亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        采用UHPLC-QTOF-MS技術(shù)篩選亞麻籽油脂質(zhì)分子標(biāo)志物

        2021-03-17 07:47:20廖敏和任皓威金日天康佳欣商佳琦寧雪楠姚思含
        關(guān)鍵詞:小類酰基籽油

        廖敏和,任皓威,金日天,康佳欣,商佳琦,寧雪楠,姚思含,劉 寧※

        采用UHPLC-QTOF-MS技術(shù)篩選亞麻籽油脂質(zhì)分子標(biāo)志物

        廖敏和1,2,3,任皓威1,2,3,金日天1,2,3,康佳欣1,2,3,商佳琦1,2,3,寧雪楠1,2,姚思含1,劉 寧1,2,3※

        (1. 東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱 150030;2. 東北農(nóng)業(yè)大學(xué)教育部乳品重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150030;3. 哈爾濱騰凝科技有限公司,哈爾濱 150028)

        為了探究亞麻籽油中脂質(zhì)的真實(shí)屬性和發(fā)掘其有價(jià)值的脂質(zhì)分子,該研究基于超高效液相色譜-四級桿飛行時(shí)間質(zhì)譜聯(lián)用技術(shù)(Ultra High Performance Liquid Chromatography-Quadrupole Time-of-Flight Spectroscopy, UHPLC-QTOF-MS)表征了亞麻籽油的脂質(zhì)輪廓。結(jié)果表明:在正離子模式下檢測到15個(gè)脂質(zhì)分子小類共668種脂質(zhì)分子;在負(fù)離子模式下檢測到31個(gè)脂質(zhì)分子小類共404種脂質(zhì)分子;共有7個(gè)脂質(zhì)分子小類脂質(zhì)在正、負(fù)離子下均被檢測到;此外,該研究首次在亞麻籽油中發(fā)現(xiàn)甜菜堿脂、甘油糖脂、神經(jīng)節(jié)苷脂、鞘磷脂、神經(jīng)酰胺、羥基脂肪酸的脂肪酸酯、?;鈮A和植物固醇,這些脂質(zhì)都具有特殊的生物學(xué)功能。多元變量統(tǒng)計(jì)分析結(jié)果表明每兩個(gè)品種亞麻籽油間相對定量值差異顯著的脂質(zhì)分子均超過200種(<0.05),并篩選出6種甘油磷酸肌醇、1種甘油磷酸膽堿、1種甘油磷酸乙醇胺和1種三?;视妥鳛閬喡樽袮油的標(biāo)志性脂質(zhì)分子;6種三酰基甘油和1種半單?;视土姿狨プ鳛閬喡樽袯油的標(biāo)志性脂質(zhì)分子;1種神經(jīng)節(jié)苷脂和1種硫代異鼠李糖甘油二酯作為亞麻籽C油的標(biāo)志性脂質(zhì)分子??傊?,該研究在亞麻籽油中鑒定出39個(gè)脂質(zhì)分子小類共1 072種脂質(zhì)分子,其中有22個(gè)脂質(zhì)分子小類共415種脂質(zhì)分子首次在亞麻籽油中被檢測到,此外不同品種亞麻籽油在脂質(zhì)分子層面存在顯著差異(<0.05),這些脂質(zhì)分子作為標(biāo)志物,可用于植物油的品質(zhì)判別、營養(yǎng)評價(jià),真?zhèn)舞b別和安全性評價(jià)等,也為其他植物油的分析提供方法參考。

        油脂;主成分分析;亞麻籽;液質(zhì)聯(lián)用技術(shù);脂質(zhì)組學(xué);正交偏最小二乘法判別分析

        0 引 言

        亞麻籽油是亞麻酸(C18∶3)含量較高的食用植物油[1],亞麻酸能夠在人體內(nèi)合成二十二碳六烯酸(Docosahexaenoic Acid,DHA)和二十碳五烯酸(Eicosapentaenoic Acid,EPA)等長鏈多不飽和脂肪酸,具有促進(jìn)大腦發(fā)育、保護(hù)視力等生理學(xué)功能[2-3],因此在嬰幼兒配方、特醫(yī)和功能食品方面具有應(yīng)用前景。目前對亞麻籽油的脂質(zhì)成分的研究比較單一,La等[4]測定了亞麻籽油中的三?;视?Triacylglycerols,TG)輪廓,Herchi等[5]對亞麻籽油中6類磷脂分子進(jìn)行了鑒定分析,Danish等[6]分析了亞麻籽油中的脂肪酸組成,但是,目前并沒有對亞麻籽油的脂質(zhì)成分進(jìn)行系統(tǒng)全面研究,此外,亞麻籽油已經(jīng)應(yīng)用于保健食品或特醫(yī)食品,因此有必要準(zhǔn)確且全面地表征它的脂質(zhì)輪廓,這對其廣泛應(yīng)用有著重要的意義。

        根據(jù)化學(xué)結(jié)構(gòu)和功能,脂質(zhì)在LIPID MAPS(http://www.lipidmaps.org/data)的LMSD數(shù)據(jù)庫中被系統(tǒng)地分為8類(Category)[7]:脂肪酰基類(Fatty Acyls,F(xiàn)A)、甘油脂類(Glycerolipids,GL)、甘油磷脂類(Glycerophospholipids,GP)、鞘脂類(Sphingolipids,SP)、甾醇脂類(Sterol Lipids,ST)、孕烯醇酮類(Prenol lipids,PR)、糖脂類(Saccharolipids,SL)和多聚乙烯類(Polyketides,PK),每一類分為主類(Main class),每一主類又分子類(Sub class),子類下包含著很多的脂質(zhì)分子小類。隨著脂質(zhì)組學(xué)的提出及其研究方法的不斷發(fā)展,人們對含有脂類食物的脂質(zhì)構(gòu)成和種類的認(rèn)識不斷加深[8-9];憑借超高效液相色譜-四級桿飛行時(shí)間質(zhì)譜聯(lián)用技術(shù)(Ultra High Performance Liquid Chromatography- Quadrupole Time-of-Flight Spectroscopy,UHPLC- QTOF-MS)的高通量、高靈敏度和高準(zhǔn)確性等優(yōu)勢,可以加深對脂質(zhì)分子復(fù)雜性和組成廣泛性的認(rèn)識和了解。目前對亞麻籽油中脂質(zhì)的全面系統(tǒng)研究較少,在一定程度上阻礙了亞麻籽油的廣泛應(yīng)用;此外,不同品種亞麻籽油間的脂質(zhì)存在著差異,這種差異性使人們可以更加真實(shí)地了解亞麻籽油的脂質(zhì)成分,并且使其應(yīng)用方向更加精確。因此,利用UHPLC-QTOF-MS技術(shù)研究亞麻籽油的脂質(zhì)輪廓、真實(shí)屬性和標(biāo)志性脂質(zhì)分子,為更好的開發(fā)和利用亞麻籽油奠定科學(xué)的理論基礎(chǔ),也為使用脂質(zhì)組學(xué)的方法研究其他植物油提供方法上的參考。

        1 材料與方法

        1.1 材料與試劑

        亞麻籽A和C,武威西涼蔬菜種苗有限公司;亞麻籽B,蘭州金橋種業(yè)有限公司(A、B、C代表3個(gè)不同品種的亞麻籽,分別來自于甘肅省內(nèi)不同地區(qū)。);甲醇、乙腈、甲基叔丁基醚、甲酸銨、二氯甲烷、異丙醇(均為質(zhì)譜級),德國CNW Technologies公司。

        1.2 儀器與設(shè)備

        高速粉碎機(jī),天津市泰斯特儀器有限公司;恒溫干燥箱,天津市中環(huán)實(shí)驗(yàn)電爐有限公司;全溫振蕩培養(yǎng)箱,天津市賴玻特瑞儀器設(shè)備有限公司;TGL-23型高速冷凍離心機(jī),四川蜀科儀器有限公司;DK-98-1型電熱恒溫水浴鍋,天津市泰斯特儀器有限公司;YRE-5299型旋轉(zhuǎn)蒸發(fā)器,予華儀器有限責(zé)任公司;PB-10型酸度計(jì),賽多利斯科學(xué)儀器(北京)有限公司;ExionLC超高效液相色譜儀和Triple TOF 5600四級桿飛行時(shí)間高分辨質(zhì)譜儀,美國AB Sciex公司。

        1.3 方法

        1.3.1 亞麻籽油的提取

        稱取適量亞麻籽,篩除雜質(zhì)和不飽滿顆粒;亞麻籽在烘箱50 ℃熱風(fēng)干燥3 h,使用高速粉碎機(jī)粉碎(電機(jī)轉(zhuǎn)速10 000 r/min),每粉碎1 min后冷卻機(jī)器2 min再繼續(xù)粉碎,防止因機(jī)器溫度過高加劇油脂氧化,干燥后待用,粉碎粒度為60~200目。參考Tan等[10]的方法提取3個(gè)品種亞麻籽中的亞麻籽油。

        1.3.2 樣品前處理

        樣品前處理:取10L亞麻籽油樣品,加入200L二氯甲烷-甲醇溶液(體積比1∶1)渦旋混勻30 s,冰水浴超聲10 min后將樣品4 ℃,12 000 r/min離心15 min,取75L上清液于進(jìn)樣瓶,上機(jī)檢測,對每個(gè)樣品重復(fù)進(jìn)樣6次。

        1.3.3 色譜條件

        色譜柱:Phenomen Kinetex C18(2.1 mm×100 mm,1.7m);柱溫為55 ℃;流動相A:40%水+60%乙腈溶液+10 mmol/L甲酸銨溶液;流動相B:10%乙腈+90%異丙醇+10 mmol/L甲酸銨;流動相梯度洗脫程序?yàn)?~12 min,40% B;12~13.5 min,100%B;13.5~13.7 min,40%B;13.7~18 min,40%B;樣品盤溫度為6 ℃,進(jìn)樣體積為正離子0.5L,負(fù)離子1L;流速為300L/min。

        1.3.4 質(zhì)譜條件

        通過信息依賴性(Information Dependent Acquisition,IDA)模式進(jìn)行高分辨質(zhì)譜數(shù)據(jù)采集。在IDA這種模式下,數(shù)據(jù)采集軟件(Analyst TF 1.7,AB Sciex)依據(jù)一級質(zhì)譜數(shù)據(jù)和預(yù)先設(shè)定的標(biāo)準(zhǔn),自動選擇離子并采集其二級質(zhì)譜數(shù)據(jù)。每個(gè)循環(huán)選取12個(gè)強(qiáng)度最強(qiáng)且大于100的離子進(jìn)行二級質(zhì)譜掃描,碰撞誘導(dǎo)解離的能量為45 eV,每張二級譜的積累時(shí)間為50 ms。離子源參數(shù):離子源氣體1壓強(qiáng)和離子源氣體2壓強(qiáng)均為60 Pa;氣簾氣體為30 Pa;離子化溫度為600 ℃;去簇電壓為100 V;離子噴涂電壓為5 000 V(正離子模式)/ -3 800 V(負(fù)離子模式)。

        1.3.5 數(shù)據(jù)處理及脂質(zhì)結(jié)構(gòu)鑒定

        使用ProteoWizard軟件將質(zhì)譜原始轉(zhuǎn)成mzXML格式;再使用XCMS軟件做保留時(shí)間矯正、峰識別、峰提取、峰積分、峰對齊等工作,其中minfrac設(shè)為0.5,cutoff設(shè)為0.3;最后利用lipid blast數(shù)據(jù)庫進(jìn)行脂質(zhì)鑒定,并采用面積歸一化法進(jìn)行脂質(zhì)分子的相對定量值測定。對鑒定后的脂質(zhì)通過Lipid Maps的LMSD脂質(zhì)數(shù)據(jù)庫進(jìn)行脂質(zhì)分子小類的歸類整理,每個(gè)脂質(zhì)分子小類脂質(zhì)的相對含量為該類脂質(zhì)相對定量值占總相對定量值的百分比。

        1.4 數(shù)據(jù)統(tǒng)計(jì)分析

        所有測定重復(fù)3次,試驗(yàn)數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差表示,使用IBM SPSS Statistics 25軟件進(jìn)行單因素方差分析(ANOVA),并用Duncan法進(jìn)行數(shù)據(jù)顯著性分析(<0.05說明差異性顯著)。

        2 結(jié)果與分析

        2.1 亞麻籽油脂質(zhì)分子種類和相對定量值分析

        從表1可以看出,利用UHPLC-QTOF-MS技術(shù)在亞麻籽油中鑒定出子類(Sub class)中39個(gè)脂質(zhì)分子小類共1 072種脂質(zhì)分子,其中正離子模式下檢測到15個(gè)脂質(zhì)分子小類共668種脂質(zhì)分子,負(fù)離子模式下檢測到31個(gè)脂質(zhì)分子小類共404種脂質(zhì)分子,共有7個(gè)脂質(zhì)分子小類脂質(zhì)在正、負(fù)離子都檢測到,分別是硫化己糖神經(jīng)酰胺(Sulfidehexose-ceramid,SHexCer)、單半乳糖二?;视停∕onogalactosyldiacylglycerols,MGDG)、非羥基脂肪酸-二氫鞘氨醇神經(jīng)酰胺(Ceramide/Non-hydroxy Dihydro-sphingosine,Cer/NDS)、非羥基脂肪酸-鞘氨醇神經(jīng)酰胺(Ceramide/Non-hydroxy Sphingosine,Cer/NS)、甘油磷酸甲醇(Phosphomethanol,PMeOH)、甘油磷酸乙醇(Phosphoethanol,PEtOH)和甘油磷酸乙醇胺(Phoethanolamines,PE)。在正負(fù)離子下檢測到的39個(gè)脂質(zhì)分子小類中,其中有30個(gè)脂質(zhì)分子小類在LMSD數(shù)據(jù)庫中可以檢索得到,而有9個(gè)脂質(zhì)分子小類目前在LMSD數(shù)據(jù)庫中檢索不到,這9個(gè)脂質(zhì)分子小類分別為:?;咸烟侨┧岫;视停ˋcylglycosyldiacylglycerols,AcylGlcADG)、非羥基脂肪酸-鞘氨醇己糖神經(jīng)酰胺(Hexose-ceramide/ Non-hydroxy Sphingosine,HexCer/NS)、SHexCer、PMeOH、半單?;视土姿狨ィ℉emibismonoacylglycerophosphate,HBMP)、PEtOH、雙單?;视土姿狨ィ˙ismonoacylglycerophosphate,BMP)和?;鈮A(Fatty esters Acyl carnitine,ACar),說明這些脂類的研究較少。此外,有86個(gè)二酰甘油-N-三甲基高絲氨酸(Diacylgycerol-N-trimethylhomoserine, DGTS)分子、4種共129個(gè)甘油糖脂分子{葡萄糖醛酸二?;视?Glycosyldiacylglycerols, GlcADG)、硫代異鼠李糖甘油二酯(Sulfoquinovosyldiacylglycerols, SQDG)、酰基葡萄糖醛酸二?;视?Acylglycosyldiacylglycerols, AcylGlcADG)和單半乳糖二酰基甘油(Monogalactosyldiacylglycerols, MGDG)}、151個(gè)神經(jīng)酰胺分子、3個(gè)鞘磷脂(Sphingomyelin, SM)分子、3個(gè)神經(jīng)節(jié)苷脂(Gangliosides, GM3)分子、32個(gè)羥基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid, FAHFA)分子、9個(gè)?;鈮A(Fatty esters Acyl carnitine, ACar)分子和1個(gè)甾醇酯(Cholesterol, CE)分子在亞麻籽油中首次被檢測到,總之共有22個(gè)小類共415個(gè)脂質(zhì)分子在亞麻籽油中被首次檢測到。亞麻籽油中共有15種游離脂肪酸,包括直鏈脂肪酸、支鏈脂肪酸及不飽和脂肪酸(C16∶0、C16∶1、C17∶0、C17∶1、C18∶0、C18∶2、C18∶3、C20∶0、C20∶1、C20∶2、C20∶5、C20∶6、C21∶0、C22∶0、C22∶1)。

        表1 通過UHPLC-QTOF-MS技術(shù)在亞麻籽油中檢測到的脂質(zhì)分子數(shù)量及相對定量值

        注:“[--]”表示這類脂質(zhì)目前在LMSD數(shù)據(jù)庫中檢索不到;相對定量值是該類脂質(zhì)分子的峰面積;POS指在正離子模式下檢測到的脂質(zhì)數(shù)量;NEG指在負(fù)離子模式下檢測到的脂質(zhì)數(shù)量;“-”表示在該掃描模式下未檢出;所有樣品重復(fù)測定6次取平均值,同一行數(shù)據(jù)右上標(biāo)不同字母表示樣品間差異顯著(<0.05)。Note: “[--]” indicated that this subclass lipid cannot be retrieved from LMSD database at present. The relative quantitative value is the peak area of the lipid molecule. POS refers to the amount of lipids detected in positive ion mode; NEG refers to the amount of lipids detected in negative ion mode; “-” indicates that it is not detected in this scanning mode; All samples were repeated for 6 times to take the average value, and different letters on the right superscript of the same row indicated significant differences among samples (<0.05).

        在亞麻籽油中檢測到的這些脂質(zhì)分子小類中,471個(gè)TG分子的相對含量最高,為67.93%~68.91%,二?;视停―iacylglycerols,DG)相對含量為15.94%~17.64%,二酰甘油-N-三甲基高絲氨酸(Diacylgycerol- N-Trimethylhomoserine,DGTS)相對含量為4.80%~5.10%,葡萄糖醛酸二?;视停℅lycosyldiacylglycerols,GlcADG)相對含量為1.09%~1.42%,非羥基脂肪酸-鞘氨醇己糖神經(jīng)酰胺(Hexose-ceramide/Non-hydroxy Sphingosine,HexCer/NS)相對含量為0.78%~1.10%,HBMP相對含量為0.81%~1.03%,PEtOH相對含量為0.96%~1.18%,羥基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid,F(xiàn)AHFA)相對含量為0.86%~1.29%,其他31個(gè)脂質(zhì)分子小類的脂質(zhì)相對含量均小于1%。此外,3個(gè)品種亞麻籽油的脂質(zhì)種類相同,對亞麻籽油脂類的相對定量值的方差分析表明:亞麻籽C油的總相對定量值顯著高于其他兩種亞麻籽油(<0.05);此外,對比39個(gè)脂質(zhì)分子小類在3種亞麻籽油中的含量差異,發(fā)現(xiàn)除了神經(jīng)節(jié)苷脂(Gangliosides,GM3)和FAHFA在3種亞麻籽油間有顯著差異外,而其他的37個(gè)脂質(zhì)分子小類在亞麻籽油樣本間不存在顯著差異(>0.05)。但是,對脂質(zhì)類別的差異分析不能全面和準(zhǔn)確地反映不同亞麻籽油之間的差異,需要建立多元變量統(tǒng)計(jì)分析模型篩選不同亞麻籽油間的差異脂質(zhì)分子。

        2.2 多元變量統(tǒng)計(jì)分析亞麻籽油差異脂質(zhì)

        為探究不同品種亞麻籽油之間的脂質(zhì)分子差異,將數(shù)據(jù)矩陣導(dǎo)入SIMCA16.0.2軟件進(jìn)行差異脂質(zhì)的多重分析,分別建立了無監(jiān)督的主成分分析(Principal Component Analysis, PCA)模型和有監(jiān)督的OPLS-DA(Orthogonal Partial Least Squares Discrimination Analysis)模型進(jìn)行多元變量統(tǒng)計(jì)分析。

        2.2.1 主成分分析(PCA)

        PCA是將樣品數(shù)據(jù)通過正交變換轉(zhuǎn)換為低維度的線性不相關(guān)變量(即主成分),從而解釋數(shù)據(jù)的內(nèi)部結(jié)構(gòu),并能夠更好的解釋數(shù)據(jù)變量。圖1 a表明3種亞麻籽油在PCA模型中可以很好的分離,數(shù)據(jù)均在95%的置信區(qū)間內(nèi),且同種亞麻籽油有良好的聚集效果,直觀地說明3種亞麻籽油中的脂質(zhì)存在顯著差異。圖1 b、c、d表明3種亞麻籽油在兩兩對比時(shí)也能夠完全分離,數(shù)據(jù)也均在95%的置信區(qū)間內(nèi),但是重復(fù)樣本間分布較為分散,這是由于PCA是一種無監(jiān)督的多元統(tǒng)計(jì)方法,不能忽略樣本的組內(nèi)差異,因此需要有監(jiān)督的多元判別分析統(tǒng)計(jì)方法進(jìn)一步分析。

        2.2.2 正交偏最小二乘法判別分析(OPLS-DA)

        OPLS-DA是一種有監(jiān)督的多元判別分析統(tǒng)計(jì)方法,通過降低組內(nèi)差異和增大組間差異實(shí)現(xiàn)對不同樣品的有效預(yù)測[11]。3個(gè)品種亞麻籽油兩兩對比的OPLS-DA模型對變量的解釋性(2)均大于0.99,模型的可預(yù)測性(2)均大于0.88,說明這些模型非常符合樣本的真實(shí)情況,并能很好地解釋和預(yù)測每兩組樣本之間的差異。從OPLS-DA模型得分散點(diǎn)圖(圖2 a、b和c)可以看出,3個(gè)品種亞麻籽油兩兩對比明顯的區(qū)分開,樣本全部處于95%置信區(qū)間內(nèi);雖然數(shù)據(jù)的分布仍然較為分散,但是第一主成分預(yù)測得分均大于正交主成分得分,說明3組樣本組間差異大于組內(nèi)差異。

        OPLS-DA的置換檢驗(yàn)是通過隨機(jī)改變分布變量Y的排列順序,多次建立(該研究為200次)對應(yīng)的OPLS-DA模型以獲取隨機(jī)模型的2值和2值去判斷反映模型是否存在過擬合現(xiàn)象。結(jié)果表明(圖2 d、e和f):置換檢驗(yàn)?zāi)P偷?值和2值均小于原模型;2的回歸線與縱軸的截距均小于0;同時(shí)隨著置換保留度逐漸降低,置換的變量比例增大,隨機(jī)模型的2逐漸下降,說明原模型具有良好的穩(wěn)健性,不存在過擬合現(xiàn)象。

        2.2.3 亞麻籽油樣本間差異脂質(zhì)分子篩選和分析

        結(jié)合單變量統(tǒng)計(jì)方法檢驗(yàn)(Student's t test)和多元變量統(tǒng)計(jì)方法OPLS-DA對3個(gè)品種亞麻籽油間的差異脂質(zhì)分子進(jìn)行篩選,并以火山圖的形式直觀展示(圖3)。

        在同時(shí)滿足< 0.05和VIP > 1條件下篩選每兩組亞麻籽油樣本間差異顯著的脂質(zhì)分子。篩選結(jié)果為:亞麻籽B油對亞麻籽A油有312種差異顯著的脂質(zhì)分子,其中140個(gè)脂質(zhì)分子顯著上調(diào),172個(gè)脂質(zhì)分子顯著下調(diào)(圖 3a);亞麻籽C油對亞麻籽A油有504種差異顯著的脂質(zhì)分子,其中317個(gè)脂質(zhì)分子顯著上調(diào),187個(gè)脂質(zhì)分子顯著下調(diào)(圖3b);亞麻籽C油對亞麻籽B油有338種差異顯著的脂質(zhì)分子,其中246個(gè)脂質(zhì)分子顯著上調(diào),92個(gè)脂質(zhì)分子顯著下調(diào)(圖3c)。結(jié)果表明,亞麻籽C油和亞麻籽A油間差異顯著脂質(zhì)分子的數(shù)量最多,而亞麻籽B油和亞麻籽A油間差異顯著脂質(zhì)分子的數(shù)量最少。說明亞麻籽A油與亞麻籽B油的差異較小,而與亞麻籽C油間的差異較大。由于初步篩選出的三種亞麻籽油間的差異顯著脂質(zhì)分子數(shù)量較多,不能夠明顯地反映三種亞麻籽油的特征,因此需要進(jìn)一步篩選,找到三種亞麻籽油的標(biāo)志性脂質(zhì)分子。

        在同時(shí)滿足< 0.05和VIP > 1的基本篩選條件下,根據(jù)差異顯著的脂質(zhì)分子在兩個(gè)樣品間的log2FC大于1或者小于-1,進(jìn)一步篩選三種亞麻籽油的標(biāo)志性脂質(zhì)分子。選取每兩組亞麻籽油樣品差異顯著上調(diào)和下調(diào)最顯著的10個(gè)脂質(zhì)分子見表2。通過對比B-A組和C-A組中含量顯著下調(diào)的脂質(zhì)分子,其中相同的脂質(zhì)分子說明該脂質(zhì)分子在亞麻籽A油中的含量顯著高于其他兩種亞麻籽油,即為亞麻籽A油的標(biāo)志性脂質(zhì)分子,同理可得亞麻籽B、C油的標(biāo)志性脂質(zhì)分子。通過對比篩選出的差異顯著的脂質(zhì)分子發(fā)現(xiàn):亞麻籽A油含量顯著高于其他兩種亞麻籽油的脂質(zhì)分子有PI(16∶0/18∶2)、PI(16∶0/18∶3)、PI(16∶0/18∶1)、PI(18∶2/18∶2)、PI(20∶5/20∶5)、PI(18∶1/18∶1)、PE(18∶2/18∶3)和PC(18∶2/18∶2)8種磷脂分子和TG(14∶0/14∶0/16∶0),由于磷脂在細(xì)胞膜的完整性、可滲透性和流動性方面的有益功能,那么亞麻籽A油可用于藥物的乳化劑、載體及嬰兒食品中的營養(yǎng)強(qiáng)化劑;亞麻籽B油含量顯著高于其他兩種亞麻籽油的脂質(zhì)分子有TG(13∶0/13∶0/16∶0)、TG(12∶0/14∶0/14∶0)、TG(12∶0/12∶0/16∶0)、TG(12∶0/12∶0/18∶2)、TG(12∶0/12∶1/16∶0)、TG(12∶1/16∶0/18∶1)和HBMP(14∶1/14∶1/14∶1)7種,可以看出亞麻籽B油中TG含量較高,并且其中飽和脂肪酸占較大比例,因此可用于補(bǔ)充能量的食品;亞麻籽C油含量顯著高于其他兩種亞麻籽油的脂質(zhì)分子有GM3(d40∶3)和SQDG(20∶4/22∶6),這兩種脂質(zhì)作為功能性脂質(zhì),可以用于神經(jīng)方面的醫(yī)學(xué)治療,如促進(jìn)神經(jīng)傳導(dǎo)和用于周圍神經(jīng)損傷。這些脂質(zhì)分子作為3種亞麻籽油的標(biāo)志物,可用于植物油的品質(zhì)判別、營養(yǎng)評價(jià)、真?zhèn)舞b別和安全性評價(jià)[12]。

        表2 三種亞麻籽油樣本間差異最顯著脂質(zhì)分子篩選表

        注:表中所列的均是差異顯著的脂質(zhì)分子的化學(xué)式,以TG(14∶0/14∶0/16∶0)為例:TG表示三?;视?,屬于一種脂質(zhì)小類,括號內(nèi)的數(shù)字表示連接在該脂質(zhì)分子上的脂肪酸,如14∶0/14∶0/16∶0表示該三?;视头肿由线B接了3個(gè)脂肪酸,分別是2個(gè)十四碳烯酸(14∶0)和1個(gè)十六碳烯酸(16∶0)。

        Note: Listed in this table were the chemical formulas of lipid molecules with significant differences, taking TG (14:0/14:0/16:0) as an example: TG was the symbol of triacylglycerol, which belongs to a lipid subclass, and the fatty acids in parentheses represent the fatty acids attached to the lipid molecule, for example, 14:0/14:0/16:0 means that three fatty acids were attached to the triacylglycerols molecule, were two tetradecenoic acids (14:0) and one hexadecenoic acid (16:0), respectively.

        2.3 亞麻籽油脂質(zhì)輪廓分析

        本研究利用UHPLC-QTOF-MS技術(shù)在亞麻籽油中鑒定出常見的TG、DG、MG、FA和13個(gè)脂質(zhì)分子小類的磷脂,還發(fā)現(xiàn)了87種DGTS、129種甘油糖脂(GlcADG、AcylGlcADG、SQDG和MGDG)、151種神經(jīng)酰胺、3種GM3、3種SM、32種FAHFA、9種ACar和1種CE,這些脂類在機(jī)體內(nèi)具有多種生物功能,其中DGTS是一類在藻類中常見的甜菜堿脂[13-14],在體內(nèi)具有抗炎活性和抑制一氧化氮形成的作用[15-16]。在亞麻籽油中發(fā)現(xiàn)了甘油糖脂中的4個(gè)脂質(zhì)分子小類(GlcADG、AcylGlcADG、SQDG和MGDG),這類脂質(zhì)不僅在植物中起協(xié)調(diào)作用,而且還具有抗病毒、抗氧化[17]、抗腫瘤[18]和抗動脈粥樣硬化[19]等生物學(xué)功能。亞麻籽油中神經(jīng)酰胺的多樣化是由不同的長鏈堿基鏈接不同碳鏈長度、不飽和度和羥基的脂肪酸組成[20-21],并且其主要在神經(jīng)元中起結(jié)構(gòu)性作用,并參與調(diào)節(jié)細(xì)胞通訊、神經(jīng)元分化和成熟[22]。GM3和SM這兩個(gè)脂質(zhì)分子小類脂質(zhì)在動物細(xì)胞中比較常見,并與人體內(nèi)疾病,如癌癥和糖尿病密切相關(guān)[23-24]。亞麻籽油中甘油磷脂類和鞘脂類的分布具有相似的特點(diǎn):脂質(zhì)種類較多,但是每類中的脂質(zhì)分子較少;研究表明甘油磷脂類對維持細(xì)胞膜的完整性、滲透性和流動性發(fā)揮重要作用[4,25]。亞麻籽油中FA均是長鏈脂肪酸(C16~22);FAHFA是一種由兩分子的脂肪酸組成的脂肪酸低聚物[26],也是由長鏈脂肪酸組成(如C18∶2、C18∶3、C20∶0、C22∶4、C22∶5、C22∶6、C26∶2和C26∶4等),有研究表明FAHFA類脂肪酸具有抗炎和抗糖尿病的作用[27-28];ACar在早產(chǎn)兒和正常兒的血液中水平中存在顯著差異,并常與氨基酸譜一起反映新生兒的發(fā)育程度和健康水平[29-30]。亞麻籽油中檢測出的甾醇酯CE(18∶2)屬于植物固醇,植物固醇具有抗癌、調(diào)節(jié)免疫和抗炎等生物學(xué)功能,并且植物固醇日益成為預(yù)防疾病的功能性食品的合適成分[31-32],而目前對CE(18∶2)脂質(zhì)分子的研究和報(bào)道較少。此外,雖然不同品種亞麻籽油在脂類層面的差異不顯著,但是在脂質(zhì)分子層面卻有著顯著的差別。

        3 結(jié) 論

        1)利用超高效液相色譜-四級桿飛行時(shí)間質(zhì)譜聯(lián)用技術(shù)(Ultra High Performance Liquid Chromatography- Quadrupole Time-of-Flight Spectroscopy, UHPLC- QTOF-MS)技術(shù)在3個(gè)品種亞麻籽油中均鑒定出39個(gè)脂質(zhì)分子小類共1 072種脂質(zhì)分子。雖然不同品種亞麻籽油在脂質(zhì)子類層面差異不顯著,但是在脂質(zhì)分子層面存在顯著差異。

        2)亞麻籽油除了常見甘油酯中的3個(gè)脂質(zhì)分子小類(三?;视?Triacylglycerols, TG)、二?;视?Diacylglycerols, DG)、單?;视?Monoradylglycerols, MG)),游離的脂肪酸(Fatty Acid, FA)和甘油磷脂中的13個(gè)脂質(zhì)分子小類外,本研究還發(fā)現(xiàn)了甜菜堿脂(Diacylgycerol-N-trimethylhomoserine, DGTS)、甘油糖脂中的4個(gè)脂質(zhì)分子小類(葡萄糖醛酸二?;视?Glycosyldiacylglycerols, GlcADG)、?;咸烟侨┧岫;视?Acylglycosyldiacylglycerols, AcylGlcADG)、硫代異鼠李糖甘油二酯(Sulfoquinovosyldiacylglycerols, SQDG)和單半乳糖二?;视?Monogalactosyldiacylglycerols, MGDG))、神經(jīng)酰胺中的12個(gè)脂質(zhì)分子小類、羥基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid, FAHFA)、神經(jīng)節(jié)苷脂(Gangliosides, GM3)、鞘磷脂(Sphingomyelin, SM)、?;鈮A(Fatty esters Acyl carnitine, ACar)和甾醇酯(Cholesterol, CE),共22個(gè)脂質(zhì)分子小類415種脂質(zhì)分子,這些脂質(zhì)分子具有多種生物學(xué)功能。

        3)根據(jù)相對含量篩選出了亞麻籽A油的標(biāo)志性脂質(zhì)有PI、PC和PE,亞麻籽B油的標(biāo)志性脂質(zhì)有TG和HBMP,亞麻籽C油的標(biāo)志性脂質(zhì)有GM3和SQDG。

        [1] Goyal A, Sharma V, Upadhyay N, et al. Flax and flaxseed oil: an ancient medicine & modern functional food[J]. Journal of Food Science and Technology, 2014, 51(9): 1633-1653.

        [2] 王維義,許帥強(qiáng),何宏燕,等. 亞麻籽的營養(yǎng)成分及功能研究進(jìn)展[J]. 中國油脂,2020,45(4):83-85.

        Wang Weiyi, Xu Shuaiqiang, He Hongyan, et al. Progress in nutrients and function of flaxseed[J]. China Oils and Fats, 2020, 45(4): 83-85. (in Chinese with English abstract)

        [3] 劉婷婷,石少俠,段虎平,等. 亞麻籽營養(yǎng)成分提取及其功能和應(yīng)用研究進(jìn)展[J]. 中國油脂,2020,45(3):90-97.

        Liu Tingting, Shi Shaoxia, Duan Huping, et al. Advances in nutrients extraction, functions and applications of flaxseed[J]. China Oils and Fats, 2020, 45(3): 90-97. (in Chinese with English abstract)

        [4] La Nasa J, Ghelardi E, Degano I, et al. Core shell stationary phases for a novel separation of triglycerides in plant oils by high performance liquid chromatography with electrospray-quadrupole-time of flight mass spectrometer[J]. Journal of Chromatography A, 2013, 1308: 114-124.

        [5] Herchi W, Sakouhi F, Khaled S, et al. Characterisation of the glycerophospholipid fraction in flaxseed oil using liquid chromatography-mass spectrometry[J]. Food Chemistry, 2011, 129(2): 437-442.

        [6] Danish M, Nizami M. Complete fatty acid analysis data of flaxseed oil using GC-FID method[J]. Data Brief, 2019, 23: 1-6.

        [7] Liebisch G, Fahy E, Aoki J, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures[J]. Journal of Lipid Research. 2020, 61(12): 1539-1555.

        [8] Matsuzawa Y, Higashi Y, Takano K, et al. Food lipidomics for 155 agricultural plant products[J]. Journal of Agricultural and Food Chemistry, 2021, 69(32): 8981-8990.

        [9] Han X, Gross R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics[J]. J Lipid Res, 2003, 44(6): 1071-1079.

        [10] Tan Z J, Yang Z Z, Yi Y J, et al. Extraction of oil from flaxseed (L.) using enzyme-assisted three-phase partitioning[J]. Applied Biochemistry and Biotechnology, 2016, 179(8): 1325-1335.

        [11] Westerhuis J A, Van Velzen E J J, Hoefsloot H C J, et al. Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA[J]. Metabolomics, 2010, 6(1): 119-128.

        [12] 陳雪,羅欣,梁榮蓉,等. 代謝組學(xué)在肉及肉制品品質(zhì)監(jiān)測中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):291-300.

        Chen Xue, Luo Xin, Liang Rongrong, et al. Application of metabolomics in monitoring the qualities of meat and meat products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 291-300. (in Chinese with English abstract)

        [13] 李艷榮,牟桐,黃莉莉,等. 甜菜堿脂在14種海洋微藻中的分布研究[J]. 海洋學(xué)報(bào),2020,42(12):72-81.

        Li Yanrong, Mu Tong, Huang Lili, et al. Distribution of betaine lipids in 14 species of microalgae[J]. Haiyang Xuebao, 2020, 42(12): 72–81. (in Chinese with English abstract)

        [14] Armada I, Hachero-cruzado I, Mazuelos N, et al. Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta)[J]. Phytochemistry, 2013, 95: 224-233.

        [15] 翁倩,徐繼林,周成旭,等. 生物體內(nèi)甜菜堿脂的研究進(jìn)展[J]. 生物學(xué)雜志,2015,32(2):87-91,109.

        Weng Qian, Xu Jilin, Zhou Chengxu, et al. Progress in betaine lipid research[J]. Journal of Biology, 2015, 32(2): 87-91,109. (in Chinese with English abstract)

        [16] Banskota A H, Stefanova R, Sperker S, et al. New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity[J]. Journal of Applied Phycology, 2013, 25(5): 1513-1521.

        [17] Pongmuangmul S, Phumiamorn S, Sanguansermsri P, et al. Anti-herpes simplex virus activities of monogalactosyl diglyceride and digalactosyl diglyceride from Clinacanthus nutans, a traditional Thai herbal medicine[J]. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(3): 192-197.

        [18] Maeda N, Hada T, Murakami-nakai C, et al. Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach[J]. Journal of Nutritional Biochemistry, 2005, 16(2): 121-128.

        [19] Karantonis H C, Antonopoulou S, Demopoulos C A. Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others[J]. Journal of Agricultural and Food Chemistry, 2002, 50(5): 1150-1160.

        [20] Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides[J]. Progress in Lipid Research, 2016, 63: 50-69.

        [21] Kawana M, Miyamoto M, Ohno Y, et al. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS S[J]. Journal of Lipid Research, 2020, 61(6): 884-895.

        [22] Bouscary A, Quessada C, Rene F, et al. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases[J]. Seminars in Cell & Developmental Biology, 2020, 112: 82-91.

        [23] Ao M, Wang K, Zhou X, et al. Exogenous GM3 ganglioside inhibits atherosclerosis via multiple steps: A potential atheroprotective drug[J]. Pharmacological Research, 2019, 148: 1-14.

        [24] Dangelo G, Moorthi S, Luberto C. Role and function of sphingomyelin biosynthesis in the development of cancer[J]. Sphingolipids in Cancer. 2018,140: 61-96.

        [25] Choo Y M, Bong S C, Ma A N, et al. Phospholipids from palm-pressed fiber[J]. Journal of the American Oil Chemists Society, 2004, 81(5): 471-475.

        [26] Brejchova K, Balas L, Paluchova V, et al. Understanding FAHFAs: From structure to metabolic regulation[J]. Prog Lipid Res, 2020, 79: 1-22.

        [27] Wood P L. Fatty acyl esters of hydroxy fatty acid (FAHFA) lipid families[J]. Metabolites, 2020, 10(12): 1-8.

        [28] Benlebna M, Balas L, Gaillet S, et al. Potential physio-pathological effects of branched fatty acid esters of hydroxy fatty acids[J]. Biochimie, 2021, 182: 13-22.

        [29] 閆磊,楊堯,王艷,等. 足月和早產(chǎn)新生兒的LC-MS/MS氨基酸譜和?;鈮A譜分析[J]. 中國兒童保健雜志,2016,24(8):791-794.

        Yan Lei, Yang Yao, Wang Yan, et al. The amino acid and acylcarnitine profile of full-term and premature newborns by LC-MS/MS[J]. Chinese Journal of Child Health Care, 2016, 24(8): 791-794. (in Chinese with English abstract)

        [30] 黃奎奎. 甘肅新生兒遺傳代謝病篩查及若干指標(biāo)參考值范圍研究[D]. 蘭州:蘭州大學(xué),2017.

        Huang Kuikui. Study on Neonatal Inherited Metabolic Diseases Screening in Gansu Province and Several Index Reference Value Range[D]. Lanzhou: Lanzhou University, 2017. (in Chinese with English abstract)

        [31] Schade D S, Shey L, Eaton R P. Cholesterol review: A metabolically important molecule[J]. Endocr Pract, 2020, 26(12): 1514-1523.

        [32] Bai G, Ma C, Chen X. Phytosterols in edible oil: Distribution, analysis and variation during processing[J]. Grain & Oil Science and Technology, 2021, 4(1): 33-44.

        Screening lipidmolecular markers of flaxseed oils by UHPLC-QTOF-MS technology

        Liao Minhe1,2,3, Ren Haowei1,2,3, Jin Ritian1,2,3, Kang Jiaxin1,2,3, Shang Jiaqi1,2,3, Ning Xuenan1,2, Yao Sihan1, Liu Ning1,2,3※

        (1.,,150030,; 2.,,,150030,; 3..,.,150028,)

        Flaxseed Oil (FO) is one of the commonly-used edible vegetable oil in food production. But the complete lipid molecular composition and content are still unclear. This study aims to explore the true properties of the lipid composition in FO and discover the valuable lipid components. An ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was used to characterize the lipid profile of FO. The results showed that there were the same lipid molecules in the three varieties of flaxseed (A, B, and C) oil. A total of 1 072 lipid molecules in 39 lipid molecule subclasses were identified in FO. In positive ion mode, a total of 668 lipid molecules in 15 lipid molecule subclasses were detected. In the negative ion mode, a total of 404 lipid molecules in 31 lipid molecules were detected. In both positive and negative ions mode, a total of 7 lipid molecules subclasses were detected. Among the 39 lipid molecule subclasses were detected under positive and negative ions, 30 lipid molecule subclasses are searchable in the LMSD database, while 9 lipid molecule subclasses are currently in the subclasses of the LMSD database could not be retrieved. Furthermore, 86 Diacylgycerol-N-trimethylhomoserine (DGTS) molecule species and 129 glyceroglycolipid molecule species [glycosyldiacylglycerols (GlcADG), acylglycosyldiacylglycerols (AcylGlcADG), sulfoquinovosyldiacylglycerols (SQDG) and monogalactosyldiacylglycerols (MGDG)], 151 ceramide lipid molecule species, 3 Gangliosides (GM3) molecule species and 3 Sphingomyelin (SM) molecule species, 32 FAHFA molecule species, 9 Fatty esters Acyl carnitine (ACar) molecule species and 1 Cholesterol molecule CE (18:2) were firstly found in FO. Among these subclass lipids, the triacylglycerols (TG) presented the largest number (471 molecule species) and the highest relative content (67.93%-68.91%), followed by diacylglycerols (DG), DGTS, and GlcADG. In addition, the content of 39 lipid molecule subclasses was compared in the three kinds of FO. It was found that there were significant differences between the GM3 and fatty acyl esters of hydroxy fatty acid (FAHFA) in the three kinds of FO (<0.05), whereas, there was no significant difference among the other 37 lipids molecule subclasses (>0.05). More importantly, a multivariate statistical model was also established to screen the different lipid molecules among different kinds of FO, in order to fully and accurately reflect the differences between the three kinds of FO. Specifically, the three varieties of FO were well distinguished in the unsupervised Principal Component Analysis (PCA). The difference among the three varieties of FO was greater than that within each group, which was explained by the supervised Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, there were more than 200 lipid molecule species significantly different between the two varieties of flaxseed oil (<0.05), where the marker lipid molecules of flaxseed A oil were further screened out as 6 PI molecules, 1 PC molecule,1 PE molecule, and 1 TG molecule. The marker lipid molecules of flaxseed B oil were 6 TG molecules and 1 HBMP molecule. The marker lipid molecules of flaxseed C oil were 1 GM3 molecule and 1 SQDG molecule. Correspondingly, these lipid molecules were used as the markers of the three types of FO, suitable for the quality and authenticity identification, as well as the nutritional and safety evaluation of vegetable oil. In summary, 39 subclasses totaling 1 072 lipid molecule species were identified in FO. There were also significant differences in the lipid molecular level of different FOs. A total of 415 lipid molecule species in the 22 subclasses were found, which has not been reported yet in FO. This discovery can make a sound theoretical foundation to develop the nutritional value of FO, particularly for the comprehensive and systematic investigation of the lipid profile in other lipid foods.

        oil and fats; principal component analysis; flaxseed; LC-MS technology; lipidomics; orthogonal partial least squares discrimination analysis

        2021-06-24

        2021-10-20

        “十三五”國家重點(diǎn)研發(fā)計(jì)劃(2018YFC160430401)

        廖敏和,研究方向?yàn)槭称窢I養(yǎng)及加工。Email:liaominhe5212@163.com

        劉寧,博士,教授,博士生導(dǎo)師,研究方向?yàn)槭称窢I養(yǎng)及加工。Email:ningliuneau@outlook.com

        10.11975/j.issn.1002-6819.2021.24.037

        TS225.1

        A

        1002-6819(2021)-24-0338-09

        廖敏和,任皓威,金日天,等. 采用UHPLC-QTOF-MS技術(shù)篩選亞麻籽油脂質(zhì)分子標(biāo)志物[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):338-346. doi:10.11975/j.issn.1002-6819.2021.24.037 http://www.tcsae.org

        Liao Minhe, Ren Haowei, Jin Ritian, et al. Screening lipidmolecular markers of flaxseed oils by UHPLC-QTOF-MS technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 338-346. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.037 http://www.tcsae.org

        猜你喜歡
        小類酰基籽油
        鳳丹籽油對小鼠H22腫瘤的抑制作用
        牡丹籽油對大鼠燙傷模型的治療作用
        中成藥(2017年8期)2017-11-22 03:19:23
        浙江配電網(wǎng)物資標(biāo)準(zhǔn)化研究與應(yīng)用
        N-月桂酰基谷氨酸鹽性能的pH依賴性
        當(dāng)代化工研究(2016年2期)2016-03-20 16:21:23
        N-脂肪?;被猁}的合成、性能及應(yīng)用
        橡膠籽油基復(fù)合型環(huán)保增塑劑用于PVC的研究
        中國塑料(2015年9期)2015-10-14 01:12:31
        α-甲氧甲?;?γ-丁內(nèi)酯和α-乙氧甲?;?γ-丁內(nèi)酯的合成及表
        沙棘籽油抗抑郁作用
        小類:年輕人要多努力
        大學(xué)(2008年10期)2008-10-31 12:51:10
        99热这里只有精品4| 国产情侣一区二区三区| 久久无码人妻一区二区三区午夜| 好吊色欧美一区二区三区四区| 亚洲综合色区无码专区| 精品日韩av专区一区二区 | 九一九色国产| 国产91网址| 亚洲精品尤物av在线网站| 加勒比日韩视频在线观看| 久久久亚洲av成人网站| 国产精品揄拍100视频| 亚欧同人精品天堂| 宅男天堂亚洲一区二区三区| 精品精品国产高清a毛片| 日韩精品一区二区三区免费视频| 视频一区精品自拍| 中文字幕视频一区懂色| 国产69精品久久久久9999apgf | 久久精品无码中文字幕| 国产亚洲精品综合在线网址| 国产在线一区二区三区四区乱码| 亚洲av日韩综合一区久热| 精品国产v无码大片在线观看| 色婷婷精品综合久久狠狠| 免费在线国产不卡视频| 久久只精品99品免费久23| 另类免费视频在线视频二区| 加勒比熟女精品一区二区av| 国产一级二级三级在线观看视频| 国产亚洲真人做受在线观看| 亚洲精品中国国产嫩草影院美女| av天堂在线免费播放| 色天使久久综合网天天| 乱子伦视频在线看| 97久久综合区小说区图片区| 自拍视频在线观看首页国产| 免费人妻无码不卡中文字幕18禁 | 亚洲一区二区一区二区免费视频| 国产成人精品免费久久久久| 亚洲∧v久久久无码精品|