy strategy for efficient full-inorganic Sb2S3solar cells[J]. Advanced functional materials, 2019, 29(31): 1901720. DOI: 10.1002/adfm.201901720.

        [51] ZENG Y Y, SUN K W, HUANG J L, et al. Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition[J]. ACS applied materials & interfaces, 2020, 12(20): 22825-22834. DOI: 10.1021/acsami.0c02697.

        [52] PAN G X, WANG D X, GAO S S, et al. Substrate structured Sb2S3thin film solar cells fabricated by rapid thermal evaporation method[J]. Solar energy, 2019, 182: 64-71. DOI: 10.1016/j.solener.2019.02.014.

        [53] LIU L, ZHANG S L, WU J Y, et al. Current improvement in substrate structured Sb2S3solar cells with MoSe2interlayer[J]. Chinese physics B, 2020, 29(5): 058801. DOI: 10.1088/1674-1056/ab8220.

        [54] LUO J T, XIONG W, LIANG G X, et al. Fabrication of Sb2S3thin films by magnetron sputtering and post-sulfurization/selenization for substrate structured solar cells[J]. Journal of alloys and compounds, 2020, 826: 154235. DOI: 10.1016/j.jallcom.2020.154235.

        [55] JIANG C H, TANG R F, WANG X M, et al. Alkali metals doping for high-performance planar heterojunction Sb2S3solar cells[J]. Solar RRL, 2019, 3(1): 1800272. DOI: 10.1002/solr.201800272.

        [56] TANG R F, WANG X M, JIANG C H, et al. n-type doping of Sb2S3light-harvesting films enabling high-efficiency planar heterojunction solar cells[J]. ACS applied materials & interfaces, 2018, 10(36): 30314-30321. DOI: 10.1021/acsami.8b08965.

        [57] WANG X M, LI J M, LIU W F, et al. A fast chemical approach towards Sb2S3film with a large grain size for high-performance planar heterojunction solar cells[J]. Nanoscale, 2017, 9(10): 3386-3390. DOI: 10.1039/C7NR00154A.

        [58] ZHANG L J, JIANG C H, WU C Y, et al. V2O5as hole transporting material for efficient all inorganic Sb2S3solar cells[J]. ACS applied materials & interfaces, 2018, 10(32): 27098-27105. DOI: 10.1021/acsami.8b09843.

        [59] TANG R F, WANG X M, LIAN W T, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature energy, 2020, 5(8): 587-595. DOI: 10.1038/s41560-020-0652-3.

        [60] JIN X, FANG Y N, SALIM T, et al. In situ growth of[hk1]-oriented Sb2S3for solution-processed planar heterojunction solar cell with 6.4% efficiency[J]. Advanced functional materials, 2020, 30(35): 2002887. DOI: 10.1002/adfm.202002887.

        [61] HAN J, PU X Y, ZHOU H, et al. Synergistic effect through the introduction of inorganic zinc halides at the interface of TiO2and Sb2S3for high-performance Sb2S3planar thin-film solar cells[J]. ACS applied materials & interfaces, 2020, 12(39): 44297-44306. DOI: 10.1021/acsami.0c11550.

        [62] HAN J, WANG S J, YANG J B, et al. Solution-processed Sb2S3planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 v achieved via surface passivation by a SbCl3interface layer[J]. ACS applied materials & interfaces, 2020, 12(4): 4970-4979. DOI: 10.1021/acsami.9b15148.

        [63] EL-SAYAD E A. Compositional dependence of the optical properties of amorphous Sb2Se3-xSthin films[J]. Journal of non-crystalline solids, 2008, 354(32): 3806-3811. DOI: 10.1016/j.jnoncrysol.2008.05.004.

        [64] YANG B, XUE D J, LENG M Y, et al. Hydrazine solution processed Sb2S3, Sb2Se3and Sb2(S1-xSex)3film: molecular precursor identification, film fabrication and band gap tuning[J]. Scientific reports, 2015, 5: 10978. DOI: 10.1038/srep10978.

        [65] YANG B, QIN S K, XUE D J, et al.sulfurization to generate Sb2(Se1S)3alloyed films and their applicationfor photovoltaics[J]. Progress in photovoltaics: research and applications, 2017, 25(1): 113-122. DOI: 10.1002/pip.2819.

        [66] ISHAQ M, DENG H, YUAN S J, et al. Efficient double buffer layer Sb2(SexS1-x)3thin film solar cell via single source evaporation[J]. Solar RRL, 2018, 2(10): 1800144. DOI: 10.1002/solr.201800144.

        [67] LU S C, ZHAO Y, WEN X X, et al. Sb2(Se1-xSx)3thin-film solar cells fabricated by single-source vapor transport deposition[J]. Solar RRL, 2019, 3(4): 1800280. DOI: 10.1002/solr.201800280.

        [68] LI K H, LU Y, KE X X, et al. Over 7% efficiency of Sb2(S,Se)3solar cells via v-shaped bandgap engineering[J]. Solar RRL, 2020, 4(9): 2000220. DOI: 10.1002/solr.202000220.

        [69] NIE R M, LEE K S, HU M M, et al. Strain tuning via larger cation and anion codoping for efficient and stable antimony-based solar cells[J]. Advanced science, 2021, 8(1): 2002391. DOI: 10.1002/advs.202002391.

        [70] WANG W H, WANG X M, CHEN G L, et al. Promising Sb2(S,Se)3solar cells with high open voltage by application of a TiO2/CdS double buffer layer[J]. Solar RRL, 2018, 2(11): 1800208. DOI: 10.1002/solr.201800208.

        [71] WANG W H, WANG X M, CHEN G L, et al. Over 6% certified Sb2(S,Se)3solar cells fabricated via in situ hydrothermal Growth and postselenization[J]. Advanced electronic materials, 2019, 5(2): 1800683. DOI: 10.1002/aelm.201800683.

        [72] WANG X M, TANG R F, JIANG C H, et al. Manipulating the electrical properties of Sb2(S,Se)3film for high-efficiency solar cell[J]. Advanced Energy Materials, 2020, 10(40): 2002341. DOI: 10.1002/aenm.202002341.

        [73] HAN W H, GAO D, TANG R F, et al. Efficient Sb2(S,Se)3solar modules enabled by hydrothermal deposition[J]. Solar RRL, 2021, 5(3): 2000750. DOI: 10.1002/solr.202000750.

        [74] LUO M, LENG M Y, LIU X S, et al. Thermal evaporation and characterization of superstrate CdS/Sb2Se3solar cells[J]. Applied physics letters, 2014, 104(17): 173904. DOI: 10.1063/1.4874878.

        [75] LENG M Y, LUO M, CHEN C, et al. Selenization of Sb2Se3absorber layer: an efficient step to improve device performance of CdS/Sb2Se3solar cells[J]. Applied physics letters, 2014, 105(8): 083905. DOI: 10.1063/1.4894170.

        [76] KUMAR V, ARTEGIANI E, KUMAR A, et al. Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3based solar cells by thermal evaporation[J]. Solar energy, 2019, 193: 452-457. DOI: 10.1016/j.solener.2019.09.069.

        [77] LI K H, CHEN C, LU S C, et al. Orientation engineering in low-dimensional crystal-structural materials via seed screening[J]. Advanced materials, 2019, 31(44): 1903914. DOI: 10.1002/adma.201903914.

        [78] LI K H, WANG S Y, CHEN C, et al. 7.5% n–i–p Sb2Se3solar cells with CuSCN as a hole-transport layer[J]. Journal of materials chemistry A, 2019, 7(16): 9665-9672. DOI: 10.1039/C9TA01773A.

        [79] WANG X M, TANG R F, YIN Y W, et al. Interfacial engineering for high efficiency solution processed Sb2Se3solar cells[J]. Solar energy materials and solar cells, 2019, 189: 5-10. DOI: 10.1016/j.solmat.2018.09.020.

        [80] YANG Y J, GUO T Z, WANG D, et al. Preparation and characterization of pulsed laser deposited CdSe window layer for Sb2Se3thin film solar cell[J]. Journal of materials science: materials in electronics, 2020, 31(16): 13947-13956. DOI: 10.1007/s10854-020-03954-y.

        [81] LI G, LI Z Q, LIANG X Y, et al. Improvement in Sb2Se3solar cell efficiency through band alignment engineering at the buffer/absorber interface[J]. ACS applied materials & interfaces, 2019, 11(1): 828-834. DOI: 10.1021/acsami.8b17611.

        [82] GUO L P, ZHANG B Y, RANJIT S, et al. Interface engineering via sputtered oxygenated CdS:O window layer for highly efficient Sb2Se3thin-film solar cells with efficiency above 7%[J]. Solar RRL, 2019, 3(10): 1900225. DOI: 10.1002/solr.201900225.

        [83] HOBSON T D C, PHILLIPS L J, HUTTER O S, et al. Isotype heterojunction solar cells using n-type Sb2Se3thin films[J]. Chemistry of materials, 2020, 32(6): 2621-2630. DOI: 10.1021/acs.chemmater.0c00223.

        [84] CANG Q F, GUO H F, JIA X G, et al. Enhancement in the efficiency of Sb2Se3solar cells by adding low lattice mismatch CuSbSe2hole transport layer[J]. Solar energy, 2020, 199: 19-25. DOI: 10.1016/j.solener.2020.02.008.

        [85] WU C Y, LIAN W T, ZHANG L J, et al. Water additive enhanced solution processing of alloy Sb2(S1-xSe)3-based solar cells[J]. Solar RRL, 2020, 4(5): 1900582. DOI: 10.1002/solr.201900582.

        [86] WU C Y, JIANG C H, WANG X M, et al. Interfacial engineering by indium-doped CdS for high efficiency solution processed Sb2(S1-xSe)3solar cells[J]. ACS applied materials & interfaces, 2019, 11(3): 3207-3213. DOI: 10.1021/acsami.8b18330.

        [87] ZHANG Y, LI J M, JIANG G S, et al. Selenium-graded Sb2(S1-xSex)3for planar heterojunction solar cell delivering a certified power conversion efficiency of 5.71%[J]. Solar RRL, 2017, 1(5): 1700017. DOI: 10.1002/solr.201700017.

        [88] JIANG C H, ZHOU J, TANG R F, et al. 9.7%-efficient Sb2(S,Se)3solar cells with a dithieno[3,2-: 2′,3′-]pyrrole-cored hole transporting material[J]. Energy & environmentalscience, 2021, 14(1): 359-364. DOI: 10.1039/D0EE02239J.

        [89] CHEN C, WANG L, GAO L, et al. 6.5% Certified Efficiency Sb2Se3Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer[J]. ACS Energy Letters, 2017, 2(9), 2125-2132.DOI: 10.1021/acsenergylett.7b00648.

        [90] LIU C P, WANG H E, NG T W, et al. Hybrid photovoltaiccells based on ZnO/Sb2S3/P3HT heterojunctions[J]. Physica Status Solidi (B) 2012, 249(3), 627-633.DOI: 10.1002/pssb.201147393.

        [91] KIM DH, LEE SJ, PARK M S, et al. Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition[J]. Nanoscale 2014, 6(23), 14549-14554.DOI: 10.1039/c4nr04148h.

        [92] CHOI Y C, SEOK S I. Efficient Sb2S3-Sensitized Solar Cells Via Single-Step Deposition of Sb2S3Using S/Sb-Ratio-Controlled SbCl3-Thiourea Complex Solution[J]. Advanced Functional Materials 2015, 25(19), 2892-2898.DOI: 10.1002/adfm.201500296.

        Antimony-Based Chalcogenide Semiconductors and Solar Cells

        LIU Cong, ZHENG Jian-zha, SHEN Kai, MAI Yao-hua

        (Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China)

        Antimony-based chalcogenides are a class of semiconductor materials with stable properties, environmentally friendly, rich element content, continuous adjustable band gap and excellent photoelectric properties, including antimony selenide (Sb2Se3), antimony sulfide (Sb2S3) and antimony selenosulfide [Sb2(S,Se)3]. Among them, the band gap of Sb2(S,Se)3matches well with the solar spectrum, so it is more suitable to be used as the absorber layer of solar cells. The solar cell with Sb2(S,Se)3absorber has achieved a certified power conversion efficiency of 10%, showing the great potential of antimony-based chalcogenide solar cells. In this paper, the material and photoelectric properties, films preparation technology and defect characteristics of antimony-based chalcogenide were described in detail. Based on the research progress of antimony-based chalcogenide solar cells in recent years, the direction and strategy of further improving the device performance were proposed.

        antimony-based chalcogenide; antimony selenide; antimony sulfide; antimony selenosulfide; solar cells

        TK51

        A

        10.3969/j.issn.2095-560X.2021.03.002

        2095-560X(2021)03-0186-12

        2021-03-05

        2021-04-08

        國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFB1503400)

        沈 凱,E-mail:shenkai@jnu.edu.cn;麥耀華,E-mail:yaohuamai@jnu.edu.cn

        劉 聰(1992-),男,博士研究生,主要從事高效率硒化銻太陽電池研究。

        沈 凱(1988-),男,副教授,主要從事化合物薄膜太陽電池研究。

        麥耀華(1976-),男,博士,教授,中組部引進(jìn)海外高層次人才“國家特聘專家”,主要從事太陽電池與系統(tǒng)和鋰電池等方向的研究。

        猜你喜歡
        效率
        你在咖啡館學(xué)習(xí)會(huì)更有創(chuàng)意和效率嗎?
        提升朗讀教學(xué)效率的幾點(diǎn)思考
        甘肅教育(2020年14期)2020-09-11 07:57:42
        注意實(shí)驗(yàn)拓展,提高復(fù)習(xí)效率
        效率的價(jià)值
        商周刊(2017年9期)2017-08-22 02:57:49
        引入“倒逼機(jī)制”提高治霾效率
        質(zhì)量與效率的爭論
        跟蹤導(dǎo)練(一)2
        提高食品行業(yè)清潔操作的效率
        OptiMOSTM 300V提高硬開關(guān)應(yīng)用的效率,支持新型設(shè)計(jì)
        “錢”、“事”脫節(jié)效率低
        三上悠亚久久精品| 日韩精品在线视频一二三| 中文精品久久久久人妻不卡 | 在线成人tv天堂中文字幕| 开心五月激动心情五月| 日韩乱码人妻无码系列中文字幕 | 亚洲男人第一无码av网站| 亚洲色AV性色在线观看| 国产一区二区在线观看av| 亚洲av无码国产精品色午夜软件| 久久99精品国产麻豆宅宅| 99热这里有免费国产精品| 中文字幕 在线一区二区| 激情亚洲一区国产精品久久| 精品乱码久久久久久久| 中文字幕少妇AV| 成人性生交大片免费看i| 激情综合婷婷色五月蜜桃| 99香蕉国产精品偷在线观看| 国产乱人伦真实精品视频| 国产女人av一级一区二区三区| 真实的国产乱xxxx在线| 久久天天躁狠狠躁夜夜96流白浆| 91尤物在线看| 日本一区二区三区光视频| 婷婷色婷婷开心五月四房播播| 日日人人爽人人爽人人片av| 亚洲黄片av在线免费观看| 国产亚洲精品综合一区| 午夜亚洲av永久无码精品| 无码一区二区三区在| 水蜜桃在线精品视频网| 国产女人水真多18毛片18精品| 国产成人啪精品午夜网站| 男的和女的打扑克的视频| 成人无码av免费网站| 乱人伦中文字幕成人网站在线| 杨幂国产精品一区二区| 大香蕉av一区二区三区| 六月婷婷久香在线视频| 日韩在线视精品在亚洲|