白志藝 李青
[摘要] 目的 通過生物信息學(xué)的方法對hTERT基因網(wǎng)絡(luò)及其相互作用的基因進(jìn)行解密,研究hTERT共表達(dá)基因潛在的預(yù)后價(jià)值。方法 使用LinkedOmics數(shù)據(jù)庫鑒定黑素瘤中hTERT共表達(dá)基因,使用GSEA對激酶-靶標(biāo)富集、miRNA-靶標(biāo)富集和轉(zhuǎn)錄因子-靶標(biāo)富集進(jìn)行分析。DAVID在線數(shù)據(jù)庫對180個(gè)共表達(dá)基因進(jìn)行GO和KEGG分析。STRING數(shù)據(jù)庫、Cytoscape軟件用于構(gòu)建180個(gè)共表達(dá)基因的PPI網(wǎng)絡(luò)圖,并識別PPI網(wǎng)絡(luò)中最重要的模塊化基因。c-BioPortal分析模塊化核心基因的生存分析結(jié)果,Oncomine數(shù)據(jù)庫分析核心基因在黑素瘤組織和正常組織中的差異表達(dá)。 結(jié)果 LinkedOmics數(shù)據(jù)庫挖掘結(jié)果提示hTERT與幾種腫瘤相關(guān)的激酶(如ATR)和轉(zhuǎn)錄因子(E2F家族)特異相關(guān),這些激酶和轉(zhuǎn)錄因子調(diào)節(jié)基因組穩(wěn)定性、有絲分裂和細(xì)胞周期。hTERT表達(dá)與癌癥通路相關(guān)的功能網(wǎng)絡(luò)有關(guān)。篩選出共表達(dá)基因180個(gè),網(wǎng)絡(luò)節(jié)度分析得到了8個(gè)核心基因,依次為TERT、ANLN、CDC25B、CDK4、CEP55、E2F7、KIF23、OIP5。蛋白-蛋白網(wǎng)絡(luò)互作圖(PPI)顯示,hTERT與CDK4在蛋白互作關(guān)系上是直接關(guān)聯(lián)。CDK4基因突變與擴(kuò)增是黑素瘤患者DFS、OS的獨(dú)立預(yù)后因素(P=0.0163、6.843E-3)。結(jié)論 數(shù)據(jù)挖掘結(jié)果提示hTERT在黑素瘤中潛在的調(diào)控網(wǎng)絡(luò)信息,與hTERT共表達(dá)的CDK4基因可能是黑素瘤預(yù)后標(biāo)志物,為進(jìn)一步研究hTERT在黑素瘤發(fā)生、發(fā)展中的作用奠定了基礎(chǔ)。
[關(guān)鍵詞] 生物信息學(xué);黑素瘤;hTERT;共表達(dá)基因
[中圖分類號] R735.7? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2021)35-0037-07
Analysis of hTERT co-expressed genes and gene regulatory network in melanoma based on bioinformatics
BAI Zhiyi1? ?LI Qing2
1.Department of Dermatology, First Affiliated Hospital of Xiamen University, Xiamen? ?361000, China; 2.Department of Dermatology, Longgang Maternal and Child Health Hospital, Shenzhen? ?518038, China
[Abstract] Objective To decrypt the hTERT gene network and its interacting genes through bioinformatics methods and study the potential prognostic value of hTERT co-expressed genes. Methods The LinkedOmics database was used to identify hTERT co-expressed genes in melanoma. GSEA was used to analyze kinase-target enrichment, miRNA-target enrichment, and transcription factor-target enrichment. The DAVID online database was used to conduct GO and KEGG analysis on 180 co-expressed genes. STRING database and Cytoscape software were used to construct a PPI network diagram of 180 co-expressed genes and identify the most important modular genes in the PPI network. The survival analysis results of modular core genes were analyzed using c-BioPortal. The Oncomine database was used to analyze the differential expression of core genes in melanoma tissues and normal tissues. Results The result of LinkedOmics database mining suggested that hTERT was specifically related to several tumor-related kinases (such as ATR) and transcription factors (E2F family). These kinases and transcription factors regulated genome stability, mitosis, and cell cycle. The expression of hTERT was related to the functional network related to cancer pathways. A total of 180 co-expressed genes were screened, and 8 core genes were obtained by network node degree analysis, which were TERT, ANLN, CDC25B, CDK4, CEP55, E2F7, KIF23, and OIP5. The protein-protein network interaction map (PPI) showed that hTERT and CDK4 were directly related to the protein interaction relationship. CDK4 gene mutation and amplification were independent prognostic factors of DFS and OS in melanoma patients (P=0.0163, 6.843E-3). Conclusion The data mining results suggest the potential regulatory network information of hTERT in melanoma. The CDK4 gene co-expressed with hTERT may be a prognostic marker of melanoma, which lay the foundation for further research on the role of hTERT in the occurrence and development of melanoma.
[Key words] Bioinformatics; Melanoma; hTERT; Co-expressed genes
85%~90%人類癌癥和70%以上永生人類細(xì)胞系的端粒酶活性高度升高[1]。目前有多個(gè)關(guān)于hTERT在黑素瘤中的預(yù)后研究[2-6]。研究證實(shí),hTERT對黑素瘤發(fā)生發(fā)展過程起到重要作用,是黑素瘤的預(yù)后因素。然而,hTERT的生物學(xué)功能和意義尚未被充分闡明。不同的基因和通路參與了對hTERT的調(diào)控[7]。然而,hTERT與這些基因的相互作用機(jī)制并沒有被充分挖掘,為更好地理解端粒酶在黑素瘤中的功能,有必要對hTERT基因網(wǎng)絡(luò)及其相互作用的基因進(jìn)行解密。研究hTERT共表達(dá)基因潛在的預(yù)后價(jià)值。因此,本研究使用數(shù)據(jù)挖掘技術(shù),通過多個(gè)生物信息學(xué)數(shù)據(jù)庫來探討黑素瘤中hTERT共表達(dá)基因和功能網(wǎng)絡(luò)。進(jìn)一步了解端粒酶的其他生物學(xué)功能。篩選hTERT共表達(dá)基因群中潛在預(yù)后標(biāo)志物。
1 材料與方法
1.1 LinkedOmics數(shù)據(jù)庫分析hTERT mRNA相關(guān)的差異表達(dá)基因
LinkedOmics數(shù)據(jù)庫[8](http://www.linkes.org/login.php)可用于分析32種收錄入TCGA數(shù)據(jù)庫中癌癥相關(guān)的多維數(shù)據(jù)集。使用LinkedOmics的LinkFinder模塊研究TCGA數(shù)據(jù)庫黑素瘤中hTERT共表達(dá)基因。使用GSEA對激酶-靶標(biāo)富集、miRNA-靶標(biāo)富集和轉(zhuǎn)錄因子-靶標(biāo)富集進(jìn)行了分析。檢驗(yàn)標(biāo)準(zhǔn)P值<0.05,模擬500次。
1.2 預(yù)測分析MiR-497-5p靶基因
Hodi等[15]課題組前期工作中,發(fā)現(xiàn)hTERT是 miR-497-5p的直接靶向基因。miRNA與mRNA具有一對多及多對一的對應(yīng)關(guān)系,同樣靶向miR-497-5p的基因群可能與hTERT富集于相同生物功能及信號通路。故本研究中倒轉(zhuǎn)過來,通過Targetscan,ENCORI數(shù)據(jù)庫來預(yù)測miR-497-5p的靶基因。尋找這組靶基因與hTERT共表達(dá)基因群之間的交集基因。
1.3 GO與KEGG通路分析
使用DAVID在線數(shù)據(jù)庫對180個(gè)取交集的基因組進(jìn)行GO和KEGG分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1.4 PPI蛋白網(wǎng)絡(luò)構(gòu)建與模塊分析
利用STRING數(shù)據(jù)庫建立180個(gè)交集基因之間的功能蛋白-蛋白相互作用網(wǎng)絡(luò)(PPI)。使用Cytoscape將這180個(gè)交集基因形成可視化網(wǎng)絡(luò)圖。通過MCODE識別PPI網(wǎng)絡(luò)中最重要的模塊。MCODE設(shè)置標(biāo)準(zhǔn)為:評分>5分,分度cut-off=2分,節(jié)點(diǎn)cut-off=0.2分,最大深度=100分,k-score=2分。
1.5 c-Bioportal數(shù)據(jù)庫進(jìn)行生存分析
使用c-BioPortal分析模塊化核心基因的生存分析結(jié)果。
1.6 Oncomine數(shù)據(jù)庫分析差異表達(dá)
使用Oncomine數(shù)據(jù)庫比較生存分析中有預(yù)后價(jià)值的核心基因在黑素瘤組織和正常組織中的差異表達(dá),作為生存分析結(jié)果的第二佐證。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 LinkedOmics數(shù)據(jù)庫分析黑素瘤中與hTERT mRNA相關(guān)的差異表達(dá)基因
使用LinkedOmics功能模塊分析TCGA數(shù)據(jù)庫中黑素瘤患者的hTERT共表達(dá)基因數(shù)據(jù)。火山圖(封三圖2)顯示,1402個(gè)基因(暗紅點(diǎn))與hTERT mRNA呈顯著正相關(guān),1518個(gè)基因(暗綠點(diǎn))與hTERT mRNA呈顯著負(fù)相關(guān)(P<0.05)。50個(gè)重要的基因與hTERT mRNA呈正相關(guān),50個(gè)與hTERT mRNA呈負(fù)相關(guān)。見封三圖3。這個(gè)結(jié)果表明hTERT基因?qū)D(zhuǎn)錄組有廣泛的影響。與hTERT mRNA相關(guān)性最高的前3個(gè)基因分別是TROAP、IQGAP3、SKA。與TROAP表達(dá)呈正相關(guān)(皮爾森相關(guān)系數(shù)=0.61,P=2.53E-07),IQGAP3(皮爾森相關(guān)系數(shù)=0.48,P=3.17E-07),和SKA3(皮爾森相關(guān)系數(shù)=0.47,P=5.75E-07)。
為進(jìn)一步探討hTERT在黑素瘤中的靶點(diǎn),分析GSEA產(chǎn)生的與hTERT正相關(guān)差異表達(dá)基因集的激酶、miRNA和轉(zhuǎn)錄因子靶點(diǎn)網(wǎng)絡(luò)。miRNA靶點(diǎn)只有一個(gè)MIR-19A,MIR-19B。激酶靶點(diǎn)網(wǎng)絡(luò)主要相關(guān):polo樣激酶(PLK1),細(xì)胞周期檢測點(diǎn)激酶(CHEK2),細(xì)胞周期蛋白依賴性激酶(CDK1),絲氨酸/蘇氨酸激酶(ATR),極光激酶B(AURKB)。轉(zhuǎn)錄因子-靶標(biāo)網(wǎng)絡(luò)主要與E2F轉(zhuǎn)錄因子(E2F)家族相關(guān),包括V[S] E2F4 DP1_01,V[S] E2F_02,V[S] E2F4DP2_01,V[S] E2F1DP2_01,V[S] E2F1DP1_01。見表1。
2.2 miR-497-5p靶基因
Targetscan,ENCORI數(shù)據(jù)庫預(yù)測miR-497-5p靶基因,取交集共鑒定出1515個(gè)靶基因。將miR-497-5p的靶基因與hTERT共表達(dá)基因群(2920個(gè))取交集得到180個(gè)基因,見封三圖4。
2.3 交集基因的GO富集與KEGG通路富集分析
利用DAVID數(shù)據(jù)庫分析了180個(gè)交集基因的GO功能和KEGG通路富集分析。GO分析結(jié)果顯示,生物過程(BP)變化顯著富集于細(xì)胞周期、調(diào)控細(xì)胞增殖、細(xì)胞周期階段、細(xì)胞周期過程。細(xì)胞成分(CC)的變化主要集中在非細(xì)胞膜固定性細(xì)胞器、胞內(nèi)細(xì)胞膜固定性細(xì)胞器、細(xì)胞骨架。分子功能(MF)的變化主要體現(xiàn)在核苷酸綁定,嘌呤核苷酸結(jié)合。KEGG 通路富集于癌癥中的通路、細(xì)胞周期。見表2。
2.4 PPI蛋白網(wǎng)絡(luò)構(gòu)建與模塊分析
使用STRING數(shù)據(jù)庫分析180個(gè)共表達(dá)基因的相互作用網(wǎng)絡(luò),預(yù)測hTERT與這180個(gè)基因關(guān)系及hTERT潛在功能。通過 Cytoscape軟件將其可視化,利用 MCODE插件計(jì)算 PPI 網(wǎng)絡(luò)中每個(gè)基因的節(jié)點(diǎn)度(degree)(圖1),篩選 PPI 網(wǎng)絡(luò)中核心蛋白質(zhì)的編碼基因(核心基因),共得到8個(gè)模塊化核心基因(圖2)。
2.5 核心基因在黑素瘤中的生存分析
利用c-Bioportal數(shù)據(jù)庫對核心基因進(jìn)行總體生存分析(OS)及無病生存分析(DFS)。結(jié)果發(fā)現(xiàn),有CDK4、E2F7改變的黑素瘤患者總體生存期(OS)較差,差異有統(tǒng)計(jì)學(xué)意義(P=6.843E-3、0.0128)。見圖3。黑素瘤患者伴有OIP5、CDK4 的改變顯示更差的無病生存(DFS)(P=0.038、0.0163)。見圖4。綜合分析,與hTERT表達(dá)密切相關(guān)的基因CDK4、E2F7、OIP5在黑素瘤的發(fā)生或進(jìn)展中或許起到了重要作用,尤其是CDK4。因此,在下一步使用Oncomine數(shù)據(jù)庫挖掘CDK4在黑素瘤中的表達(dá)情況,作為其生存分析結(jié)果的佐證。
2.6 CDK4在黑素瘤組織中的差異表達(dá)
使用Oncomine數(shù)據(jù)庫來比較CDK4在黑素瘤組織和正常組織中的mRNA差異表達(dá)水平。發(fā)現(xiàn)CDK4在3個(gè)數(shù)據(jù)集中均表現(xiàn)為高表達(dá),且表達(dá)差異有統(tǒng)計(jì)學(xué)意義(P=2.80E-5、0.009、0.003),其中1個(gè)數(shù)據(jù)表達(dá)為差異無統(tǒng)計(jì)學(xué)意義(P=0.568)。見圖5。合并4組數(shù)據(jù)進(jìn)行meta分析。見封三圖5。結(jié)果顯示CDK4在黑素瘤中高表達(dá),表達(dá)差異有統(tǒng)計(jì)學(xué)意義(P=0.004)。
3討論
黑素瘤是起源于表皮黑素細(xì)胞的高度惡性腫瘤,多發(fā)生于皮膚、黏膜[9]。發(fā)病率與死亡率逐年升高。發(fā)生發(fā)展機(jī)制尚不清楚。端粒存在于真核生物,是一種帽狀結(jié)構(gòu),位于線性染色體末端。端粒保護(hù)染色體末端不受降解、融合和重組的影響[10-11]。端粒是5-TTAGGG-3 DNA重復(fù)序列的長鏈,是由端粒酶(TERT)合成的,人類核心端粒酶由至少兩個(gè)基本亞基組成,即蛋白質(zhì)亞基、人類端粒酶逆轉(zhuǎn)錄酶(hTERT)和RNA亞基、人類端粒酶RNA(hTR)[12]。hTERT位于5號染色體,由16個(gè)外顯子15個(gè)內(nèi)含子組成,位于5號染色體的短臂上(5p.15:33),長度超過40 kb,與5p端之間有一個(gè)兆比特距離。hTERT啟動子區(qū)被認(rèn)為是端粒酶表達(dá)非常重要的調(diào)控元件[10,13-14]。
黑素瘤是一種侵襲性腫瘤,具有不可預(yù)測的生物學(xué)行為。雖然各種治療方法已經(jīng)用于治療黑素瘤,但存活率在過去幾十年里沒有顯著提高[15-16]。端粒酶逆轉(zhuǎn)錄酶(hTERT)是端粒酶全酶復(fù)合體的催化亞基,在細(xì)胞衰老和腫瘤發(fā)生中起重要作用。端粒酶調(diào)控的分子機(jī)制影響轉(zhuǎn)錄、轉(zhuǎn)錄后、翻譯后和亞細(xì)胞定位[14]。
hTERT誘導(dǎo)/端粒酶激活通過穩(wěn)定端粒長度使癌細(xì)胞具有無限的增殖潛能,而最近的觀察顯示,其多種致癌活性獨(dú)立于其對端粒功能增強(qiáng)作用,包括其對線粒體和泛素-蛋白酶體功能的影響,DNA損傷修復(fù),基因轉(zhuǎn)錄、microRNA表達(dá)等。hTERT被發(fā)現(xiàn)直接與β-catenin及增強(qiáng)其轉(zhuǎn)錄調(diào)控效應(yīng),從而刺激上皮間充質(zhì)轉(zhuǎn)化(EMT)[17-18]。近期有研究評估了mRNA轉(zhuǎn)錄的交替剪接作用。hTERT可以從多個(gè)不同的剪接轉(zhuǎn)錄本翻譯,只有最長的變體具有逆轉(zhuǎn)錄酶活性[19]。其他沒有催化功能的轉(zhuǎn)錄本在乳腺癌細(xì)胞系的過表達(dá)已被證明可以減少細(xì)胞凋亡,從而獲得生存優(yōu)勢[20]。這表明hTERT具有超越端粒延伸的新功能。因此本研究的生信分析可能為進(jìn)一步探討hTERT激活端粒酶多樣的機(jī)制提供線索。
本次生信分析中,GO功能富集分析及KEGG通路富集分析,主要涉及到細(xì)胞周期信號轉(zhuǎn)導(dǎo),調(diào)控細(xì)胞周期,調(diào)控細(xì)胞的增殖、分裂。這與hTERT的功能是一致的。值得注意的是,本研究在分析核心基因的網(wǎng)絡(luò)互作時(shí),發(fā)現(xiàn)hTERT與CDK4是直接相關(guān)的,而這兩個(gè)基因富集在癌癥通路中。
利用GSEA對靶基因進(jìn)行富集分析,有助于揭示靶激酶、miRNA和轉(zhuǎn)錄因子的重要網(wǎng)絡(luò)。本研究結(jié)果表明,hTERT的功能網(wǎng)絡(luò)主要參與細(xì)胞周期?;蚪M不穩(wěn)定性和誘變是癌細(xì)胞的基本特征,激酶及其相關(guān)的信號通路有助于穩(wěn)定和修復(fù)基因組DNA[21-22]。本研究發(fā)現(xiàn)黑素瘤中的hTERT與包括ATR、AURKB和CDK1在內(nèi)的激酶網(wǎng)絡(luò)相關(guān)。這些激酶調(diào)節(jié)基因組穩(wěn)定性、有絲分裂和細(xì)胞周期[23-24]。事實(shí)上,ATR是基因組穩(wěn)定性的核心激酶調(diào)節(jié)因子之一;它啟動細(xì)胞對基因組不穩(wěn)定和修復(fù)的反應(yīng),直接磷酸化1000多種重要的底物,包括腫瘤抑制基因p53蛋白和細(xì)胞周期調(diào)節(jié)蛋白[25]。ATR激酶抑制劑可殺傷腫瘤細(xì)胞,并與放化療的殺傷細(xì)胞協(xié)同作用[26]。在黑素瘤中,hTERT可能通過ATR激酶調(diào)節(jié)DNA復(fù)制、修復(fù)和細(xì)胞周期進(jìn)展。
E2F2和E2F4是E2F家族中主要的轉(zhuǎn)錄因子,在增殖正常黑素細(xì)胞、黑素瘤細(xì)胞和新分離的黑素瘤中起作用。E2F1是細(xì)胞周期調(diào)控網(wǎng)絡(luò)的關(guān)鍵環(huán)節(jié)之一,可導(dǎo)致細(xì)胞凋亡、生長停滯或兩者同時(shí)發(fā)生[27]。E2F1異常表達(dá)參與了黑素瘤的發(fā)生發(fā)展。本研究分析表明E2F1是hTERT的一個(gè)重要靶點(diǎn),hTERT通過該因子調(diào)節(jié)黑素瘤的細(xì)胞周期和增殖能力。
8個(gè)核心基因的網(wǎng)絡(luò)互作圖中,hTERT與CDK4是直接相關(guān)的。CDKs是一種蛋白激酶,參與驅(qū)動細(xì)胞周期進(jìn)展、控制轉(zhuǎn)錄過程和調(diào)節(jié)細(xì)胞增殖。在黑素瘤中,超過90%的病例中CDK4通路與激活基因組改變相關(guān)[28-29]。通過文獻(xiàn)回顧,發(fā)現(xiàn)CDK基因在黑素瘤發(fā)生發(fā)展過程中起到了關(guān)鍵作用。本研究生信分析結(jié)果也驗(yàn)證了這個(gè)觀點(diǎn)。Oncomine數(shù)據(jù)庫中挖掘結(jié)果發(fā)現(xiàn)其在黑素瘤組織與正常組織比較,表達(dá)差異有統(tǒng)計(jì)學(xué)意義,在c-Bioportal數(shù)據(jù)庫中的數(shù)據(jù)挖掘結(jié)果顯示,CDK4基因突變與擴(kuò)增是黑素瘤患者DFS、OS的獨(dú)立預(yù)后因素。此外,PPI網(wǎng)絡(luò)互作圖顯示,hTERT與CDK4在蛋白互作關(guān)系上是直接關(guān)聯(lián)的。
在機(jī)制上,對黑素細(xì)胞CDK4通路的系統(tǒng)研究表明,該通路的激活,加上端粒酶逆轉(zhuǎn)錄酶(hTERT)的引入,可以導(dǎo)致這些細(xì)胞的永生,但不足以轉(zhuǎn)化。缺乏p16INK4A/p14ARF等位基因失活突變的人黑素細(xì)胞衰老延遲,但可以通過引入hTERT而不朽[30]。此外,hTERT結(jié)合CDK4過表達(dá)或抑制RB1,使細(xì)胞不朽[31]。黑素細(xì)胞的獨(dú)特之處在于,除了hTERT的表達(dá)外,CDK4的激活是永生所必需的,而在大多數(shù)細(xì)胞系中單獨(dú)引入hTERT就足夠了。這闡明了hTERT與CDK4共表達(dá)對于黑素瘤細(xì)胞永生和抑制凋亡起到的獨(dú)有而關(guān)鍵的作用。
本研究通過數(shù)據(jù)挖掘提示了hTERT在黑素瘤中潛在的調(diào)控網(wǎng)絡(luò)信息。并找到與hTERT共表達(dá)的CDK4基因可能是黑素瘤的潛在預(yù)后標(biāo)記物。本研究使用基于最流行的生物信息學(xué)理論的在線工具,對公共數(shù)據(jù)庫中的腫瘤數(shù)據(jù)進(jìn)行目標(biāo)基因分析。與傳統(tǒng)的芯片篩選方法比較,該方法具有樣本量大、成本低、操作簡單等優(yōu)點(diǎn)。這使大規(guī)模的黑素瘤基因組學(xué)研究和隨后的功能研究成為可能。
[參考文獻(xiàn)]
[1] Marco DV,F(xiàn)rancesco B,Antonella S. Telomere length maintenance in cancer:At the crossroad between telomerase and alternative lengthening of telomeres(ALT)[J]. Int J Mol Sci,2018,19(2):606.
[2] Schwaederle M,Krishnamurthy N,Daniels GA,et al. Telomerase reverse transcriptase promoter alterations across cancer types as detected by next-generation sequencing:A clinical and molecular analysis of 423 patients[J]. Cancer,2018,124(6):1288-1296.
[3] Ofner R,Ritter C,Heidenreich B,et al. Distribution of TERT promoter mutations in primary and metastatic melanomas in Austrian patients[J]. J Cancer Res Clin Oncol,2017,143(4):613-617.
[4] Roh MR,Park KH,Chung KY,et al. Telomerase reverse transcriptase(TERT) promoter mutations in Korean mela-noma patients[J]. Am J Cancer Res,2017,7(1):134-138.
[5] Hugdahl E,Kalvenes MB,Mannelqvist M,et al. Prognostic impact and concordance of TERT promoter mutation and protein expression in matched primary and metastatic cutaneous melanoma[J]. Br J Cancer,2018,118(1):98-105.
[6] Nagore E,Heidenreich B,Rachakonda S,et al. TERT promoter mutations in melanoma survival[J]. Int J Cancer,2016,139(1):75-84.
[7] Im E,Yoon JB,Lee HW,et al. Human telomerase reverse transcriptase(hTERT)positively regulates 26s proteasome activity[J].J Cell Physiol,2017,232(8):2083-2093.
[8] Vasaikar SV,Straub P,Wang J,et al. LinkedOmics:Analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res,2018,46(D1):D956-D963.
[9] Osella-Abate S,Bertero L,Senetta R,et al. TERT promoter mutations are associated with visceral spreading in melanoma of the trunk[J]. Cancers(Basel),2019,11(4):452.
[10] Shay JW,Wright WE. Telomeres and telomerase:Three decades of progress[J]. Nat Rev Genet,2019,20(5):299-309.
[11] Liu T,Yuan X,Xu D. Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations:Biological and clinical implications[J]. Genes(Basel),2016,7(7):38.
[12] Yuan X,Kronstr?m M,Hellenius ML,et al. Longitudinal changes in leukocyte telomere length and mortality in elderly swedish men[J]. Aging(Albany NY),2018,10(10):3005-3016.
[13] Lai AG,Pouchkina-Stantcheva N,Di Donfrancesco A,et al. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa[J]. BMC Evol Biol,2017,17(1):107.
[14] Kim W,Ludlow AT,Min J,et al. Regulation of the human telomerase gene TERT by telomere position effect-over long distances(TPE-OLD):Implications for aging and cancer[J]. PLoS Biol,2016,14(12):e2000 016.
[15] Hodi FS,Chiarion-Sileni V,Gonzalez R,et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma(CheckMate 067):4-year outcomes of a multicentre,randomised,phase 3 trial[J]. Lancet Oncol,2018,19(11):1480-1492.
[16] Mohammadpour A,Derakhshan M,Darabi H,et al. Melanoma:Where we are and where we go[J]. J Cell Physiol,2019,234(4):3307-3320.
[17] Liu Z,Li Q,Li K,et al. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stemcell-like traits in cancer cells[J]. Oncogene,2013,32(36):4203-4213.
[18] Zhang K,Guo Y,Wang X,et al. WNT/β-catenin directs self-renewal symmetric cell division of hTERThigh prostate cancer stem cells[J]. Cancer Res,2017,77(9):2534-2547.
[19] Saeb?e-Larssen S,F(xiàn)ossberg E,Gaudernack G. Characterization of novel alternative splicing sites in human telomerase reverse transcriptase(hTERT):Analysis of expression and mutual correlation in mRNA isoforms from normal and tumour tissues[J]. BMC Mol Biol,2006,7:26.
[20] Listerman I,Sun J,Gazzaniga FS,et al. The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis[J]. Cancer Res,2013,73(9):2817-2828.
[21] Karimian A,Ahmadi Y,Yousefi B. Multiple functions of p21 in cell cycle,apoptosis and transcriptional regulation after DNA damage[J]. DNA Repair(Amst),2016,42:63-71.
[22] Yogosawa S,Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis[J]. Cancer Sci,2018,109(11):3376-3382.
[23] Fang H,Niu K,Mo D,et al. RecQL4-Aurora B kinase axis is essential for cellular proliferation,cell cycle progression,and mitotic integrity[J]. Oncogenesis,2018,7(9):68.
[24] Herrera MC,Chymkowitch P,Robertson JM,et al. Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity[J]. Nucleic Acids Res,2018, 46(22):11 698-11 711.
[25] Cortez D,Guntuku S,Qin J,et al. ATR and ATRIP:Partners in checkpoint signaling[J]. Science,2001,294(5547):1713-1716.
[26] Hafsi H,Dillon MT,Barker HE,et al. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells independently of their p53 status[J]. Front Oncol,2018,8:245.
[27] Polager S,Ginsberg D. E2F-at the crossroads of life and death[J]. Trends Cell Biol,2008,18(11):528-535.
[28] Walker GJ,F(xiàn)lores JF,Glendening JM,et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A,CDKN2B,or one of their downstream targets[J]. Genes Chromosomes Cancer,1998, 22(2):157-163.
[29] Curtin JA,F(xiàn)ridlyand J,Kageshita T,et al. Distinct sets of genetic alterations in melanoma[J]. N Engl J Med,2005, 353(20):2135-2147.
[30] Sviderskaya EV,Gray-Schopfer VC,Hill SP,et al. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence,apoptosis,and immortalization:Possible implications for melanoma progression[J]. J Natl Cancer Inst,2003,95(10):723-732.
[31] Gray-Schopfer VC,Cheong SC,Chong H,et al. Cellular senescence in naevi and immortalisation in melanoma:A role for p16?[J]. Br J Cancer,2006,95(4):496-505.
(收稿日期:2021-09-27)