亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于CTA的冠狀動(dòng)脈分叉病變血流動(dòng)力學(xué)仿真分析

        2020-12-24 08:01:42郭金興陳廣新包婉秋張春霞張美樂劉陽
        軟件 2020年7期
        關(guān)鍵詞:剪切應(yīng)力壁面動(dòng)力學(xué)

        郭金興 陳廣新 包婉秋 張春霞 張美樂 劉陽

        摘? 要: 針對不同分叉病變區(qū)域長度的個(gè)體化冠狀動(dòng)脈的血流動(dòng)力學(xué)指標(biāo)分布特征,進(jìn)行個(gè)體化建模,探討不同分叉病變區(qū)域長度對冠狀動(dòng)脈的影響。應(yīng)用計(jì)算流體力學(xué)仿真計(jì)算,獲得不同分叉病變區(qū)域長度的冠狀動(dòng)脈血流動(dòng)力學(xué)指標(biāo)分布特征。利用CFX CCL語言實(shí)現(xiàn)不同的血流動(dòng)力學(xué)指標(biāo)參數(shù)。通過計(jì)算機(jī)建模與仿真,可實(shí)現(xiàn)CTA-STL模型-CFD網(wǎng)格-CFD仿真結(jié)果,結(jié)果為冠狀動(dòng)脈分叉病變的血流動(dòng)力學(xué)變化受分叉病變的長度影響。

        關(guān)鍵詞: CTA;冠狀動(dòng)脈分叉病變;血流動(dòng)力學(xué)仿真

        中圖分類號(hào): TP391.4 ???文獻(xiàn)標(biāo)識(shí)碼: A??? DOI:10.3969/j.issn.1003-6970.2020.07.024

        本文著錄格式:郭金興,陳廣新,包婉秋,等. 基于CTA的冠狀動(dòng)脈分叉病變血流動(dòng)力學(xué)仿真分析[J]. 軟件,2020,41(07):120-125

        CTA Based Simulation Analysis of Coronary Bifurcation Lesions

        GUO Jin-xing1, CHEN Guang-xin2, BAO Wan-qiu2, ZHANG Chun-xia2, ZHANG Mei-le2, LIU Yang3*

        (1. Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China; 2. Medical Imaging College of Mudanjiang MedicalUniversity, Mudanjiang, 157011, China; 3. Registrars office of Mudanjiang Medical University, Mudanjiang, 157011, China)

        【Abstract】: According to the distribution characteristics of individual coronary artery Hemodynamics index with different length of bifurcation lesion area, the individual model was established to explore the influence of different length of bifurcation lesion area on coronary artery. The distribution characteristics of coronary artery Hemodynamics index were obtained by using computational fluid dynamics simulation calculation. Using CFX CCL language to implement different Hemodynamics parameters. Cta-stl model-CFD grid-CFD simulation results are realized by computer modeling and simulation. The results show that the Hemodynamics of coronary bifurcation lesions is affected by the length of bifurcation lesions.

        【Key words】: CTA; Coronary bifurcation lesions; Hemodynamics simulation

        0? 引言

        冠狀動(dòng)脈狹窄與心肌缺血是否存在相關(guān)性一直沒有定論[1-3],中等程度額的冠狀動(dòng)脈狹窄病變可能會(huì)引起心肌缺血,冠狀動(dòng)脈分叉病變的影響因素包括狹窄率、狹窄區(qū)域長度,所以冠狀動(dòng)脈的形態(tài)學(xué)研究對弄清冠狀動(dòng)脈的血流動(dòng)力學(xué)特征變化具有重要的意義[4-5]。本研究即基于不同狹窄區(qū)域長度的三維模型,應(yīng)用血流動(dòng)力學(xué)的指標(biāo)包括壁面剪切應(yīng)力、

        震蕩剪切因子、避免剪切應(yīng)力梯度、時(shí)間平均壁面剪切應(yīng)力等對冠狀動(dòng)脈不同病變長度的LAD進(jìn)行分析,探討病變長度對冠狀動(dòng)脈的的血流動(dòng)力學(xué)因素的影響關(guān)系。

        1? 個(gè)體化冠狀動(dòng)脈三維模型構(gòu)建

        選取牡丹江醫(yī)學(xué)院附屬紅旗醫(yī)院冠狀動(dòng)脈患者病例一例,CTA斷層影像數(shù)據(jù)總計(jì)402張,層厚0.5?mm,使用比利時(shí)醫(yī)學(xué)交互式影像控制系統(tǒng)(Mater?ialists Interative Medical Image Control System,MIMICS)高級(jí)分割工具(ADVANCED SEGMENT)模塊中的Coronary專用分割工具進(jìn)行冠狀動(dòng)脈分割(圖1),提取出左冠狀動(dòng)脈蒙版(Mask),并經(jīng)三維模型計(jì)算(Calculate Part生成初步的三維模型并以stl格式導(dǎo)入正向工程軟件3-matic中進(jìn)行光順、三維模型修復(fù)、三角面片劃分,最終獲取冠狀動(dòng)脈三維模型,此模型病變長度為0(圖2),圖2中標(biāo)示了模型的入口、出口位置和病變區(qū)域。在此動(dòng)脈模型基礎(chǔ)上構(gòu)建10 mm,15 mm病變(狹窄)模型。MIMICS是醫(yī)學(xué)逆向工程軟件,該軟件可實(shí)現(xiàn)斷層數(shù)據(jù)的提取、三位建模、測量等,3-matic medical版本是基于正向工程技術(shù)的一款三維模型的構(gòu)建、修復(fù)處理軟件。

        2 ?計(jì)算方法

        2.1 ?材料屬性與邊界條件

        本研究的仿真計(jì)算是基于ANSYS CFX軟件,Ansys CFX是一款高性能計(jì)算流體動(dòng)力學(xué)(CFD)軟件工具,能快速穩(wěn)健地提供準(zhǔn)確可靠的解決方案,適用于眾多CFD和多物理場應(yīng)用,作為世界上唯一采用全隱式耦合算法的大型商業(yè)軟件[6-8]。算法上的先進(jìn)性,豐富的物理模型和前后處理的完善性使ANSYS CFX在結(jié)果精確性,計(jì)算穩(wěn)定性,計(jì)算速度和靈活性上都有優(yōu)異的表現(xiàn)。假設(shè)血流密度為1066 kg/m3,血液為牛頓流體,動(dòng)力粘度為0.0035 。冠狀動(dòng)脈入口采用速度入口,入口速度曲線如圖3所示,出口壓力曲線如圖4所示,不考慮重力的影響。計(jì)算兩個(gè)周期,每個(gè)周期的時(shí)長為0.8 s,取最后一個(gè)周期的結(jié)果進(jìn)行研究。由于血管內(nèi)壓力很小,設(shè)置流體域的壓力為0。雷諾數(shù)為Re=1430<2300,因此采用層流[9-10]。

        2.3 ?網(wǎng)格劃分

        各模型的網(wǎng)格劃分采用非結(jié)構(gòu)化的四面體網(wǎng)格(ANSYS FLUENT MESHING劃分),為保證計(jì)算精度,邊界層采用5層加密(圖5所示),網(wǎng)格劃分后進(jìn)行網(wǎng)格獨(dú)立性驗(yàn)證,滿足精度要求。ANSYS FLUENT MESHING是全新的基于Ribbon風(fēng)格的界面,提高了操作的便捷性,改善了用戶的體驗(yàn),同時(shí)提供了基于包面方法的全自動(dòng)腳本生成網(wǎng)格、基于ANSA集成FLUENT MESHING的網(wǎng)格生成、基于SCDM結(jié)合FLUENT MESHING等多種網(wǎng)格生成流程。應(yīng)用該軟件劃分的網(wǎng)格質(zhì)量較高,并提供獨(dú)有的多面體網(wǎng)格技術(shù)[11-13]

        3 ?仿真計(jì)算結(jié)果分析

        本計(jì)算結(jié)果圖像后處理分析采用ENSIGHT進(jìn)行分析,ENSIGHT是美國CEI公司開發(fā)的一款具有尖端的科學(xué)工程可視化的圖像后處理軟件。

        3.1 ?血流動(dòng)力學(xué)參數(shù)選擇

        各參數(shù)的實(shí)現(xiàn)采用CCL編碼開發(fā),ccl語言通俗易懂,可開發(fā)性較高,本實(shí)驗(yàn)程序編碼部分如下:

        inrad1 = sqrt(area()@INLET1/ pi)

        inrad2 = sqrt(area()@INLET2/ pi)

        invel1 = max(0 [m s^-1], invmax1 * (1.0 - (zxradius1/inrad1)^2))

        invel2 = max(0 [m s^-1], invmax2 * (1.0 - (zxradius2/inrad2)^2))

        invmax1 = 2 * INLET1f / ( pi *(inrad1^2)*areaAve(density)@INLET1)

        invmax2 = 2 * INLET2f / ( pi *(inrad2^2)*areaAve(density)@INLET2)

        inxcen1 = areaAve(Global X Coordinate)@INLET1

        inxcen2 = areaAve(Global X Coordinate) @INLET2

        inycen1 = areaAve(Global Y Coordinate) @INLET1

        inycen2 = areaAve(Global Y Coordinate) @INLET2

        inzcen1 = areaAve(Global Z Coordinate) @INLET1

        inzcen2 = areaAve(Global Z Coordinate) @INLET2

        numaneurysms = 1

        numsystoliccycles = 3

        peaksystole = 0.13

        systoliccyclelength = 0.8

        visc = viscval * 1[Pa s]

        viscval = 0.0035

        vortmag2 = Vorticity X^2 + Vorticity Y^2 + Vorticity Z^2

        zxradius1 = sqrt((x-inxcen1)^2 + (y-inycen1)^2 + (z-inzcen1)^2)

        zxradius2 = sqrt((x-inxcen2)^2 + (y-inycen2)^2 + (z-inzcen2)^2)

        END

        ADDITIONAL VARIABLE: Qvar

        Option = Definition

        Tensor Type = SCALAR

        Units = [s^-2]

        Variable Type = Unspecified

        END

        ADDITIONAL VARIABLE: ViscDisp

        Option = Definition

        Tensor Type = SCALAR

        Units = [s^-2]

        Variable Type = Unspecified

        END

        ADDITIONAL VARIABLE: WSSField

        Option = Definition

        Tensor Type = SCALAR

        Units = [Pa]

        Variable Type = Specific

        END

        ADDITIONAL VARIABLE: WSSG

        Option = Definition

        Tensor Type = VECTOR

        Units = [Pa m^-1]

        Variable Type = Unspecified

        END

        ADDITIONAL VARIABLE: WSSxF

        Option = Definition

        Tensor Type = SCALAR

        Units = [Pa]

        Variable Type = Specific

        END

        ADDITIONAL VARIABLE: WSSyF

        Option = Definition

        Tensor Type = SCALAR

        Units = [Pa]

        Variable Type = Specific

        END

        ADDITIONAL VARIABLE: WSSzF

        Option = Definition

        Tensor Type = SCALAR

        Units = [Pa]

        Variable Type = Specific

        END

        MATERIAL: Blood

        Material Group = User

        Option = Pure Substance

        PROPERTIES:

        Option = General Material

        EQUATION OF STATE:

        Density = dens

        Molar Mass = 1.0 [kg kmol^-1]

        Option = Value

        END

        DYNAMIC VISCOSITY:

        Dynamic Viscosity = visc

        Option = Value

        END

        END

        END

        END

        FLOW: Flow Analysis 1

        SOLUTION UNITS:

        Angle Units = [rad]

        Length Units = [m]

        Mass Units = [kg]

        Solid Angle Units = [sr]

        Temperature Units = [K]

        Time Units = [s]

        END

        ANALYSIS TYPE:

        Option = Transient

        EXTERNAL SOLVER COUPLING:

        Option = None

        END

        INITIAL TIME:

        Option = Automatic with Value

        Time = 0 [s]

        END

        TIME DURATION:

        Option = Total Time

        Total Time = 2.4 [s]

        END

        TIME STEPS:

        Option = Timesteps

        Timesteps = 0.008 [s]

        END

        END

        DOMAIN: FLUIDdom

        Coord Frame = Coord 0

        Domain Type = Fluid

        Location = Assembly

        BOUNDARY: INLET1

        Boundary Type = INLET

        Location = INLET1

        BOUNDARY CONDITIONS:

        ADDITIONAL VARIABLE: WSSField

        Option = Zero Flux

        END

        ADDITIONAL VARIABLE: WSSxF

        Additional Variable Value = 0 [kg m^-1 s^-2]

        Option = Value

        END

        ADDITIONAL VARIABLE: WSSyF

        Additional Variable Value = 0 [kg m^-1 s^-2]

        Option = Value

        END

        ADDITIONAL VARIABLE: WSSzF

        Additional Variable Value = 0 [kg m^-1 s^-2]

        Option = Value

        END

        FLOW REGIME:

        Option = Subsonic

        END

        MASS AND MOMENTUM:

        Normal Speed = invel1

        Option = Normal Speed

        END

        END

        END

        ADDITIONAL VARIABLE: OSIfield

        Additional Variable Value = (1 - \

        (WSTaveMag/(WSSField.Trnavg+ 1e-15[Pa])))/2

        Option = Algebraic Equation

        END

        ADDITIONAL VARIABLE: PressGauge

        Additional Variable Value = pref + Pressure

        Option = Algebraic Equation

        END

        ADDITIONAL VARIABLE: WSSField

        Kinematic Diffusivity = 1e-15 [m^2 s^-1]

        Option = Poisson Equation

        END

        ADDITIONAL VARIABLE: WSSG

        Option = Vector Algebraic Equation

        Vector xValue = -(1.0-Normal X*Normal X)*WSSField.Gradient X \

        -(0.0-Normal X*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal X*Normal \

        Z)*WSSField.Gradient Z

        Vector yValue = -(0.0-Normal Y* Normal X)*WSSField.Gradient X \

        -(1.0-Normal Y*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal Y*Normal \

        Z)*WSSField.Gradient Z

        Vector zValue = -(0.0-Normal Z*Nor?mal X)*WSSField.Gradient X \

        -(0.0-Normal Z*Normal Y)*WSS?Field.Gradient Y -(1.0-Normal Z*Normal \

        Z)*WSSField.Gradient Z

        END

        ADDITIONAL VARIABLE: WSSxF

        Kinematic Diffusivity = 1e-15 [m^2 s^-1]

        Option = Poisson Equation

        END

        ADDITIONAL VARIABLE: WSSyF

        Kinematic Diffusivity = 1e-15 [m^2 s^-1]

        Option = Poisson Equation

        END

        ADDITIONAL VARIABLE: WSSzF

        Kinematic Diffusivity = 1e-15 [m^2 s^-1]

        Option = Poisson Equation

        END

        COMBUSTION MODEL:

        Option = None

        END

        HEAT TRANSFER MODEL:

        Option = None

        END

        THERMAL RADIATION MODEL:

        Option = None

        END

        TURBULENCE MODEL:

        Option = Laminar

        END

        END

        END

        本文選擇血流速度、時(shí)間平均壁面切應(yīng)力(time average wall shear stress,TAWSS)、平均壁面切應(yīng)力梯度(time average wall shear stress grade,TAWSSG)、剪切震蕩系數(shù)(oscillatory shear index,OSI)、壁面切應(yīng)力(wall shear stress,WSS)是指血液流動(dòng)時(shí)在血管壁表面上引起的切向的動(dòng)態(tài)摩擦力。對于脈動(dòng)流,在一個(gè)心臟周期內(nèi)用每個(gè)節(jié)點(diǎn)上積分WSS量的值來計(jì)算TAWSS:

        其中wssi是瞬時(shí)剪切應(yīng)力矢量,T是周期的持續(xù)時(shí)間。同時(shí)提出了壁面切應(yīng)力梯度(wall shear stress,WSSG),可以更明顯觀測WSS數(shù)值變化,WSSG的時(shí)間平均值即平均壁面切應(yīng)力梯度(TAWSSG):

        在一個(gè)心動(dòng)周期內(nèi),震蕩剪切系數(shù)(OSI)可以描述WSS方向的變化程度,OSI值介于(0,0.5)之間,OSI數(shù)值越大,表示W(wǎng)SS方向的變化也就越大,但其值的大小與WSS沒有必然聯(lián)系,其表達(dá)式為:

        3.2 ?病變長度對TAWSS的影響

        本研究提取了最后一個(gè)周期的TAWSS云圖 (圖6),由TAWSS分布云圖可見,在分叉病變區(qū)域,無病變、10 mm病變長度,15 mm病變長度的病變部位高TAWSS區(qū)域依次遞增。在病變區(qū)域,高TAWSS區(qū)域的值都較小,普遍都在0.6左右,而非病變區(qū)域的分叉部位病變長度10 mm、15 mm的模型高TAWSS區(qū)域要大于無病變者。

        Fig.6? TAWSS distribution nephogram (from left to right: no lesion (a), 10 mm lesion length model (b),15 mm lesion length model (c))

        3.3 ?病變長度對OSI的影響

        Zhang等人的那研究證實(shí)低的OSI能夠降低血管內(nèi)膜增生的可能性。由圖7可見,無病變模型、10 mm病變長度模型、15 mm病變長度模型OSI分布差別較小。

        3.4 ?病變長度對TAWSSG的影響

        由圖8可見,各模型的分叉病變高TWSSG區(qū)域按無病變、10 mm、15 mm順序依次遞增。在管壁分叉處,TAWSSG值都較高,有血管損傷的風(fēng)險(xiǎn)。

        3.5 ?病變長度對血流速度分布的影響

        為考察病變長度對血流速度的影響,選取血管病變位置的截面速度進(jìn)行比較研究,圖9為截面的位置。三個(gè)不同病變長度的截面血流速度分布如圖10所示,由圖可見,在脈動(dòng)流周期的入口血流速度峰值時(shí)刻,無病變、10 mm病變長度、15 mm病變長度模型的截面血流速度依次遞增。

        4 ?討論

        本研究構(gòu)建了冠狀動(dòng)脈的LAD的不同長度狹窄區(qū)域的血管3D模型,并在此基礎(chǔ)上使用ANSYS CFX流體仿真軟件進(jìn)行仿真計(jì)算,獲得冠狀動(dòng)脈不同狹窄區(qū)域長度的血流動(dòng)力學(xué)指標(biāo)分布特征。冠狀動(dòng)脈WSS是引起血管發(fā)生病變及病變惡化的重要影響因素,WSS高、低區(qū)域的震蕩是引起血管損傷的重要因素,其低WSS區(qū)域或震蕩可能擴(kuò)大病變狹窄程度,而高WSS可能會(huì)造成斑塊的軟化和不穩(wěn)定;高OSI可能會(huì)增加內(nèi)皮細(xì)胞的功能紊亂和血管內(nèi)膜增生[12-13]。

        參考文獻(xiàn)

        1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation, 2015, 131: e29-e322.

        2. Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve(FFTCT) derived from coronary CT angiography. Journal of Cardiovascular Translational Research, 2013, 6(5): 708-714.

        3. Zhang JM, Zhong L, Luo T, et al. Numerical simulation and clinical implications of stenosis in coronary blood flow. In: BioMed Research International, 2014: 1-10.

        4. Taylor CA, Fonte TA, Min JK. Computational fluid dyna?mics applied to cardiac computed tomography for noninva?sive quantification of fractional flow reserve. Journal of the American College of Cardiology, 2013, 61(22): 2233-2241.

        5. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia- causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Journal of the American College of Cardiology, 2011, 58(19): 1889-1996.

        6. Yong AS, Ng AC, Brieger D, et al. Three-dimensional and two dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. European Heart Journal, 2011, 32(3): 345-353.

        7. Iguchi T, Hasegawa T, Nishimura S, et al. Impact of lesion length on functional significance in intermediate coronary lesions. Clinical Investigations, 2013, 36(3): 172-177.

        8. Kristensen TS, Engstr?mb T, Kelb?k H, et al. Correlation between coronary computed tomographic angiography and fractional flow reserve. International Journal of Cardiology, 2010, 144(2): 200-205.

        9. Alghamdi A, Balgaith M, Alkhaldi A. Influence of the length of coronary artery lesions on fractional flow reserve across intermediate coronary obstruction. European Heart Journal Supplements, 2014, 16(Supplement B): 76-79.

        10. 隋國慶, 張培新, 楊國柱, 等. 冠狀動(dòng)脈的數(shù)值模擬分析及在支架介入的應(yīng)用研究[J]. 軟件. 2020(1).

        11. 陳廣新, 趙東良, 郭金興, 等. 基于CTA的個(gè)體化腦動(dòng)脈瘤的流固耦合分析及其臨床應(yīng)用[J]. 2020(1).

        12. 王汝良, 胡霖霖, 郭金興, 等. 頸動(dòng)脈分叉的非穩(wěn)態(tài)數(shù)值模擬分析[J]. 2018(10).

        13. 張凱旋, 陳廣新, 邱收, 等. 椎動(dòng)脈阻斷術(shù)前后基底動(dòng)脈瘤的血流動(dòng)力學(xué)數(shù)值模擬分析[J]. 2019(6).

        猜你喜歡
        剪切應(yīng)力壁面動(dòng)力學(xué)
        小天體環(huán)的軌道動(dòng)力學(xué)
        二維有限長度柔性壁面上T-S波演化的數(shù)值研究
        心瓣瓣膜區(qū)流場中湍流剪切應(yīng)力對瓣膜損害的研究進(jìn)展
        剪切應(yīng)力對聚乳酸結(jié)晶性能的影響
        中國塑料(2016年6期)2016-06-27 06:34:24
        壁面溫度對微型內(nèi)燃機(jī)燃燒特性的影響
        基于隨機(jī)-動(dòng)力學(xué)模型的非均勻推移質(zhì)擴(kuò)散
        動(dòng)脈粥樣硬化病變進(jìn)程中血管細(xì)胞自噬的改變及低剪切應(yīng)力對血管內(nèi)皮細(xì)胞自噬的影響*
        硫化氫在低剪切應(yīng)力導(dǎo)致內(nèi)皮細(xì)胞自噬障礙中的作用
        TNAE的合成和熱分解動(dòng)力學(xué)
        C36團(tuán)簇生長動(dòng)力學(xué)及自由能
        国产福利永久在线视频无毒不卡| 国产大陆av一区二区三区| 日韩亚洲在线一区二区| 日本免费一区二区三区影院| 国产放荡对白视频在线观看| 99热久久精里都是精品6| 97色偷偷色噜噜狠狠爱网站97| 成在线人免费视频播放| 午夜理论片日本中文在线 | 日本中文字幕一区二区在线观看| 国内精品亚洲成av人片| 亚洲成在人线在线播放无码| 91日本精品国产免| 一本色道久久综合亚洲精品蜜臀| 精品久久中文字幕系列| 国产精品成人va在线观看| 在线中文字幕有码中文| 国产精品性一区二区三区| 国产91久久麻豆黄片| 高清不卡一区二区三区| 国产尻逼视频| 日韩美女人妻一区二区三区| 色大全全免费网站久久| 国产精品沙发午睡系列990531| 久久精品国产6699国产精| 国产精品视频一区二区久久| 国产极品粉嫩福利姬萌白酱| 国产中老年妇女精品| 麻豆人妻无码性色AV专区| 国产成人自拍视频播放| 97在线观看播放| 综合无码一区二区三区四区五区| 国产精品一区二区三区成人| 在线观看人成视频免费| 两个人看的www高清视频中文| 久久HEZYO色综合| 国内精品亚洲成av人片| 国产免国产免费| 日韩啪啪精品一区二区亚洲av| 宅男视频一区二区三区在线观看| 亚洲欧美一区二区成人片|