林顯新
(廣西機(jī)電職業(yè)技術(shù)學(xué)院機(jī)械工程系,廣西 南寧 530007)
2020年,新冠肺炎疫情的爆發(fā)對(duì)實(shí)體餐飲行業(yè)造成了巨大沖擊,隨著人工服務(wù)和房租成本的上漲,餐飲服務(wù)行業(yè)的發(fā)展方向?qū)l(fā)生改變。加上信息技術(shù)的發(fā)展,點(diǎn)餐、上菜和結(jié)賬的無(wú)人化,解放了餐廳服務(wù)人員,取而代之的是采用機(jī)器人服務(wù)的餐廳正在迅速崛起。
文章在文獻(xiàn)[1]的基礎(chǔ)上,采用STM32F103FD單片機(jī)作為控制器,控制4個(gè)步進(jìn)電機(jī)驅(qū)動(dòng)4個(gè)ABAB型麥克納姆輪,通過(guò)控制4個(gè)麥克納姆輪的轉(zhuǎn)向?qū)崿F(xiàn)機(jī)器人的前進(jìn)、后退和左移、右移運(yùn)動(dòng),機(jī)器人的下端用軟線(xiàn)連接的托盤(pán)運(yùn)輸菜肴。而菜肴運(yùn)輸機(jī)器人與托盤(pán)用軟線(xiàn)連接的方式受速度、慣性力和摩擦力等因素的干擾沖擊,運(yùn)行速度小,穩(wěn)定調(diào)節(jié)時(shí)間較長(zhǎng),影響運(yùn)輸效率。試驗(yàn)機(jī)器人與托盤(pán)之間擬采用可伸縮桿作為硬性連接,以擺脫慣性力和摩擦力的影響,加入PID控制器優(yōu)化系統(tǒng)的穩(wěn)定調(diào)節(jié)時(shí)間,旨在為全向移動(dòng)機(jī)器人運(yùn)動(dòng)連接系統(tǒng)的開(kāi)發(fā)應(yīng)用提供依據(jù)。
全向移動(dòng)機(jī)器人的運(yùn)動(dòng)方式受4個(gè)ABAB型麥克納姆輪轉(zhuǎn)向的組合方式控制(見(jiàn)圖1),當(dāng)前進(jìn)、后退縱向運(yùn)動(dòng)時(shí),四輪同向運(yùn)動(dòng),系統(tǒng)比較穩(wěn)定;當(dāng)左移、右移橫向運(yùn)動(dòng)時(shí),四輪不同向,系統(tǒng)受外界干擾影響較大[1]。
全向移動(dòng)機(jī)器人在架空軌道做全向移動(dòng)時(shí),受摩擦力、菜肴慣性力和速度的干擾影響,其在架空軌道運(yùn)動(dòng)的方式如圖2所示。
圖1 驅(qū)動(dòng)模式Figure 1 Driving mode
原系統(tǒng)方框圖中加入PID校正環(huán)節(jié)后的控制原理如圖3所示。
圖2 運(yùn)動(dòng)方式Figure 2 Move mode
圖3 PID控制原理圖Figure 3 The control of PID principle diagram
PID控制校正采用比例環(huán)節(jié)以迅速反映偏差,從而減小偏差,使用積分環(huán)節(jié)消除靜差以提高系統(tǒng)的無(wú)差度,而使用微分環(huán)節(jié)反映偏差信號(hào)的變化速率會(huì)加快系統(tǒng)的動(dòng)作速度,減小調(diào)節(jié)時(shí)間[2]。PID控制的時(shí)域函數(shù):
(1)
將u(t)進(jìn)行拉普拉斯變換,得PID傳遞函數(shù):
(2)
通過(guò)試驗(yàn)獲得Kp、Ti和Td的參數(shù)值,調(diào)整Ti可以改善系統(tǒng)穩(wěn)定的時(shí)間,消除偏差,而調(diào)整Td時(shí)間參數(shù)可改變系統(tǒng)的動(dòng)態(tài)性能。
系統(tǒng)模型中有控制器發(fā)出的信號(hào),也有來(lái)自模型的干擾信號(hào),當(dāng)忽略干擾情況時(shí),其系統(tǒng)廣義被控對(duì)象的閉環(huán)傳遞函數(shù)為:
(3)
當(dāng)忽略控制器輸入信號(hào),只考慮干擾有效的情況時(shí),系統(tǒng)廣義被控對(duì)象的閉環(huán)傳遞函數(shù)為:
(4)
而系統(tǒng)閉環(huán)傳遞函數(shù)為式(1)和式(2)兩者之和,其閉環(huán)傳遞函數(shù)為:
(5)
通過(guò)系統(tǒng)閉環(huán)函數(shù)的特征方程判斷系統(tǒng)的穩(wěn)定性,進(jìn)而確定穩(wěn)定條件下Kp的取值范圍,令特征方程等于0,則:
s3+11s2+(Kp+10)s+10Kp=0。
(6)
基于方程式根和系數(shù)的關(guān)系,采用Routh判據(jù),通過(guò)對(duì)系統(tǒng)特征方程式的各項(xiàng)系數(shù)進(jìn)行代數(shù)運(yùn)算,得出全部根具有負(fù)實(shí)部的條件[3-5],以系統(tǒng)的穩(wěn)定性為先決條件,確定系統(tǒng)系數(shù)Kp的取值見(jiàn)表1。
由系統(tǒng)穩(wěn)定的充要條件,第一列所有數(shù)值均>0,有:
(1) 11×(Kp+10)-10Kp>0,即Kp>-110。
(2) 10Kp>0,即Kp>0。
因此,能使系統(tǒng)穩(wěn)定的參數(shù)Kp的取值范圍為Kp>0,可保證系統(tǒng)穩(wěn)定。
PID控制的參數(shù)整定以工程整定方法為主,該方法精度高,可應(yīng)用于實(shí)際情況[6-8]。根據(jù)系統(tǒng)閉環(huán)傳遞GB(s)是大于或等于3階函數(shù),故采用臨界比例度法進(jìn)行整定。在閉環(huán)的控制系統(tǒng)中,將調(diào)節(jié)器置于純比例作用下,從大到小逐漸改變調(diào)節(jié)器的比例度,得到等幅振蕩的過(guò)渡過(guò)程。根據(jù)GB(s)建立Simulink模型。
將PID控制器的積分時(shí)間調(diào)整至最大,微分時(shí)間置零,比例度取Kp=0.1,平衡操作一段時(shí)間,將系統(tǒng)投入到自動(dòng)運(yùn)行中觀(guān)察其輸出波形(圖6)。
此情況下,比例度取Kp=30,平衡操作一段時(shí)間,將系統(tǒng)投入到自動(dòng)運(yùn)行中觀(guān)察其輸出波形(圖7)。
由圖5和圖6可知,當(dāng)0 根據(jù)試驗(yàn)仿真,當(dāng)Kp=2.18時(shí),系統(tǒng)輸出的波形出現(xiàn)等幅振蕩,此時(shí)振蕩周期Tk=4.8 s,采用經(jīng)驗(yàn)公式1/δk=Kp,得臨界比例度δk=0.459,計(jì)算PID控制器各個(gè)參數(shù)(見(jiàn)表2)。 圖4 系統(tǒng)傳遞函數(shù)方框圖Figure 4 Block diagram of system transfer function 表1 Routh判據(jù)列表 由表2可知,PID控制的比例度δ=1.7δk=0.78,計(jì)算PID比例、積分和微分環(huán)節(jié)的相應(yīng)參數(shù),整定后的參數(shù)K=Gc(s)=1/δ=1.28,Ti=0.50Tk=2.4 s,τ=0.125Tk=0.6 s。 由于工程整定方法依據(jù)的是經(jīng)驗(yàn)公式,并不是所有情況下都適用,因此,按經(jīng)驗(yàn)公式整定的PID參數(shù)K=1.28,1/Ti=0.416,τ=0.6可能不是最好的,還需進(jìn)行一些細(xì)微調(diào)整。 根據(jù)經(jīng)驗(yàn)公式計(jì)算PID各參數(shù)值,將K=1.28、1/Ti=0.416、τ=0.6輸入至PID中的比例、積分和微分環(huán)節(jié)中,連上積分和微分環(huán)節(jié),如圖9所示,其仿真結(jié)果見(jiàn)圖10。 通過(guò)串聯(lián)PID校正后的系統(tǒng),超調(diào)量σ=75%,調(diào)節(jié)時(shí)間Ts=17 s,超調(diào)量一般與調(diào)節(jié)時(shí)間相矛盾,若超調(diào)量較大,系統(tǒng)受到擾動(dòng)后能很快重新達(dá)到平衡;若要超調(diào)量較小,系統(tǒng)動(dòng)作較慢,調(diào)節(jié)時(shí)間過(guò)長(zhǎng)[9-10]。比較校正前后的系統(tǒng)可知,在受到菜肴慣性沖擊和麥克納姆輪與地面摩擦的干擾沖擊后,出現(xiàn)一定的超調(diào)量,情況合理。 圖5 系統(tǒng)數(shù)學(xué)模型Figure 5 System mathematical model 圖6 Kp=0.1時(shí)系統(tǒng)的輸出波形Figure 6 Kp=0.1 System output waveform 圖7 Kp=30時(shí)系統(tǒng)的輸出波形Figure 7 Kp=30 System output waveform 經(jīng)手動(dòng)微調(diào)參數(shù)K=1.08、1/Ti=0.245、τ=1.1,使系統(tǒng)獲得最佳振蕩和調(diào)節(jié)時(shí)間[11],優(yōu)化后的波形如圖11所示。 圖8 Kp=2.18系統(tǒng)輸出的等幅振蕩波形Figure 8 Kp=2.18 The system outputs equal amplitude oscillation waveform 表2 臨界比例度法整定控制器參數(shù) 圖9 串聯(lián)PID校正后的系統(tǒng)模型Figure 9 System model after series PID correction 圖10 串聯(lián)PID校正后的波形Figure 10 Waveform after series PID correction 圖11 優(yōu)化后的波形Figure 11 Waveform after optimized 仿真試驗(yàn)顯示,系統(tǒng)受到?jīng)_擊干擾后,超調(diào)量σ=32%,在Ts=12 s時(shí),系統(tǒng)再次趨于穩(wěn)定,該調(diào)節(jié)時(shí)間小于校正前發(fā)調(diào)節(jié)時(shí)間(Ts1=50 s),且系統(tǒng)只經(jīng)過(guò)了一次振蕩后就趨于穩(wěn)定,說(shuō)明校正后的系統(tǒng)性能優(yōu)于校正前的系統(tǒng)。 文章通過(guò)構(gòu)建全向移動(dòng)機(jī)器人與菜肴運(yùn)輸托盤(pán)以硬性連接方式的系統(tǒng)數(shù)學(xué)模型,分析被執(zhí)行對(duì)象受慣性力和摩擦力作用對(duì)系統(tǒng)性能的沖擊干擾,并提出采用串聯(lián)PID控制器進(jìn)行校正。通過(guò)理論和經(jīng)驗(yàn)公式推算,根據(jù)Matlab/Simulink仿真驗(yàn)證,微調(diào)PID參數(shù)K=1.08、1/Ti=0.245、τ=1.1,可獲得最優(yōu)系統(tǒng)波形,使系統(tǒng)調(diào)整時(shí)間比未采用PID調(diào)節(jié)的時(shí)間縮短38 s,大大提高了菜肴運(yùn)輸效率。說(shuō)明在架空軌道上全向移動(dòng)機(jī)器人與托盤(pán)之間用硬性連接的方式通過(guò)串聯(lián)PID控制器矯正的效果較好。但對(duì)于機(jī)器人上下坡運(yùn)動(dòng)的穩(wěn)定未盡詳細(xì)分析,針對(duì)上下坡機(jī)器人重心移位導(dǎo)致機(jī)器人不穩(wěn)定的問(wèn)題,還需以后繼續(xù)研究。4 系統(tǒng)校正
5 結(jié)論